
Mathematical Biology and Bioinformatics 
2014. V. 9. № Suppl. P. t1–t15. doi: 10.17537/2014.9.t1 

 

Translation into English of the original article published in Russian  

© Red’ko V.G. 

Mathematical Biology and Bioinformatics, 2012. V. 7. № 2. P. 676–691. doi: 10.17537/2012.7.676. 

 

======================= MATHEMATICAL MODELING ====================== 

UDC: 32.81 

The Model of Interaction between Learning and 

Evolutionary Optimization 

©2014 Red’ko V.G.
*
 

Scientific Research Institute for System Analysis, Russian Academy of Sciences, Moscow, 

117218, Russia 

 
Abstract. The model of interaction between learning and evolutionary optimization 

is designed and investigated. The evolving population of modeled organisms is 

considered. The mechanism of genetic assimilation of the acquired features during 

a number of generations of Darwinian evolution is studied. The genetic 

assimilation means that individually acquired features are “re-invented” by 

evolution and recorded directly into genotypes of organisms. It is shown that the 

genetic assimilation takes place as follows: the organism distribution moves 

towards the optimum at learning and further selection; then genotypes of selected 

organisms also move towards the optimum. The mechanism of influence of the 

learning load is analyzed. It is shown that the learning load leads to a significant 

acceleration of evolution. The hiding effect is also studied; this effect means that a 

strong learning inhibits the evolutionary search in some situations. 
 

Key words: speed and efficiency of evolutionary search, Baldwin effect, genetic 

assimilation, hiding effect, learning load. 

 

INTRODUCTION 

After the appearance of the Darwinian theory of evolution, many researchers asked the 

following question. The evolutionary processes are based on mutations and further selection. 

So, are random mutations able to ensure discovering of very non-trivial useful features of 

living organisms? In the XIX century, the concepts, which suggest that interaction between 

learning (or other processes of the acquisition of organism features during the life of the 

organism) and the evolutionary process is possible, appeared [1–3]. According to these 

concepts, learning can contribute significantly to the evolutionary process. This type of 

influence of learning on the evolutionary process is often called the Baldwin effect. 

According to this effect, initially acquired features can become inherited during a number of 

generations. 

The Baldwin effect has two stages. At the first stage, organisms in accordance with 

corresponding mutations acquire a property to learn certain useful skill. The fitness of such 

organisms is increased; therefore, they spread throughout the population. However, the 

learning has some disadvantages, since it requires time and energy. Therefore, the second 

stage is possible, which is called the genetic assimilation [4]: the useful skill can be «re-

invented» by genetic evolution and recorded directly into genotypes and becomes inherited. 

The second stage lasts for many generations; stable environment and a high correlation 

                                                 
* vgredko@gmail.com 



RED’KO 

t2 

Mathematical Biology and Bioinformatics. 2014. V. 9. № Suppl. doi: 10.17537/2014.9.t1 

between genotypes and phenotypes facilitate this stage. Thus, the useful skill, which was 

originally acquired, can become inherited, though evolution has the Darwinian character. 

A number of authors analyzed interactions between learning and evolution by means of 

computer simulations [5–11]. In particular, Hinton and Nowlan [7] demonstrated that learning 

can guide an evolutionary process to find the optimum. Mayley [8] investigated different 

aspects of the interaction between learning and evolution and demonstrated that the hiding 

effect can take place, if the learning is sufficiently strong. The essence of the hiding effect is 

as follows: if the learning is enough strong to change the phenotype of the organism and 

organisms are selected at the evolution in accordance with the phenotype, then the selection 

can weakly depend on the genotype. The hiding effect significantly reduces the role of the 

genotype at the evolutionary selection, and the genetic assimilation becomes less pronounced. 

In addition, Mayley [8] investigated the influence of the learning load (the cost of 

learning) on the interaction between learning and evolution. The learning load means that the 

process of learning has an additional load for the organism and its fitness is reduced under the 

influence of this load. 

