УДК: 577.21

Закономерности, связанные с распределением длин интронов

Астахова Т.В.¹, Ройтберг М.А.^{*1,2,3}, Цитович И.И.^{2,3,4}, Яковлев В.В.¹

 1 Институт математических проблем биологии, Пущино, Московская область, Россия 2 НИУ Высшая школа экономики, Москва, Россия

 3 Московский физико-технический институт (ГУ), Долгопрудный, Московская область, 2

 4 Институт проблем передачи информации им. А.А. Харкевича, Москва, Россия

Аннотация. Изучены закономерности распределения длин интронов в геномах 17 организмов, принадлежащих к различным таксонам (насекомые, рыбы, земноводные, пресмыкающиеся, птицы, млекопитающие). Показано, что доля интронов, имеющих фазу 1, растет с ростом длины интрона. Кроме того, показано, что короткие и длинные интроны имеют тенденцию образовывать серии, например, доля коротких (длинных) интронов среди тех интронов, которые следуют за коротким (длинным) интроном, существенно выше, чем доля коротких (длинных) интронов в геноме. Эти закономерности показаны для всех рассмотренных геномов.

Ключевые слова: интрон, экзон, фаза интрона, длина интрона.

ВВЕДЕНИЕ

Проблема функционирования и эволюции генов эукариот, включая экзонинтронную структуру генов — одна из важнейших задач современной молекулярной биологии. С ростом объемов доступных данных возрастает роль биоинформатических подходов при изучении этой проблемы.

Изучение генов эукариот ведется, начиная с 80-х годов XX века. В это время большинство исследований были связаны с распознаванием белок-кодирующих участков ДНК. Обзор результатов первого периода исследований содержится в работах [1, 2]. К основным результатам этого периода можно отнести построение моделей сайтов сплайсинга в виде позиционных весовых матриц (ПВМ, англ. термин – PWSM), введение понятия кодирующего потенциала участка и постановку задачи распознавания белок-кодирующих участков как задачи выделения «оптимальных» путей в графах. В это же время был разработан ряд программных систем (GRAIL, GeneMark др.), которые обеспечивали точность распознавания на уровне около 70%. В последующие годы (конец девяностых – начало двухтысячных) в распознавании генов был достигнут существенный прогресс, и с практической точки зрения задачу распознавания белок-кодирующих областей можно считать решенной. Основными причинами такого прогресса являются использование сведений об экзон-интронной структуре уже известных генов, использование методов машинного обучения и построение скрытых марковских моделей для различных участков генов.

Изучение экзон-интронной структуры генов в качестве самостоятельного направления исследований, не связанного непосредственно с распознаванием генов,

-

^{*}mroytberg@impb.psn.ru, mroytberg@lpm.org.ru

сформировалось во второй половине 90-х годов ХХ века. Работы, относящиеся к этому направлению, можно условно разделить на три класса: (1) статистические связи между свойствами элементов экзон-интронной структуры, CM. например, свойств элементов (2) закономерности, отражающие влияние экзон-интронной структуры генов на функциональные свойства генов, см., например, (3) сравнительный анализ экзон-интронных структур ортологичных генов разных видов и паралогичных генов в одном геноме, и построение моделей эволюции экзонинтронной структуры, см. обзор [6].

В качестве характеристик экзонов и интронов рассматриваются, как правило, фаза (остаток от деления суммы длин предшествующих транслируемых экзонов на 3), номер экзона/интрона в гене, длина экзона или интрона, нуклеотидная последовательность экзона/интрона. При этом закономерности, связанные с длинами интронов, изучены значительно хуже, чем, например, закономерности, связанные с их фазами.

Одним из наиболее известных фактов является повышенная длина 1-го интрона [7]. Также в работе [8] проведен систематический анализ длин интронов различных групп организмов. Изучалась связь между длиной интронов и протеканием различных внутриклеточных процессов в ходе эволюции. Работы [9, 10] посвящены времени протекания сплайсинга в зависимости от длины интрона. В работе [11] исследована корреляция между длиной интрона и степенью эволюционного отбора на аминокислотном уровне. А. Виноградов [12] показал, что интроны короче в конститутивных генах, чем в тканеспецифичных, или генах, отвечающих за развитие организма. Исследована зависимость между длиной интрона и уровнем экспрессии генов [13]. Показано, что соотношение между длиной интронов и GC-содержанием у различных видов может быть связано с изохорной структурой геномов [14]. В целом, GC-богатые изохоры позвоночных имеют короткие интроны, а GC-бедные изохоры – длинные интроны.

