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Abstract. A mathematical model predicting the evolution of human functional 

disorders under environment influence is developed. The natural aging, 

regeneration processes, accumulation of damage due to abnormal substances 

streams and functional recovery through treatment are considered. Inflow of 

substances from the environment, accumulation, metabolism and elimination are 

described with neuro-humoral regulation. Numerical solution of differential 

equations based on implementation of finite difference schemes are obtained for 

different cases.  
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1. INTRODUCTION 

The human body constantly interacts with the environment in its vital activity. It gets all 

the necessary nutrients from it and is exposed to adverse chemical, physical, biological, and 

other environmental factors. Over many years, negative environmental effects on human 

health have been growing due to increasing industrial emissions, emissions from motor 

transport, and noise exposure. Influence of socioeconomic factors is no less significant; in 

particular, the existing distribution is associated with growing work intensity for most 

working age people. This affects mental health and ultimately physical one as well. Poorer 

health results in economic losses due to premature deaths, disability and incidence with 

temporary loss of ability to work. 

Health can be estimated with clinical, laboratory and functional investigations. They 

provide all the data necessary for solving a wide range of tasks, from making a decision on a 

relevant therapy to performing some complex specialized examinations. The aforementioned 

research techniques are well-developed and allow performing a comprehensive complex 

examination of the whole body. They are predominantly aimed at discovering qualitative 

functional disorders of organs and systems. Laboratory and functional diagnostics relies on 

reference ranges of indicators and indexes. In case indicators fall out of these reference 

ranges, functional disorders are not quantified; at best, some scale is provided showing levels 

of hazards or severity of these disorders. On the other hand, although laboratory diagnostic 

techniques are being developed quite rapidly, many studies remain rather labor-consuming, 

expensive, and time-consuming; they often require experts with some specific training but 

still don’t establish a cause of a disease. Moreover, laboratory techniques do not make it 
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possible to predict functional disorders of organs and systems in the human body but it is this 

task that is a priority one in health-related issues.  

Knowledge on causes, factors of a specific disease and mechanisms of its progression 

would considerably facilitate success in diagnosing it and predicting its probable clinical 

course. Mathematic modeling techniques are among the most promising approaches to 

estimating contributions made by various factors to health disorders and establishing relevant 

cause-effect relations. Mathematical models are built based on analyzing regularities in 

interactions of organs and systems, between each other and environmental factors as well. 

The human body is affected by thousands of factors. Thus, ambient air alone in a large 

industrial city contains approximately 400 various adverse chemicals in different 

combinations of their levels. Experiments performed on just twenty of them require 

substantial materials costs. A major advantage of mathematic modeling is an opportunity to 

save time and resources. Besides, use of mathematic modeling makes it possible to change or 

completely exclude any exposures, investigate influence of specific factors or their various 

combinations. Numeric experiments allow simulating exposures that are harmful for human 

life and health and therefore unacceptable for any full-scale experiments. Mathematical 

models give an opportunity not only to assess and compare functional disorders in organs and 

systems but also predict their functional state under exposure to various environmental 

factors. 

Research works that address modeling of ageing processes have been published since 

medicine was established as a science and mathematics as a learning instrument. Historical 

documents mention works by Hippocrates and Aristotle that describe ageing as a phenomenon 

occurring due to loss of ‘natural heat’. Contemporary studies in the field received a new 

impulse to develop when such scientific disciplines as biophysics, biomechanics, and 

mathematical biology came to life. 

In the late 1990s and early 2000s, works on modeling of ageing processes started to show 

some contradictions between old principles of creating conceptual gerontological models 

limited to absolutization of separate observable phenomena and some purely mathematical 

approaches, which were not accepted by biologists and were not of interest for them [1]. 

According to some scientists (V.I. Dontsov, V.N. Krut’ko and others), purely mathematical 

models are too theoretical, have no biological feasibility and are actually incorrect due to false 

initial preconditions. 

At the same time, there is strong demand for working out a clear common concept of 

ageing and its embodiment in models able to interpret ageing of live organisms quantitatively 

and informatively. V.N. Dontsov points out that many elements of such models already exist 

in various spheres of biology. By now, more than 200 theories to explain ageing are available; 

this indicates not only absence of one common theory and concepts of the process or lack of 

knowledge on causes and essence of ageing but also frequent failure to get a proper 

methodological insight into the heart of the problem [2]. 

The model by Gompertz-Makeham is one of the first that meet the requirements to 

essential theories of ageing. It is quite consistent with experimental data on mortality among 

adults [3, 4]. By now, multiple modifications of the model have been developed; they mostly 

describe only natural ‘wear and tear’ of the human body [5, 6]. Models that describe a 

relationship between mortality and age are employed to create predictions in demography and 

epidemiology [7–9]. 

So called ‘burden’ models are used to consider adverse environmental exposures; they 

describe an additional component in intensity of mortality [10]. The models, which we have 

considered, are based on statistical data and do not cover formation and mutual influence of 

ongoing processes; they are not aimed at looking into the nature of analyzed phenomena. 

Contemporary approaches to modeling processes of ageing require mandatory inclusion of 

interactions between live organisms and the environment. V.N. Krut’ko classifies 
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mechanisms of ageing in his studies [1, 11, 12] and highlights several of them as the most 

significant ones: 

1) systemic ‘pollution’ of the body over time due to it being insufficiently open to the 

environment and ineffective excretion of metabolic wastes; 

2) loss of non-renewable elements of the body at any level in its structure; 

3) accumulation of lesions and deformations due to fundamental deficiency of capabilities 

of self-renewable structures to preserve the necessary system elements; 

4) unfavorable changes in regulation. 

Most models that describe mechanisms of ageing are based on formulating and solving 

systems of ordinary differential equations. They reflect how health disorders develop in the 

human body.  

The homeostatic model developed by V.N. Novosel’tsev [13, 14] merits some attention 

among theories that concentrate on deep mechanisms of ageing. In this model, physiological 

ageing is associated with oxidative damage accumulated in the human body. The human body 

is seen as an integral system able to resist various damaging and destroying exposures. The 

model suggested by V.N. Novosel’tsev is a reliable instrument for predicting death and 

analyzing its possible scenarios. To develop the suggested concept, E.A. Mashintsov and A.E. 