Interaction between learning and evolutionary optimization of a neural network control 

system of autonomous agents was modeled in [10, 11]. The genetic assimilation of the 

acquired features of agents was observed during several generations of evolution. In addition, 

it was demonstrated that learning could significantly accelerate the process of the 

evolutionary optimization. However, it was difficult to analyze detailed mechanisms of 

interaction between learning and evolution in that works, because these mechanisms were 

“hidden” in the dynamics of numerous synaptic weights of agent neural networks. 

The current paper uses works [7, 8] as background. However, that works used rather 

complex forms of the genetic algorithm (with crossovers), so it was difficult to analyze 

quantitatively the mechanisms of influence of learning on evolutionary optimization. In 

contrast to works [7, 8], the current article uses the quasispecies model proposed by Manfred 

Eigen [12, 13] and our estimations of the evolutionary rate and the efficiency of evolutionary 

algorithms [14, 15]. The quasispecies model considers the evolution that is based on selection 

and mutations of organism genotypes (without crossovers) and describes the main properties 

of the evolutionary process. The use of models and methods of works [12–15] allows getting 

a better understanding of the mechanisms of interaction between learning and evolution. 

The current paper analyzes quantitatively the following main properties of interaction 

between learning and evolution: 1) the mechanism of the genetic assimilation, 2) the hiding 

effect, 3) the role of the learning load at investigated processes of learning and evolution. 

DESCRIPTION OF THE MODEL 

The evolving population of modeled organisms is considered. Similar to Hinton and 

Nowlan [7], we assume that there is a strong correlation between the genotype and the 

phenotype of modeled organisms. We assume that the genotype and the phenotype of the 

organism have the same form, namely, they are chains; symbols of both chains are equal to 0 

or 1. The length of these chains is equal to N. 

For example, we can assume that the genotype encodes a modeled DNA chain, “letters” of 

which are equal to 0 or 1, and the phenotype determines the neural network of organisms, the 

synaptic weights of the neural network are equal to 0 or 1 too. The initial synaptic weights (at 

the birth of the organism) are determined by the genotype (for example, the initial synaptic 

weights can be equal to the genotype symbols). These weights are adjusted by means of 

learning during the organism's life. 

The evolving population consists of n organisms, genotypes of organisms are SGk, k = 

1,..., n. The organism genotype SGk is a chain of symbols, SGki, i = 1,..., N. We assume that the 

length of chains N and the number of organisms in the population n are large: N, n 1. The 

values N and n do not change in the course of evolution. Symbols SGki are equal to 0 or 1. We 

assume that N is so large that only a small part of possible 2
N
 genotypes can be presented in a 
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particular population: 2
N

n. Typical values N and n in our computer simulations are as 

follows: N ~ n ~ 100. 

The evolutionary process is a sequence of generations. The new generation is obtained 

from the old one by means of selection and mutations. Genotypes of organisms of the initial 

generation are random. Organisms inherit the genotypes from their parents, these genotypes 

do not change during the organism life and are transmitted (with small mutations) to their 

descendants. Mutations are random changes of symbols SGki. 

Phenotypes of organisms SPk are chains of symbols SPki, k = 1,..., n, i = 1,..., N; SPki = 0 

or 1. The organism receives the genotype at its birth, the phenotype SPk at this time moment is 

equal to the genotype: SPk(t = 1) = SGk. The lifetime of any organism is equal to T. The time is 

discrete: t = 1,...,T. T is the duration of the generation. The phenotype SPk is modified during 

the organism life by means of learning. 

It is assumed that there is the certain optimal chain SM, which is searched for in processes 

of evolution and learning. Symbols SMi of this chain are also equal to 0 or 1; the length of the 

chain SM is N. For a particular computer simulation, the chain SM is fixed; symbols of this 

chain are chosen randomly. 

Learning is performed by means of the following method of trial and error. Every time 

moment t each symbol of the phenotype SPk of any organism is randomly changed to 0 or 1, 

and if this new symbol SPki coincides with the corresponding symbol SMi of the optimal 

chain SM, then this symbol is fixed in the phenotype SPk, otherwise, the old symbol of the 

phenotype SPk is restored. The probability of the random changing of a symbol during 

learning is equal to pl. So, during learning, the phenotype SPk moves towards the optimal 

chain SM. 