Целью нашей работы является изучение закономерностей строения экзонинтронной структуры, связанных с длиной и фазой интронов, которые в настоящее время изучены недостаточно. В частности, недостаточно изучена корреляция между длинами соседних интронов (в отличие от хорошо известной корреляции между фазами соседних интронов).

МАТЕРИАЛЫ И МЕТОДЫ

Данные

Анализировались аннотированные интроны 17 организмов (см. относящихся к б классам (насекомые, рыбы, земноводные, пресмыкающиеся, птицы, млекопитающие). Исходные данные были взяты с сайта ftp.ncbi.nih.gov/genomes, организованы В виде базы данных доступны ПО адресу: http://server2.lpm.org.ru/~victor/introns_db/. Описание структуры базы и методики, использованной при ee построении, находятся ПО адресу http://server2.lpm.org.ru/~victor/introns_db/build_db/.

Ниже, говоря об интронах млекопитающих, птиц, насекомых и т. д., мы будем иметь в виду все интроны тех из указанных выше организмов, которые принадлежат к классу млекопитающих, птиц и т.д.

Таблица 1. Исследованные геномы (внутренние интроны)

NºNº	Организм	Класс	Кол-во интронов	Кол-во генов	Среднее кол- во интронов в гене
1	Apis mellifera	Insecta	29494	6015	4.9
2	Drosophila melanogaster	Insecta	19659	5385	3.65
3	Nasonia vitripennis	Insecta	31554	6816	4.63
4	Tribolium castaneum	Insecta	22703	5556	4.09
5	Danio rerio	Osteichthyes	114893	15525	7.4
6	Xenopus tropicalis	Amphibia	80533	10644	7.57
7	Anolis carolinensis	Reptilia	73632	9195	8
8	Gallus gallus	Aves	81916	9636	8.5
9	Meleagris gallopavo	Aves	51699	6263	8.25
10	Taeniopygia guttata	Aves	62216	7424	8.38
11	Canis lupus familiaris	Mammalia	93413	10962	8.52
12	Mus musculus	Mammalia	108206	13633	7.93
13	Sus scrofa	Mammalia	75050	10527	7.13
14	Callithrix Jacchus	Mammalia	78234	9907	7.9
15	Macaca mulatta	Mammalia	79200	10344	7.66
16	Pan troglodytes	Mammalia	90139	11552	7.8
17	Homo sapiens	Mammalia	94067	11578	8.12

Таблица 2. Пороги длин для различных долей длинных интронов и различных организмов

№	Организм	Пор		н для раз. нных инт	личных д ронов	олей	Самый длинный
	•	50%	25%	10%	5%	1%	интрон
1	Apis mellifera	110	325	1350	3530	22150	557152
2	Drosophila melanogaster	75	255	1340	3110	12500	132736
3	Nasonia vitripennis	85	210	880	2450	20110	264629
4	Tribolium castaneum	55	480	2770	4280	13880	163127
5	Danio rerio	870	2420	4750	8000	25320	383251
6	Xenopus tropicalis	940	2010	4710	8450	26910	374628
7	Anolis carolinensis	1410	2850	6840	13000	45440	420519
8	Gallus gallus	810	1780	4480	8600	30480	331673
9	Meleagris gallopavo	850	1850	4720	8970	29260	427402
10	Taeniopygia guttata	920	2040	5210	9940	34180	462377
11	Canis lupus familiaris	1290	3300	8350	15460	53180	700631
12	Mus musculus	1230	2900	7000	12860	49290	479338
13	Sus scrofa	1270	3170	7540	13890	44800	402757
14	Callithrix jacchus	1640	4140	10530	19340	65780	820705
15	Macaca mulatta	1530	3910	9920	18270	60030	963148
16	Pan troglodytes	1570	3980	9930	18190	63590	587523
17	Homo sapiens	1450	3650	9130	16820	58230	772625

Основные определения

С точки зрения положения в гене, можно выделить такие группы интронов: все интроны; первые интроны; последние интроны; внутренние интроны (все интроны, кроме первых и последних); интроны в двухэкзонных генах.