Yakovlev developed a mathematical model to describe the body life cycle. Its key output 

parameters are life expectancy at birth and years of potential life lost [15, 16]. The authors 

limited their research to considering only several basic organs and systems (the kidneys, liver, 

cardiovascular and respiratory system); the model does not include a component that reflects 

interaction between the body and environmental factors. 

Influence exerted by environmental factors was considered in the models suggested by 

L. Schlessinger and others [17]. They describe changes in human biological indicators 

associated with diseases considering environmental exposures. Equations are built based on 

statistical approaches and the authors highlight that even if their model relies on population 

data, it considers individual health with respect to anatomy, physiology, pathology and a 

reaction to treatment. The authors provide a detailed description of an algorithm for resolving 

issues associated with data identification, verification, and incompleteness. However, it seems 

rather difficult to use the reported data in future studies since the research does not provide 

values of the model parameters. 

Theoretical mechanisms to explain ageing are diverse; this leads to creation of models that 

seem more interesting with respect to information-analytical modeling techniques rather than 

their practical use for solving biological or medical tasks. The information-entropy ageing 

model suggested by A.Sh. Avshalumov can be a good example here; it is based on an 

assumption that a key role in preserving viability of the human body belongs to information 

processes. They maintain the human body as an integral system and viability tends to be lost 

over time due to lower informative connectivity of the body caused by increasing entropy, an 

objective ongoing process within any closed system [18].  

Latest studies with their focus on developing mathematic models to describe accumulation 

of damage in the body tend to be significantly complicated and rely on a great number of 

indicators. Given that, researchers are facing a serious challenge associated with identification 

of theoretical models. A.P. Parakhonskii explains that biomedical systems typically have very 

complicated dynamics of processes depending on multiple factors, which are very difficult to 

consider, analyze, and investigate [19]. Functional and structural identification is applied to 

estimate parameters in biochemical models [20]. L.I. Kalakutskii showed in his works that the 

former method required experimental data on how a system would behave under various 

initial exposures and this was rather hard to achieve when modeling processes within the 

biological ageing theory. On the other hand, structural identification makes it possible to 

establish interactions between separate components of the system within formation of 

reactions. 
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Published research works allow concluding that it is optimal to use structural 

identification with subsequent planning of an experiment to identify missing parameters 

(functional identification). The Physiome Project is used as an international information 

resource for such studies [21, 22]. It contains research works that focus on mathematical 

modeling of physiological processes. The main aim of the project is to develop a model of the 

human body using methods that combine biochemistry, biophysics and anatomy of cells, 

tissues, and organs. Such approaches give an opportunity to describe physiological processes 

in organs and systems in depth; however, the present stage in the project development does 

not set a task to describe how functional disorders accumulate in various organs or to analyze 

effects produced by environmental factors. Nevertheless, some physiological models already 

consider some exposures, for example, cigarette smoke inhalation [23] or Helicobacter Pylori 

infection of the gastric mucosa [24]. 

It is noteworthy that most publications analyzed in this study have very few or even no 

references to other works in the field. This is probably due to this trend in research being 

developed rather poorly.  

Given all the aforementioned, it seems a vital issue and an actual challenge to develop a 

mathematical model able to predict how functional disorders would develop in the body under 

environmental exposures. The analyzed objects are complex and physiological processes are 

described with a wide range of spatial (an ion channel is 1 nanometer and the whole body is 

1–2 meters) and temporal (from 1 microsecond for molecular movement to 70–80 years 

(109 seconds) of a lifetime) scopes. Therefore, the authors of the present study are developing 

a multi-level model to describe how the human body functions. The upper level (macro-level) 

is the body as a whole; the second level (meso-level) describes specific organs or systems. In 

its turn, each level may require creating some submodels that describe functioning of its most 

important sub-systems. This study focuses on developing a macro-level model, its 

mathematical structure, basic concepts and definitions. Since some parameters included into 

this macro-level model are to be established by using meso-models, the macro-level model 

shows only qualitative nature of the human body evolution at this stage in its development. 

Since the whole macro-level model in not a closed system, we had to introduce some ‘plugs’ 

at those sections of it where ‘inputs’ from meso-level models are to be located in future. Such 

‘plugs’ are represented by data of clinical examinations averaged as per some population 

groups, expert evaluations, etc. Therefore, multiple specific exposures are not considered at 

this stage; to demonstrate how the model operates at a first approximation, we identified 

several basic parameters.  

The model should consider individual age-specific features of the human body, systemic 

interactions between different organs, accumulation of functional disorders due to natural 

processes and environmental exposures, neural-immune-endocrine regulation and other 

processes that are the most significant for vital activity. It is noteworthy that though the model 

makes it possible to consider exposure to any environmental factor conceptually, its variant 

described in the present study focuses on chemical exposures. Effects produced by physical 

and social factors are not examined profoundly. The study concentrates on reporting and 

analyzing some qualitative results obtained by using the suggested model. 

2. CONCEPTUAL STATEMENT 

The human body is assumed to consist of finite set of organs (systems) (j = 1, 2,…., J) that 

are completely interrelated. Generally, the macro-model should cover the following systems: 

the respiratory system (lungs), digestive system, cardiovascular system, genitourinary system 

(kidneys), skin and subcutaneous fatty cellular tissue, musculoskeletal system, endocrine 

system, nervous system, immune system, and hematopoietic system. 

Impaired functional abilities of the j-th organ (system) are described with damage ( )jD t , 

which is a time (age)-dependent parameter t , ( ) [0,1]jD t  ; the 0jD   means the body is 
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functioning properly (ideally); 1jD   means an organ (system) is unable to perform its 

functions. Functionality of an organ (system) ( )jF t can be identified relying on damage to 

them; functionality can be defined as ability of an organ (system) to perform its functions. For 

example, a relationship between functionality and damage can be given as 

( ) (1 ( )) ,   1jn

j j jF t D t n R    . The human body is a biological system; therefore, its natural 

property is to accumulate functional disorders over time, which may later become apparent 

through developing diseases. 

Functional disorders may develop due to natural causes, namely, internal ‘self-

destruction’, which occurs, as a rule, on the cellular level and reflects natural ageing of the 

body. Organs and systems, just as the body as a whole, are able to perform self-recovery 

(reparation) of lost functions. 