Данная работа посвящена изучению внутренних интронов, так как только для них возможно исследование связи интрона с его окружением.

Интрон называется T- ∂ линным, если его длина не менее T нуклеотидов. Таблица 2 дает представление о распределении длин интронов для различных организмов.

РЕЗУЛЬТАТЫ

Длины смежных интронов

Анализ длин смежных интронов, т.е. интронов, окружающих один экзон, показал, что их длины зависят друг от друга. В частности, мы показали, что для всех рассматриваемых порогов длины интронов T и для всех исследованных таксонов вероятность того, что интрон, смежный с T-длинным (T-коротким) интроном, является также с T-длинным (T-коротким), значительно больше, чем вероятность того что он окажется T-коротким (T-длинным).

Данные для H. sapience, G. gallus и D. melanogaster представлены в таблицах 3a, 3б, 3в. В колонках этих таблиц обозначениями « $S \rightarrow S$ » и « $S \leftarrow S$ » (соответственно, « $SS \rightarrow S$ » и $\langle S \leftarrow SS \rangle$) показаны доли коротких интронов среди всех таких интронов, для которых предыдущий (для столбца « $S \rightarrow S$ ») или последующий (для столбца « $S \leftarrow S$ ») также короткий. В колонках « $SS \rightarrow S$ » и « $S \leftarrow SS$ » показаны доли коротких интронов среди всех таких интронов, для которых два предыдущих (последующих) интрона – короткие. Столбцы « $L \rightarrow L$ », « $L \leftarrow L$ », « $LL \rightarrow L$ » и « $L \leftarrow LL$ » содержат аналогичные данные для длинных интронов. Например, для генома человека и порога T = 1500 п.н. геном содержит 51% коротких интронов, эмпирическая вероятность найти короткий интрон после другого короткого интрона составляет 65%, а вероятность найти короткий интрон после двух коротких интронов составляет 75%. Эмпирическая вероятность найти короткий интрон перед другим коротким интроном равна 62,4%, найти короткий интрон перед двумя короткими интронами равна 70,8%. Для длинных интронов соответствующие значения 49%, 62,5%, 68% и 49,0%, 65,2%, 72,0%. Наряду с приведенными наблюдениями следует отметить, что длинные интроны, как правило, имеют фазу 1, это находится в соответствии с эффектом цепей симметричных экзонов фазы 1, представленных в [15]. В таблицах 36 и 3в можно увидеть аналогичные таблицы для Gallus gallus и дрозофилы. Все данные приведены для внутренних интронов (см раздел «Материалы и методы»).

Аналогичные данные для других рассмотренных организмов доступны по адресу: http://server2.lpm.org.ru/static/introns_results/Appendix.htm.

В таблице 4 приведены Z-значения для увеличения количества соседних интронов сходной длины для порогов T, при которых T- ∂ линные интроны составляют около 30% всех интронов. Для остальных порогов результаты, приведенные в таблицах 3a-3s, также являются статистически значимыми. Z-значения вычислялись по формуле

$$Z = \frac{N_{\text{\tiny \it HAGS}} - N \cdot p}{\sqrt{N \cdot p \cdot (1 - p)}} \ .$$

Значения $N_{\text{набл}}$, N и p выбирались следующим образом (пояснения даются для Tдлинных интронов, обозначения для T-коротких интронов аналогичны).

Таблица 3а. Доли *Т-коротких* и *Т-длинных* внутренних интронов в геноме *H. sapience* при различных порогах T