Creation of a model that describes accumulation of functional disorders in the human 

body under environmental exposures is aimed at investigating interactions between organs 

and chemicals in blood. This calls for establishing relationships able to describe how 

chemicals penetrate the body from the environment. Basic ways of chemical entry include 

oral (through the gastrointestinal tract), inhalation (through the lungs) and percutaneous 

(through skin). Consequently, when modeling entry of chemicals, it is necessary to consider 

any damage of the respiratory system, digestive system, or skin. Chemicals are excreted 

(taken out of the body into the environment) through the kidneys, respiratory system, 

digestive system, and skin. There are two other mechanisms that can change levels of 

chemicals in blood, metabolism and deposition (accumulation) in various organs.  

Information exchange between different organs facilitates activation of the body reserves 

necessary for functional compensation and neutralization of harmful exposures and their 

outcomes. This exchange is performed by regulatory mechanisms. Three systems in the body 

are responsible for the regulatory function, namely, the endocrine, nervous and immune 

system. These systems are closely connected to each other and their interaction is usually 

called the neural-immune-endocrine regulation. Any failure in the regulatory system 

functioning can cause functional disorders of various organs and systems.  

The macro-level model includes three submodels. The stream submodel describes how 

functional disorders develop in organs and systems in the human body; the kinetic submodel 

focuses on how chemicals are introduced, excreted, metabolized or deposited in the body; the 

neural-humoral submodel describes regulatory mechanisms. In its turn, each submodel of the 

macro-level model includes several interrelated meso-level models; we are going to describe 

them in greater detail in our future works. 

3. MATHEMATICAL STATEMENT 

3.1. The stream submodel. Changes in damage of organs and systems in the human body 

occur due to effects of several mechanisms. The most significant ones include natural ageing, 

organ self-recovery, accumulation of damage due to harmful environmental exposures beyond 

their safe levels (divided into two components), and recovery of functions due to treatment. 

The rate of changes ( )jd t  in damage ( )jD t  of the j-th organ (system) is assumed to be 

determined by a sum of damage velocities ( )kjd t  as per the following mechanisms: 

5

1

( )
( ) ( ),  1,  

j

j kj

k

dD t
d t d t j J

dt 

   . 

It is noteworthy that an assumption about additivity of damage velocities does not lead to the 

model becoming linear since there are complex non-linear relationships between all the 

parameters included into the submodels of the macro-level model. 

At a first approximation, natural ageing can be described by the following relationship: 
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0 1

1 ( ) ( )j j j jd t D t  ,     (1) 

where 0 0j   and 1 0j   are coefficients that describe rate of ageing for the j-th organ, [1/s]. 

The relationship (1) includes the summands embodying two different ageing mechanisms. 

The first summand describes how damage is growing over the whole lifetime. Generally, it is 

a non-decreasing function of time. To make things simple at a first approximation, we 

consider 0

j  a constant. The second summand in the relationship (1) makes an additional 

contribution to damage due to more intense functioning of an undamaged part of an organ in 

case there are some structural disorders. This healthy part of an organ naturally has to operate 

in a forced regime so that all the vital processes are performed properly. This forced operation 

reduces cell life and leads to accelerated destruction of an organ. Therefore, this summand is 

to depend on damage of an organ ( )jD t  and on the coefficient 1

j , which describes influence 

of organ deterioration on damage rate. 

Organ self-recovery (reparation) is related to functionality and can be given as:  

2 ( ) (1 ( )) jn

j j jd t D t   ,     (2) 

where 0j   is a coefficient that describes the recovery rate for the damage of j-th organ, 

[1/s]. Any organ recovers naturally during the whole lifetime and this recovery is an 

uninterrupted process (cell division and differentiation); the recovery function weakens over 

time due to defects accumulating in cells. Generally, the coefficient j  is also a time 

function; we assume this parameter to be constant at this stage in the model development. 

All the interactions between organs and the environment are performed by streams of 

substances and energy. Stream is an amount of a substance or energy that is entered into an 

organ per a time unit and has some effects on damage developing in this organ.  

The value ( )jip t  reflects the i-th stream into the j–th organ, [kg/s]; the inflow into an organ 

is assumed to be positive and the outflow from it is assumed to be negative. For each organ, 

we consider both streams coming directly from the environment and through other organs and 

systems as well (for example, oxygen is delivered to the circulatory system through the 

respiratory system). In the latter case, when identifying a stream, it is necessary to consider 

functionality of an organ that receives it from the environment. The value ( )N

jip t  reflects the 

i-th stream into the j-th organ under normal conditions (the value of a normal stream depends 

on age and how the body functions at a current moment; for example, normal values under 

physical loads can be quite different from those in rest). If we consider a stream of substances 

(or energy), for which the normal value is equal to zero, our reference value would be the 

maximum permissible stream, which does not cause irreversible changes in an organ over 

physically infinite (that is, an individual’s lifetime) duration of exposure. Streams describe 

chemical and physical (noise, electromagnetic radiation, and vibration) factors.  

An equation that relates a stream and a level in blood can be written for any substance 

penetrating an organ from blood: 

( ) ( )b

ji ji ip t C t  ,      (3) 

where ( )b

iC t  is a level of i-th chemical in blood, [kg/m3]; 0ji   is a coefficient of 

proportionality that describes how fast the i-th chemical is entered from blood into the j-th 

organ, [m3/s]. For energy streams, the relationship (3) and dimensionality of values depend on 

a type of an affecting factor. 

We need a special function x , so called McCauley brackets, to describe effects 

produced by environmental factors:  max 0,  x x . 
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Damage caused by environmental exposures can occur due to insufficient entry of benign 

streams or excessive entry of harmful ones. These different mechanisms of damage 

accumulation should be described with separate relationships. Considering all the introduced 

denominations, negative effects of harmful streams beyond their safe limits (chemicals, noise, 

electromagnetic irradiation, etc.) can be described by: 

0

3

( )
( ) 1

( )

ji

j ji N
i ji

p t
d t

p t
   ,     (4) 

where 3 ( )jd t  is the rate of change in damage of the j-th organ due to exposure to a harmful 

stream beyond its safe limit; ( )N

jip t  is the standard (maximum permissible) i-th stream into 

the  j-th organ; 0 0ji   is a coefficient that describes influence of negative factors on damage 

of an organ, [1/s]. The relationships (4) describe how fast damage of an organ changes in case 

an exposure is beyond its safe limits.  