Порог	%корот- ких	S→S	SS→S	S←S	S←SS	%длин- ных	$L{\rightarrow}L$	LL→L	L←L	L←LL
150	10.10%	26.20%	41.50%	25.00%	38.40%	89.90%	91.60%	92.70%	92.10%	93.50%
1000	40.20%	58.20%	71.50%	55.80%	67.50%	59.80%	71.10%	75.50%	73.10%	78.60%
1500	51.00%	65.10%	75.00%	62.40%	70.80%	49.00%	62.50%	67.80%	65.20%	72.00%
3000	70.20%	78.10%	83.20%	75.10%	79.20%	29.80%	46.40%	54.60%	50.60%	61.50%
5000	81.50%	86.70%	89.80%	83.80%	86.20%	18.50%	37.80%	48.00%	43.30%	57.70%
10000	91.00%	93.90%	95.50%	91.60%	92.60%	9.00%	31.80%	44.20%	39.60%	57.40%
20000	96.00%	97.40%	98.20%	95.90%	96.30%	4.00%	28.30%	41.10%	38.80%	54.40%
100000	99.60%	99.70%	99.80%	99.40%	99.40%	0.40%	14.90%	21.40%	25.40%	40.40%

Таблица 36. Доли *Т-коротких* и *Т-длинных* внутренних интронов в геноме G. gallus при различных порогах T

Порог	%корот- ких	S→S	SS→S	S←S	S←SS	%длин- ных	L→L	LL→L	L←L	L←LL
150	11,05%	35,30%	56,30%	35,72%	56,23%	88,95%	92,01%	93,21%	91,87%	93,21%
1000	57,72%	71,61%	79,35%	69,66%	76,23%	42,28%	60,06%	66,84%	62,30%	70,45%
1500	70,57%	80,92%	86,25%	78,55%	82,99%	29,43%	51,94%	60,37%	55,60%	65,76%
3000	84,94%	90,38%	93,22%	88,27%	90,40%	15,06%	41,53%	51,48%	47,00%	59,69%
5000	91,04%	94,21%	95,96%	92,54%	93,73%	8,96%	35,77%	44,90%	42,18%	54,37%
10000	95,80%	97,19%	98,08%	96,11%	96,60%	4,20%	29,25%	39,12%	36,61%	49,50%
20000	98,27%	98,79%	99,22%	98,17%	98,36%	1,73%	23,22%	32,35%	31,44%	43,60%
100000	99,88%	99,90%	99,93%	99,84%	99,84%	0,12%	10,84%	26,67%	16,51%	36,36%

Таблица 3в. Доли *Т-коротких* и *Т-длинных* внутренних интронов в геноме D. melanogaster при различных порогах T

Порог	%корот- ких	S→S	SS→S	S←S	S←SS	%длин- ных	$L{\rightarrow}L$	LL→L	L←L	L←LL
150	71,52%	80,17%	84,59%	73,36%	75,08%	28,48%	44,86%	53,71%	54,44%	66,30%
1000	89,53%	92,43%	93,64%	87,73%	87,24%	10,47%	26,88%	36,84%	38,55%	54,26%
1500	92,12%	94,19%	95,15%	90,03%	89,46%	7,88%	23,17%	29,77%	35,12%	48,29%
3000	95,54%	96,70%	97,31%	93,67%	93,13%	4,46%	18,82%	25,66%	31,41%	48,09%
5000	97,39%	98,01%	98,32%	95,67%	95,04%	2,61%	14,55%	19,55%	27,57%	43,21%
10000	98,90%	99,10%	99,26%	97,68%	97,19%	1,10%	9,16%	16,39%	20,93%	38,46%

Напомним, что мы рассматриваем только внутренние интроны. При оценке значимости появления двух длинных интронов подряд (столбцы Z2): $N_{_{na6\pi}}$ – количество пар двух длинных интронов подряд; N – количество длинных интронов, за которыми следует хотя бы один внутренний интрон; p – доля длинных интронов среди

всех внутренних интронов, перед которыми находится хотя бы один внутренний интрон. При оценке значимости появления трех длинных интронов подряд (столбцы Z3a, Z3b) мы использовали две статистические модели. В обоих случаях $N_{{}_{na6n}}$ — это количество троек длинных интронов, идущих подряд, N — количество пар длинных интронов, за которыми следует хотя бы один внутренний интрон. При модели, соответствующей столбцам Z3a, мы полагаем p равным доле длинных интронов среди всех внутренних интронов, перед которыми находятся хотя бы два внутренних интрона. При модели, соответствующей столбцам Z3b, мы полагаем p равным доле длинных интронов среди всех внутренних интронов, которые следуют за длинным интроном и перед которыми находятся хотя бы два внутренних интрона.