Effects produced by insufficient entry of benign streams (nutrients, vitamins, 

microelements, etc.) into the human body can be given by: 

1

4

( )
( ) 1

( )

ji

j ji P
i ji

p t
d t

p t
   ,      (5) 

where 4 ( )jd t  is the rate of change in damage of the j-th organ due to insufficient entry of 

benign streams; ( )P

jip t  is the standard i-th (benign) stream into the j-th organ; 1 0ji   is a 

coefficient describing influence of benign streams and factors on damage of an organ, [1/s]. 

When the model is complicated further, linear right parts in the relationships (4)–(5) 

(sectionally) can be replaced with non-linear ones (for example, power law). 

A relationship that describes treatment effects can be written as:  

min min

2

5 min max min max min

( ) ( ) ( ) ( ) ( )
( ) 1 1

( ) ( ) ( ) ( ) ( )

q
L L

ij ji ji ji ji

j ji L L L L L
i ji ji ji ji ji

p t p t p t p t p t
d t H

p t p t p t p t p t

       
                   
 ,      (6) 

where 5 ( )jd t  is the rate of change in damage of the j-th organ due to effects of healing 

streams; min ( )L

jip t  is the minimal stream of the i-th treatment factor into the j-th organ able to 

produce a healing effect;  min max( ) ( ); ( )L L

ji ji jip t p t p t . The right part of (6) is negative, which 

corresponds to a decrease in damage of an organ (treatment); max ( )L

jip t  is the maximum stream 

of the i-th treatment factor into the j-th organ and any stream beyond this value makes 5 ( )jd t  

change its sign (treatment factor overdose); 2 0ji   is the coefficient describing influence of 

treatment factors on damage of an organ, [1/s]. The Heaviside step function is given by Н(х) 

(Н(х) = 1 at х > 0 and Н(х) = 0 at x ≤ 0), 1q   is an odd natural exponent. 5 ( )jd t  Reaches its 

minimum value (the maximum healing effect) at 
max min( ) ( ( ) ( )) / 2L L

ij ji jip t p t p t  . 

Generally, all the material (physiological) indicators included in the equations are 

functions (or, possibly, functionals of past history) of organ conditions. 

Given all the introduced concepts and denominations and accepting a hypothesis that rates 

of damage due to different factors are additive, we can present the following structure of 

equations to describe how damage develops in organs and systems of the human body: 
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 0 1 0 1

min min

2

min max min max min

( ) ( ) ( )
( ) 1 ( ) 1 1

( ) ( )

( ) ( ) ( ) ( ) ( )
1 1

( ) ( ) ( ) ( ) ( )

jnj ji ji

j j j j j ji jiN P
i iji ji

L L

ij ji ji ji ji

ji L L L L L
i ji ji ji ji ji

dD t p t p t
D t D t

dt p t p t

p t p t p t p t p t
H

p t p t p t p t p t

           

    
             

 



 

,

( ) 0,1 , 1,  .

q

jD t j J

  
   

  

 

 (7) 

This structure of equations shows a general overview of damage development and 

considers self-destruction (natural ageing), self-recovery (reparation), accumulation of 

damage due to streams of chemicals beyond their safe levels, and functional recovery due to 

treatment. The systems in the body are interrelated through the streams ( )jip t . Intensity of 

these streams depends on damage of organs, entry, excretion, metabolism, etc. 

To complete the system of equations (7), it is necessary to add initial conditions, that is, to 

identify functional disorders at the initial moment of time. To do that, we suggest solving a 

diagnostic task. Damage indicators are identified for most basic system by performing clinical 

and laboratory tests, ultrasound, functional and other specialized examinations [25–28]. 

Selection of functional markers ix  is the initial stage in solving this diagnostic task aimed at 

identifying functional disorders in a given organ or a system of organs. It is necessary to 

identify to what extent each marker describes the functional state of a given system. To do 

that, we introduce a concept of functional disorders as per the i-th marker i , where 

[0,1]i  , 0i   if a value of a marker is within its physiological range; 1i   if a marker 

reaches its extreme possible values that describe a condition close to total loss of functions. If 

marker values are somewhere between the boundary of the physiological range and the 

extreme possible value, the i  value changes between 0 and 1 according to the present (for 

example, linear) law. In case a qualitative marker is used, the i  value is identified by expert 

evaluation. Damage of an organ or a system is identified by the weighted sum of functional 

disorders: 
i ii

D a  , where the coefficients ia  are determined by experts. Therefore, 

damages of organs and systems 0( )jD t  obtained by solving the diagnostic tasks at an age of 

0t  can be used as initial conditions for the system (7).  

The relationships (7) are a system of ordinary differential equations, generally, with a non-

linear right part [29]. If streams are constant, the system (7) has only one analytical solution 

since the right part (7) in this is continuously differentiable in the whole domain. If streams 

are defined by discrete functions or derivatives of these functions have discontinuity, then the 

conditions of the Cauchy's theorem that the problem has a (unique) analytic solution are not 

met. The graphs showing the solution to the system are a family of exponential curves 

depending on values of the coefficients and initial conditions. 

Generally, substance streams depend on damage of various organs and the stationary 

solution to the system (7) can be unstable. Figure 1 provides an example, a phase portrait 

depicting damage of two organs (the kidneys, 1( )D t ; the lungs, 2 ( )D t ). The kidneys are 

affected by one harmful substance with its levels changing over time according to the kinetic 

model, which is described in detail below. The resulting phase trajectories are curves coming 

from any point in the square [0,1]  [0,1] area depending on the initial conditions. The curves 

are directed at one of the square sides. The equilibrium point is an unstable node. 
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Fig. 1. Phase portrait depicting damage of two organs. 

 

The equation (7) includes chemical levels in blood (the relationship ratio (3)). It is 

necessary to use models of toxicokinetic processes to compute these levels. 

3.2. The kinetic model. The mathematical kinetic model is based on physiological 

models. The structural basis of a physiological model is a section in the body where a 

chemical concentration is homogeneous. This section can be a specific functional or anatomic 

part of an organ. Physiological models have some advantages. They are able to describe how 

chemicals are distributed in any actual organ and tissue; they give an opportunity to establish 

how physiological parameters influence chemical levels in tissues; they provide an easy way 

to describe complex dosage regimens and saturation in metabolism and complex formation. 

Kinetic constants are obtained empirically in physiological models when actual biological or 

chemical processes are investigated. Obtained kinetic parameters can be extrapolated on other 

external conditions and physiological states [30–32]; in such cases it is necessary to verify 

results of extrapolation by thorough empirical examinations.  

Changes in chemical concentrations in the body occur due to several mechanisms. They 

involve transporting through some biological membranes and include entry from the 

environment, accumulation, metabolism and excretion. Membrane systems of the body have 

similar structures but different functional properties. They are mobile structures created by 

protein-phospholipid complexes and have limited permeability for different chemicals. A 

mechanism for chemicals passing through membranes is rather complicated since it is 

influenced not only by functional peculiarities of membranes themselves but also certain 

functions of protoplasm and cellular proteins. Substance kinetics in the body includes three 

ways of entry: oral, inhalation, and subcutaneous (through skin). It is noteworthy that 

chemicals can also be excreted through these ways. 

The equation to describe absorption and excretion of harmful chemicals by the lungs, skin 

and gastrointestinal tract, was based on the Fick equation: 

( ) ( )( ( ) ( ))A E A E j A E b

ji ji j i ji iV t F t C t h C t    ,    (8) 

where ( )A E

jiV t
 is the rate of changes in the level of i-th chemical in blood due to the j-th  

( = 1, Jj ) absorption-excretion organ, [kg/(m3·s)] (as agreed, the rate of changes in levels of a 

chemical is positive for an inflow and negative for an outflow). 0A E

ji

   Is the constant of 
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the entry (excretion) rate for the  i-th chemical through the j-th organ responsible for entry 

(excretion), [1/s]; A E

jih   is the dimensionless coefficient as per the i-th chemical to describe 

equilibrium between blood and ambient air; ( )j

iC t  is the level of the i-th chemical in the j-th 

medium (in inhaled air or digestive mix depending on an entry path), [kg/m3]; ( )jF t  is the 

functionality of the  j-th organ responsible for entry (excretion). 

If we rely on principles for creating compartment physiological models, we can write the 

following equation to describe how chemicals are excreted by the kidneys and liver: 

( ) ( ) ( )E E b

ji ji j iV t F t C t  ,      (9) 

where ( )E

jiV t  is the rate of  changes in the level of the i-th chemical in blood due to the j-th 

organ responsible for excretion, [kg/(m3·s)]; 0E

ji  is the rate constant of the i-th chemical 

excretion through the j-th excretion organ, [1/s]; ( )jF t  is the functionality of the  j-th organ 

responsible for excretion.  

The Michaelis–Menten equation, the main one of enzyme kinetics, is applied to describe 

chemical metabolism with enzymes [33–36]. The considered relationship describes 

dependence of an enzyme-catalyzed reaction rate on a substrate and enzyme level: 

( ( ) ( )) ( )
( )

( )

cat N b

ik j ikj ijM

ik ik b

i

F t E t C t
V t

K C t

  





,    (10) 

where ( )M

ikV t  is the rate of  changes in the level of the i-th chemical in blood within formation 

of the k-th chemical due to an enzyme [kg/(m3·s)] (the number of chemicals can change in 

different variants of the model use); 0cat

ik   is the coefficient that describes the rate of 

metabolism, [s1]; ( )N

ikjE t  is the standard level of an enzyme produced by the j-th organ that 

transforms the i-th chemical into the k-th one, [kg/m3]; ( )jF t  is the functionality of the j-th 

organ producing an enzyme; ikK  is the Michaelis constant that describes the affinity between 

an enzyme and substrate [kg/m3]. At this stage, a reaction with only one enzyme is described; 

in case a reaction requires several enzymes or a reaction has several stages, the equation (10) 

becomes more complicated. For example, the Michaelis constant for a multi-stage reaction is 

computed considering rate constants identified for each stage. 

Chemicals stream from organs where they are deposited by diffusion provided there is a 

gradient of concentrations between an organ and blood: 

( ) ( )( ( ) ( ))Sb S j S b

ji ji j i ji iV t F t C t h C t  ,     (11) 

where ( )Sb

jiV t  is the rate of changes in the concentration of the i-th chemical in blood due to 

entry form the j-th organ, [kg/(m3·s)]; 0S

ji   is the rate constant for the entry of the i-th 

chemical from the j-th organ in blood, [1/s]; 
S

jih  is the dimensionless coefficient of 

equilibrium between blood and a depositing organ as per the i-th chemical; ( )j

iC t  is the 

concentration of  the i-th chemical in the j-th organ, [kg/m3]; ( )jF t  is the functionality of the 

j-th depositing organ. 

The rate of changes in the concentration ( )Sd

jiV t  of the i-th chemical in the j-th organ due 

to entry from blood is determined considering the formula (11): 
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( ) ( )
b

Sd Sb

ji jid

j

U
V t V t

U
  ,     (12) 

where 
bU , d

jU  is a volume of blood and biological medium of a depositing organ 

accordingly. 

Based on balance equations (conservation of mass), a change in the concentration of the i-

th chemical in blood and organs where it accumulates can be written as: 

-( )
( ) ( ) ( ) ( ) ( ),

( )
( ).

b
A E E Sb M Mi
ji ji ji ik ki

j j j k k

j
Sdi
ji

dC t
V t V t V t V t V t

dt

dC t
V t

dt


    







    
, (13) 

The coefficients in the equations (8–11) generally depend on physical properties of organs 

such as sizes, mass, and stream capacity of their membranes. To solve the system, it is 

necessary to set initial conditions as regards chemical levels in blood and organs where they 

accumulate. The relationships (13) are connected with the stream model through chemical 

levels in blood and functionality of organs and systems.   

We would like to consider a more special case of the equation (13) for one chemical 

entered with inhaled air without any metabolism and investigate whether it is stable and has a 

solution. We assume the chemical level in ambient air to be constant and damage of the 

relevant systems to equal 0; in this case, the relationship (13) reduces to the system of linear 

differential equations: 

1
1 1 2 1

2
2 1

0

1 1

0

2 2

( )
( ( )) ( ) ( ( ) ( )),

( )
( ( ) ( )),

(0) ,

(0) ,

A E A E E S S

S S

dC t
C h C t C t C t h C t

dt

dC t
C t h C t

dt

C C

C C

 
     


   







,  (14) 

where 1( )C t , 2 ( )C t , C  are the chemical levels in blood, an organ where it accumulates, and 

ambient air accordingly; A E , E , 
S  are the coefficients to describe exchange between the 

lungs and blood, the kidneys and the environment, an organ of accumulation and blood 

accordingly; 
A Eh 

, 
Sh  are the solubility coefficients. 