		%длин-			Z -зна	чения				
Организм	Порог	ных	Корот	кие ин	гроны	Длинные интроны				
		интронов	Z 2	Z3a	<i>Z3b</i>	Z 2	Z3a	Z3b		
H. sapiense	3000	29.80%	46.80	58.34	25.81	67.36	68.72	22.33		
G. gallus	1500	29,43%	57.28	68.59	26.73	84.46	82.77	20.89		
D. melanogaster	150	28,48%	25.61	28.08	11.50	35.24	33.35	8.39		

Таблица 4. Z-значения для данных из таблиц 3а-3в. Пояснения см. в тексте

Длины и фазы интронов

Известно, что во всех геномах существует избыток интронов в фазе 0, количества интронов в фазах 0,1,2 соотносятся примерно, как 5:3:2 [15]. Как показывают наши данные, это соотношение меняется, если рассматривать только относительно длинные интроны.

В таблице 5 показаны процентные соотношения для различных фаз при пороге T5 — таком пороге, что T5-длинные интроны составляют 5% всех интронов генома. В таблице 6 показаны соответствующие Z-значения; в таблице 7 — сведения, при каких порогах достигаются максимальные Z-значения для увеличения доли интронов в фазе 1. Z-значения вычислялись по формуле

$$Z = \frac{N_{Long}[f] - p_{All}[f] \cdot N}{\sqrt{N \cdot p_{All}[f] \cdot (1 - p_{All}[f])}}.$$

Здесь N — общее количество рассматриваемых интронов, $P_{All}[f]$ — доля интронов в фазе f среди всех интронов, N_{Long} — количество длинных интронов (при выбранном пороге) в фазе f .

Таблица 5. Доли интронов в разных фазах среди всех внутренних интронов и среди 5% наиболее длинных внутренних интронов. Порог T5 – это порог, при котором T5-длинные интроны составляют 5% всех интронов генома

		К-во			Процентное содержание фаз 0, 1 и 2					
№	Организм	внутр. интро- нов	5% от КВИ	Порог Т5	Все внутренние интроны			Т5-длинные внутренние интроны		
		(КВИ)			Фаза 0	Фаза 1	Фаза 2	Фаза 0	Фаза 1	Фаза 2
1	Apis mellifera	29494	1475	3530	44.49%	30.82%	24.69%	40.08%	38.56%	21.35%
2	Drosophila melanogaster	19659	983	3160	41.68%	31.13%	27.19%	37.93%	40.97%	21.10%
3	Nasonia vitripennis	31554	1578	2450	44.72%	30.85%	24.43%	41.02%	36.95%	22.03%
4	Tribolium castaneum	22703	1135	4270	43.77%	31.85%	24.38%	41.25%	36.94%	21.81%
5	Danio rerio	114893	5745	9160	45.48%	32.37%	22.16%	40.46%	37.53%	22.01%
6	Xenopus tropicalis	80533	4027	8440	46.54%	31.35%	22.11%	42.26%	36.13%	21.61%
7	Anolis carolinensis	73632	3682	12990	46.71%	30.08%	22.42%	41.93%	35.47%	20.89%
8	Gallus gallus	81916	4096	8590	46.22%	31.23%	22.55%	43.65%	35.52%	20.83%
9	Meleagris gallopavo	51699	2585	8970	46.89%	30.36%	22.75%	44.58%	34.09%	21.32%
10	Taeniopygia guttata	62216	3111	9940	46.36%	30.61%	23.03%	43.84%	34.32%	21.84%
11	Canis lupus familiaris	93413	4671	15450	46.19%	31.03%	22.78%	42.32%	34.92%	22.76%
12	Mus musculus	108206	5410	12850	45.96%	31.51%	22.53%	42.27%	35.98%	21.75%
13	Sus scrofa	75050	3753	13670	45.68%	31.49%	22.83%	42.70%	33.94%	23.36%
14	Callithrix jacchus	78234	3912	19080	45.84%	31.44%	22.72%	42.70%	36.09%	21.21%
15	Macaca mulatta	79200	3960	18260	45.97%	31.32%	22.71%	43.12%	35.02%	21.86%
16	Pan troglodytes	90139	4507	18170	45.92%	31.62%	22.46%	42.76%	34.93%	22.31%
17	Homo sapiens	94067	4703	16790	46.26%	31.22%	22.51%	43.19%	35.27%	21.53%

Таблица 6. Z-значения для данных таблицы

.No	Организм	Порог	Z-значения				
312	Организм	Т5	Фаза 0	Фаза 1	Фаза 2		
1	Apis mellifera	3530	-3.41	6.36	-2.88		
2	Drosophila melanogaster	3160	-2.43	6.71	-4.30		
3	Nasonia vitripennis	2450	-2.95	5.22	-2.19		
4	Tribolium castaneum	4270	-1.77	3.77	-2.05		
5	Danio rerio	9160	-6.98	7.61	-0.21		
6	Xenopus tropicalis	8440	-5.49	6.55	-0.72		
7	Anolis carolinensis	12990	-5.79	7.11	-2.23		
8	Gallus gallus	8590	-3.29	5.83	-2.55		
9	Meleagris gallopavo	8970	-2.39	4.19	-1.75		
10	Taeniopygia guttata	9940	-2.83	4.53	-1.61		
11	Canis lupus familiaris	15450	-5.30	5.75	-0.04		
12	Mus musculus	12850	-5.45	7.08	-1.37		
13	Sus scrofa	13670	-3.67	3.21	0.80		
14	Callithrix jacchus	19080	-3.89	6.28	-2.34		
15	Macaca mulatta	18260	-3.59	5.03	-1.29		
16	Pan troglodytes	18170	-4.26	4.79	-0.25		
17	Homo sapiens	16790	-4.22	5.99	-1.61		

Таблица 7. Значения порогов TZmax, при которых достигается максимальное Z-значение для увеличения доли интронов в фазе 1. Во всех случаях порог TZmax меньше порога T5 (см. таб. 5, 6), т.е. TZmax-длинные интроны, составляют более 5% всех интронов.

		Порог	2	Z-значения	Я
№	Организм	Tzmax	Фаза 0	Фаза 1	Фаза 2
1	Apis mellifera	1300	-5.35	8.77	-3.23
2	Drosophila melanogaster	360	-1.53	8.29	-6.94
3	Nasonia vitripennis	410	-4.30	7.07	-2.62
4	Tribolium castaneum	2290	-1.89	4.90	-3.13
5	Danio rerio	6850	-7.65	8.28	-0.16
6	Xenopus tropicalis	9960	-5.52	7.15	-1.36
7	Anolis carolinensis	6880	-6.42	7.85	-1.77
8	Gallus gallus	3050	-5.58	7.02	-1.13
9	Meleagris gallopavo	3500	-4.59	6.94	-2.14
10	Taeniopygia guttata	2500	-5.81	6.81	-0.57
11	Canis lupus familiaris	9990	-5.96	6.71	-0.31
12	Mus musculus	11190	-6.11	8.11	-1.73
13	Sus scrofa	11700	-3.42	3.83	-0.18
14	Callithrix jacchus	17100	-4.35	6.79	-2.36
15	Macaca mulatta	13330	-4.38	5.23	-0.58
16	Pan troglodytes	12580	-5.00	5.30	0.06
17	Homo sapiens	13800	-5.45	6.94	-1.20

ЗАКЛЮЧЕНИЕ

Показано, что у всех рассмотренных организмов процентное соотношение фаз среди T-длинных интронов меняется с увеличением порога T. Для всех видов организмов с ростом порога T доля интронов в фазе 1 растет, а доля интронов в фазе 0 убывает и при определенном значении порога доли интронов в фазах 1 и 0 сравниваются. Это значение порога различно для организмов различных таксонов. Для насекомых это значение равно примерно 20000 нуклеотидных пар (нп); для рыб и земноводных несколько ниже (соответственно 18000 нп и 19000 нп), у рептилий (~ 50000 нп), а также у птиц и млекопитающих (~ 110000 нп) — существенно выше. При этом указанный эффект изменения долей интронов в фазах 1 и 0 становится статистически значимым при существенно меньших значениях порога T. Для насекомых при T = 350 Z-значение для значимости увеличения количества интронов в фазе 1 составляет примерно 13 (общее количество интронов длины более 350 — более 20000). Для млекопитающих при T = 14000 Z-значение для значимости увеличения количество интронов длины более 350 — более 20000). Для млекопитающих при T = 14000 Z-значение для значимости увеличения количества интронов в фазе 1 составляет примерно 15 (общее количество интронов длины более 4000 у млекопитающих более 35000).