The system has the unique analytical solution since its right part is continuous and 

continuously differentiable. The point  

;
A E S A E

A E A E E A E A E E

C h C

h h

 

   

  
 
    

 

is the one where the system is in equilibrium. It is at this point that the right parts in the 

equations (14) turn to zero [37]. 

Identification of a solution type and stability of equilibrium for the system of linear 

differential equations (14) reduces to identifying eigenvalues of the matrix of the analyzed 

system: 

( )A E A E s s E s

s s s

h h

h

      
 

  
.    (15) 
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The eigenvalues of the matrix (15) 1k , 2k  can be identified by equating the determinant to 

zero: 

( )
0

A E A E s s E s

s s s

h h k

h k

      


  
   (16) 

By transforming (16), we can get a quadratic equation; its roots determine a solution type and 

the stability of the whole system (14): 

2 ( ) ( ) 0A E A E S S E S S A E A E Ek k h h h              (17) 

The equation (17) has two real negative roots since the coefficients in the (17) are 

positive, and the discriminant of the characteristic equation is non-negative: 

2( ) 4 ( ) 0A E A E S S E S S A E A E Eh h h            ,  (18) 

therefore, the equilibrium position is a stable node. 

 

 
Fig. 2. The phase portrait of the ‘level in blood – level in depot’ system. 

 

Figure 2 shows the phase portrait for the system (14) (the coefficients correspond to the 

kinetic parameters describing how lead is distributed in the human body, the procedure for 

identifying these coefficients is described below; the equilibrium point is (0.000267 g/l, 

0.0281 g/l); 0.21A E   [1/s]; 72.19 10E    [1/s]; 104.05 10S    [1/s]; 105.2Sh  ;  

A Eh 
= 55.55 10 ; C =15 µg/m3). If chemical levels are constant in the environment, their 

concentrations in blood reach a stationary level. Any deviation from this stationary level can 

occur due to disrupted excretion and entry of chemicals. The rate of chemical exchange 

between ambient air and blood is significantly higher than the rate of chemical entry into 

organs where it is deposited. If a chemical level in ambient air is constant, blood can be 

saturated with this toxicant over several minutes or hours but deep depositing of it, for 

example, in bone tissues can take many years. If a chemical is entered in low doses, 

equilibrium between blood and a depot-organ can be unreachable within a usual human 

lifespan.  

3.3. The neuro-humoral model. Homeostasis is provided in the human body by proper 

immune system functioning. This system is a unique self-regulating structure consisting of 

various populations and sub-populations of lymphoid cells, organs (the bone marrow) and 

cells (T-helpers, macrophages) that constantly interact with each other. However, their vital 
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activity, activation, proliferation (growth), and differentiation largely depend on other systems 

in the body, primary, the endocrine and nervous system. The immune, endocrine, and nervous 

system interact with each other all the time thereby performing mutual control of their 

functions. Their integration with functions performed by other organs and systems provides 

life of the human body as a single whole [38–40]. 

Changes in hormone levels in the body are caused by the nervous and endocrine system 

functioning. The immune, endocrine, and nervous system are interrelated in their functioning 

and create functional feedback-like effects. Immune-competent cells are able to synthesize 

some hormones and neuropeptides as well as cytokines that produce regulatory effects on the 

nervous and endocrine systems [41, 42]. 

The equation for hormone levels in blood can be written as: 

( )
( ) ( ) ( ) 1

( )

b

jr N

k rk rk bN
k j j

C t
g t F t g t

C t

 
    

 
 

  ,    (19) 

where ( )rg t  is the level of the r-th hormone in blood, [kg/m3]; ( )kF t  is the functionality of 

the k-th organ that releases this hormone; ( )N

rkg t  is the level of the r-th hormone in blood that 

corresponds to proper functioning of the k-th organ, [kg/m3]; rk  is the coefficient describing  

influence of factors on additional release of the analyzed hormone, can be either negative or 

positive depending on the action mechanisms of the hormone, [kg/m3]; ( )bN

jC t is the reference 

level of the j-th chemical in blood, [kg/m3].  

The equation (13) can be re-written considering effects produced by hormones on levels 

of harmful chemical in blood as follows: 

   

 

 

-( )
( ) 1 ( ) ( ) 1 ( )

( ) 1 ( ) ( ) ( ),

( )
( ) 1 ( ) ,

b
A E r r E r ri
ji ji ji ji ji ji

j j

Sb r r M M

ji ji ji ik ki

j k k

j
Sd r ri
ji ji ji

dC t
V t g t V t g t

dt

V t g t V t V t

dC t
V t g t

dt


           



      


     


 

     (20) 

where r

ji  is the coefficient describing effects of the r-th hormone on changes in levels of the 

i-th chemical through the j-th entry (or excretion, or accumulation) way (organ). If r

ji  > 0, 

then the hormone enhances effects produced by a factor, r

ji  < 0 means it weakens them. 

The system of equations (19), (20) is written for the general case; specific neuro-humoral 

chains require additional research. 

If we combine the relationships (7)–(13), (19), (20), we can write the whole system of 

equations within the mathematical model for describing evolution of functional disorders: 
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 0 1 0 1

min min

2

min max min max min

( ) ( ) ( )
( ) 1 ( ) 1 1

( ) ( )

( ) ( ) ( ) ( ) ( )
1 1

( ) ( ) ( ) ( ) ( )

jnj ji ji

j j j j j ji jiN P
i iji ji

L L

ij ji ji ji ji

ji L L L L L
i ji ji ji ji ji

dD t p t p t
D t D t

dt p t p t

p t p t p t p t p t
H

p t p t p t p t p t

           

    
             

 

  

 

 

, ( ) 0,1

( ) 1 ( ) , 1;

( ) ( );

( )
( ) ( ) ( ) 1 ;

( )

( )
( )( ( ) ( )) 1 ( )

( ) ( ) 1

j

q

j

n

j j j

b

ji ji i

b

jr N

k rk rk bN
k j j

b
A E j A E b r ri
ji j i ji i ji ji

j

E b r

ji j i ji

j

D t

F t D t n

p t C t

C t
g t F t g t

C t

dC t
F t C t h C t g t

dt

F t C t

 

  
   

  

  

 

 
    

 
 

       

    

 



    ( ) ( )( ( ) ( )) 1 ( )

( ( ) ( )) ( ) ( ( ) ( )) ( )

;
( ) ( )

( )
( )( ( ) ( )).

r S j S b r r

ji ji j i ji i ji ji

j

cat N b cat N b

ik j ikj i ki j ikj k

j j

ik b ki b
k ki k

j b
S j bi
ji j i i id

j

g t F t C t h C t g t

F t E t C t F t E t C t

K C t K C t

dC t U
F t C t hC t

dt U
















        

     

 
 

   



 
 




















 (21) 

The system of equations (21) combines the stream, kinetic, and neuro-humoral submodels. 

The common method for identifying the model coefficients relying on available experimental 

data involves finding a solution to the optimization task. This solution means identifying 

parameters of a target function that provide minimal deviation of results obtained by numeric 

modeling from experimental data. Parameters should be identified for the whole system of 

equations; to do that, it is necessary to perform periodical monitoring of organs and systems 

during the whole lifetime; this monitoring should include clinical and laboratory tests as well 

as functional examinations with measuring contamination levels in biological media. Besides, 

it is necessary to know levels of exposure to analyzed factors. In actual conditions, periodical 

monitoring can be replaced with creating samples that are made of ‘similar’ individuals form 

different age groups (they should be close as per physiological parameters and have similar 

exposures in their history). In case experimental data are incomplete, it is necessary to use 

literature sources, for example, data on additional incidence caused by specific exposure or 

data on kinetics of a chemical in the human body.  

At this stage in modeling, we have obtained some qualitative results for different 

scenarios to demonstrate how the macro-level model operates. We identified complex 

parameters describing natural accumulation of functional disorders in the human body for 

major organs and systems at a first approximation. Identification relied on using statistical 

data on incidence and mortality among adult population in the Perm region over 2009–2011. 

Expert evaluations were applied to rank each diseases as per its severity, the score varied 

between 0 (mild diseases) and 1 (fatal diseases and deaths). A parameter can be identified for 

each age group; it corresponds to regional functional disorders of organs and systems and is 

identified based on the ratio of a sum of diseases cases considering their severity and deaths 

and population numbers. The 5th percentile of damage as per different areas in each age group 

in 2009–2011 was used to identify coefficients for the equation describing evolution of 

functional disorders without any exposures. Damage in an age group of 20–24 years was 
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applied as initial data D (22 years). Table 1 provides the identification results (the exponent in 

the recovery summand is n = 1). 

 
Table 1. The model parameters 

System 
0

j j   1

j j   D(22)  

Musculoskeletal system 0.00126±0.000335* 0.0292±0.0074* 0.0187 

Respiratory system 0.000807±0.000391 0.0728±0.0138* 0.0151 

Digestive system 0.000626±0.000476 0.0354±0.0113* 0.0326 

Cardiovascular system 0.002394±0.000683* 0.0453±0.0077* 0.0079 

Hearing organs 0.000083±0.00005 0.0484±0.0149* 0.0024 

Endocrine system 0.000131±0.000077 0.0748±0.0126* 0.0032 

Visual organs 0.000584±0.000226* 0.0747±0.0135* 0.0103 

Central nervous system 0.000232±0.000197 0.0589±0.0384 0.0044 

Genitourinary system 0.00073±0.000367 0.0692±0.0315 0.0108 

* means the level of significance is p < 0.05 

Parameters of exposure factors were identified separately for each factor as per data 

available in literature. Thus, a relationship is identified between lung cancer cases and a 

number of cigarettes smoked a day [43]. Considering additional lung cancer cases associated 

with smoking, regional levels of functional disorders were computed for each age group. 

These data made it possible to identify the parameter that described effects of smoking: 
0 5(9.7 3.1) 10    [1/s]. A standard condition for the smoking factor is one cigarette a day. 

The parameters of the kinetic model showing how lead is distributed in the human body, 

similar to the (14) are available in literature [44]; accordingly, we took the following 

coefficients: 72.19 10E    [1/s], 104.05 10S    [1/s], 105.2Sh  . Since an increase in 

airborne lead levels by 0.001 µg/l increases lead level in blood by 18 µg/l [45], 
A Eh 

 is taken 

as equal to 55.55 10 ; if a new stationary level is achieved within 24 hours, then 

0.21A E   [1/s]. A lead level in blood that does not produce any negative effects on the 

kidneys [46] is taken as equal to 
410
 kg/m3. A parameter describing effects of lead on the 

kidneys was identified by expert evaluations 0 55 10    [1/year]. 

4. NUMERIC IMPLEMENTATION OF THE MODEL: AN EXAMPLE 

To solve the system of equations (21), we used a developed software module. It gives an 

opportunity to compute values of parameters that describe damage of specific systems in the 

body depending on intensity of exposure factors. The numeric solution of the system of 

equations was accomplished using finite-difference schemes; to approximate the first 

derivatives in time, the right finite differences were used. Table 2 provides values of exposure 

factors for several possible scenarios. 

The analyzed scenarios consider three systems: the lungs (j = 1), the kidneys (j = 2), and 

the musculoskeletal system (j = 3). The musculoskeletal system is a depot organ for lead with 

damage independent of time and taken as equal to zero 3( ) 0D t   for all the scenarios. The 

scenario 1 covers only natural ageing and recovery (the parameter in the recovery member is 

n = 1) of both organs. In the remaining scenarios, a contribution to damage is made (in 

addition to natural ageing) by a toxicant (lead i = 1), changes of its levels in the body being 

identified as per the suggested kinetic model (14). Airborne lead levels are constant and given 

as C =
915 10  kg/m3 over the whole lifetime, which corresponds to living close to an 

industrial enterprise emitting lead in ambient air. In all the analyzed scenarios, the initial lead 
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level in blood and a depositing organ is equal to zero at birth (t = 0 years). In the scenario 3, 

kidney diseases are treated periodically; in the scenario 4, constant negative effects on the 

lungs (i = 2) are added starting from a certain moment of time (in reality, such a scenario may 

correspond to smoking). For the smoking factor, we assume that 12 12( ) / ( ) ( ) / ( )N Np t p t S t S t , 

where ( )S t  is the number of cigarettes smoked a day (in the scenario 4, ( )S t =20 

cigarettes/day after 30 years; prior to this moment, ( )S t =0), ( )NS t  is the number of cigarettes 

smoked a day that does not have any negative effects (is taken as 1 cigarette smoked a day). 