Показано, что соседний интрон длинного (короткого) интрона склонен также быть длинным (коротким) интроном. Эффект был продемонстрирован для различных таксонов и порогов. Показано также, что эффект усиливается, если рассматривать не пары, а тройки интронов. При этом эффект для троек не сводится к наложению эффектов для пар. Следует отметить, что длинные интроны часто имеют фазу 1, что находится в соответствии с эффектом цепей симметричных экзонов фазы 1, представленных в [15].

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 12-04-00944).

СПИСОК ЛИТЕРАТУРЫ

- 1. Fickett J.W. The gene identification problem: an overview for developers. *Computer & Chemistry*. 1996. V. 20. P. 103.
- 2. Burge C.B., Karlin S. Finding the genes in genomic DNA. *Curr. Opin. Struct. Biol.* 1998. V. 8. P. 346–354.
- 3. Щепеткова И.Л., Гельфанд М.С. Некоторые статистические особенности сайтов сплайсинга позвоночных и беспозвоночных. *Биофизика*. 1997. Т. 42. № 1. С. 82–89.
- 4. Moss S.P., Joyce D.A., Humphries S., Tindall K.J., Lunt DH. Comparative analysis of teleost genome sequences reveals an ancient intron size expansion in the zebrafish lineage. *Genome Biol. Evol.* 2011. V. 3. P. 1187–1196. doi: 10.1093/gbe/evr090.
- 5. Chen D., Zhang J. Analysis of intron sequence features associated with transcriptional regulation in human genes. *PLoS ONE*. 2012. V. 7. № 10. P. e46784. doi: 10.1371/journal.pone0046784.
- 6. Rogozin I.B, Carmel L., Csuros M., Koonin E.V. Origin and evolution of spliceosomal introns. *Biol. Direct.* 2012. V. 7. P. 11. doi: 10.1186/1745-6150-7-11.
- 7. Bradnam K.R., Korf I. Longer first introns are a general property of eukaryotic gene structure. *PLoS ONE*. 2008. V. 3. № 8. Article No. e3093. doi:10.1371/journal.pone.0003093.
- 8. Shuang W., Zhang Z., Jun YU. Systematic analysis of intron size and abundance parameters indiverse lineages. *SCIENCE CHINA Life Sciences*. 2013. V. 56. № 10. P. 968–974.
- 9. Shepard S., McCreary M., Fedorov A. The peculiarities of large intron splicing in animals. *PLoS ONE*. 2009. V. 4. № 11. Article No. e7853. doi:10.1371/journal.pone.0007853.
- 10. Farlow A., Dolezal M., Hua L., Schlotterer C. The genomic signature of splicing-coupled selection differs between long and short introns. *Mol. Biol. Evol.* 2012. V. 29. № 1. P. 21–24.
- 11. Marais G., Nouvellet P., Keightley P.D., Charlesworth B. Intron size and exon evolution in drosophila. *Genetics*. 2005. V. 170. P. 481–485.
- 12. Vinogradov A. "Genome design" model: Evidence from conserved intronic sequence in human–mouse comparison. *Genome Res.* 2006. V. 16. № 3. P. 347–54.
- 13. Catania F., Lynch M. A simple model to explain evolutionary trends of eukaryotic gene architecture and expression: How competition between splicing and cleavage/polyadenylation factors may affect gene expression and splice-site recognition in eukaryotes. *Bioessays*. 2013. V. 35. № 6. P. 561-570. doi: 10.1002/bies.201200127.
- 14. Zhu L., Zhang Y., Zhang W., Yang S., Chen J.-Q., Tian D. Patterns of exon-intron architecture variation of genes in eukaryotic genomes. *BMC Genomics*. 2009. V. 10. P. 47–53.
- 15. Long M., Rosenberg C., Gilbert W. Intron phase correlations and the evolution of the intron/exon structure of genes. *Proc. Natl. Acad. Sci.* 1995. V. 92. № 26. P. 12495–12499.

Материал поступил в редакцию 17.11.2014, опубликован 12.12.2014.