 
Table 2. Exposure factors for various scenarios  

Scenario Organ 
Chemical (lead), 

inhalation exposure 
Lifestyle factor (smoking) Treatment 

1 
kidneys – – – 

lungs – – – 

2 
kidneys C =15 µg/m3 – – 

lungs – – – 

3 
kidneys C =15 µg/m3 – 

Recovery of D by 

0.001 over a year after 

40 years 

lungs – – – 

4 

kidneys C =15 µg/m3 – – 

lungs – 
20 cigarettes a day after 30 

years 
– 

 

The system (21) is written as: 

   

   

0 1 01 12
1 1 1 1 1 12 1

12

0 1 02 21
2 2 2 2 2 21 2

21

1 1

2 2

21 21 1

12

12

1

( ) ( )
( ) 1 ( ) 1 , ( ) 0,1 ;

( )

( ) ( )
( ) 1 ( ) 1 , ( ) 0,1 ;

( )

( ) 1 ( );

( ) 1 ( );

( ) ( );

( ) ( )

( ) ( )

( )

N

N

b

N N

b

dD t p t
D t D t D t

dt p t

dD t p t
D t D t D t

dt p t

F t D t

F t D t

p t C t

p t S t

p t S t

dC t

d

        

        

 

 

 



1 3

11 1 1 11 1 21 2 1 31 1 31 1

3
31

31 1 31 1

( )( ( ) ( )) ( ) ( ) ( ( ) ( ))

( )
( ( ) ( )).

A E A E b E b S S b

S S b

F t C t h C t F t C t C t h C t
t

dC t
C t h C t

dt

 


















      



  


 (22) 

Treatment is not obviously considered in the system (22); in the scenario (3), effects of 

treatment are simplified: 2 ( )D t  decreases by 0.001 times once a year after 40 years. 

Considering the relationship 21 21 1( ) ( )bp t C t  , we can write 21 21 1( ) ( )N bNp t C t  , where 1 ( )bNC t , 

a lead level in blood that has no negative effects on the kidneys, is taken as equal to 

410
 kg/m3. In this case, the parameter 21  can be excluded: ( 21 21 1 1

21 21 1 1

( ) ( ) ( )

( ) ( ) ( )

b b

N bN bN

p t C t C t

p t C t C t


 


). 

The parameters 11

A E , 11

A Eh  , 21

E , 31

S , 31

Sh  correspond to those in the system (14) (without 
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indexes). The coefficients 0 5

12 (9.7 3.1) 10    [1/year], 0 5

21 5 10    [1/year] correspond to 

effects of smoking on the lungs and lead on the kidneys. We consider only inhalation way of 

entry for lead and the chemical level in ambient air is constant 1

1C =
915 10  kg/m3. 

We would like to analyze the graph showing how damage develops in two organs 

participating in distribution of harmful chemical flows in blood, the lungs and the kidneys, 

within the suggested scenarios (Figure 3). 

 

 

 

 
Fig. 3. The graph showing damage of the kidneys and lungs over time. 

 

Obviously, destruction makes a greater contribution to damage development than organ 

reparation and damage grows uninterruptedly over time. A break in curves in the graph (the 

end point) corresponds to the moment of time when damage in either organ reaches 1 (when 

an organ is totally unable to perform any of its functions, it means death of the body as a 

whole). For example, the scenario 1 covers only natural ageing and recovery, therefore, such a 

state is reached considerably later than in the scenario 2 where exposure to lead occurs. The 

scenario 3 involves periodical treatment of kidney diseases; therefore, the damage curve 

grows slower than in the scenario 2 where no treatment is considered. In the scenario 4, 

damage to the lungs grows drastically from the moment a negative lifestyle factor starts 

producing its effects (smoking). 
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Fig. 4. The graph showing changes in levels of a toxicant in blood and the musculoskeletal system over 

time. 

 

 

 

 

Fig. 5. Phase trajectories for the analyzed scenarios. 

 

Figure 4 provides graphs showing changes in levels of the analyzed toxicant in blood and 

a depositing organ. The lead level in ambient air is constant in the scenarios 2–4; due to it, the 

lead level in blood also remains constant until damage of organs does not grows drastically. A 

constant growth in chemical levels in a depositing system is evidenced by known data: lead 

goes on accumulating in bones for many years. The levels of the analyzed toxicant in blood 

remain stable over a long time within the scenarios 2–4 whereas the rate at which the 

chemical is entered from ambient air remains significantly high even when there are 

functional disorders in the lungs. In the scenarios 3 and 4, the level of the toxicant affecting 
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the kidneys goes down since the entry of this chemical through the lungs decreases according 

to the kinetic model. 

Figure 5 shows phase diagrams for the analyzed scenarios. The chemical levels deviate 

from the equilibrium state due to changing damage of the organs responsible for entry and 

excretion of harmful chemicals. 

5. CONCLUSIONS 

This study describes a mathematical model able to predict how functional disorders would 

develop in organs and systems of the human body under exposure to environmental factors. 

To describe evolution of the human body adequately, it is necessary to create multi-level 

models. This article focuses on the structure and relationships within the macro-level model. 

To close it, we had to introduce some ‘plugs’ at those sections of it where ‘inputs’ from meso-

level models would be located in future. The created model considers individual peculiarities, 

systemic interactions between different organs and the environment, neuro-immune-endocrine 

regulation, and some other important processes in the human body.  

The numeric solution to the system of equations was accomplished by using finite-

difference schemes; to approximate the first derivatives over time, the right finite differences 

were used. The solution to the system of equation was implemented in a software module able 

to compute damage of separate systems in the body depending on intensity of affecting 

factors. The model parameters were identified for several affecting factors in order to show 

qualitative results that allow assessing influence of the environment on human health. 
 

The study was granted financial support by the Russian Foundation for Basic Research (the grant 

No. 12-01-00547-а). 
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