At the end of the generation, the selection of organisms in accordance with their fitness 

takes place. The fitness of k-th organism is determined by the final phenotype SPk at the time 

moment t = T. We denote this chain SFk, i.e. we set SFk = SPk(t = Т). The fitness of k-th 

organism is determined by the Hamming distance ρ = ρ(SFk,SM) between the chains SFk 

and SM: 

fk = exp[βρ(SFk,SM)] + ε ,       (1) 

where β is the positive parameter, which characterizes the intensity of selection, 0 < ε 1. 

The role of the value ε in (1) can be considered as the influence of random factors of the 

environment on the fitness of organisms. 

The selection of organisms into a new generation is made by means of the well-known 

method of fitness proportionate selection (or roulette wheel selection). In this method, 

organisms are selected into a new generation probabilistically. The choice of an organism into 

the next generation takes place n times, so the number of organisms in the population at all 

generations is equal to n. The probability of the selection of a particular organism into the 

next generation is proportional to its fitness. Details of the method of roulette wheel selection 

are described in Appendix 1. 

Thus, organisms are selected at the end of a generation in accordance with their final 

phenotypes SFk = SPk(t = Т), i.e. in accordance with the final result of learning, whereas 

genotypes SGk (modified by small mutations) are transmitted from parents to descendants. 

As descendants of organisms obtain genotypes SGk that organisms received from their 

parents and not phenotypes SPk, the evolutionary process has the Darwinian character. 

Additionally, similar to Mayley [8], we take into account the learning load (the cost of 

learning), namely, we assume that the learning process has a certain burden on the organism 

and the fitness of the organism may be reduced under the influence of the load. For this 

purpose, we consider the modified fitness of organisms: 

 fmk = exp(d) {exp[βρ(SFk,SM)] + ε} ,      (2) 
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where  is the positive parameter, which takes into account the learning load, d = ρ(SGk,SFk) is 

the Hamming distance between the initial SPk(t = 1) = SGk and the final phenotype SPk(t = Т) = 

SFk of the organism, i.e. the value that characterizes the intensity of the whole learning 

process of the organism during its life. 

It should be noted that since genotypes SGk of the organisms in the initial population are 

random, the average Hamming distance between these chains and the optimal one SM is equal 

to N/2. The chains Sk should overcome this distance at learning and evolution in order to 

reach SM. 

RESULTS OF COMPUTER SIMULATION 

Scheme and parameters of simulation 

Two modes of operation of the model are consider below: 1) the regime of the evolution 

combined with learning, as described above, 2) the regime of “pure evolution”, that is the 

evolution without learning, in this case, the learning does not occur and SPk = SGk. 

Additionally, the influence of the learning load is analyzed, in this case, the fitness of an 

organism is calculated according to (2). The model is investigated by means of computer 

simulation. 

The parameters of the model at simulation are chosen in such manner that the 

evolutionary search is effective; the experience of the work [15] for the case of pure evolution 

is used at this choice. The fitness of the organisms in that work was determined analogously 

to the expression (1), only the influence of random factors did not taken into account 

(formally this means that the value ε was equal to 0). 

The choice of parameters for the current simulation is as follows. We believe that the 

length of the chains is sufficiently large: N = 100. We also set β = 1, this corresponds to a 

sufficiently high intensity of selection, so the selection time is small, thus the time of the 

evolutionary search is determined mainly by the intensity of mutations. On the one hand, the 

intensity of mutations must not be too large; in order to remove the possibility of mutational 

losses of already found good organisms. On the other hand, the intensity of mutations must 

not be too small, in order to ensure the sufficiently intensive mutational search during the 

evolutionary optimization. Taking this into account, we believe that the probability to change 

any symbol in any chain SGk at one generation at mutations is pm = N
 1

 = 0.01. At this 

mutation intensity pm approximately one symbol in the genotype of any organism is changed 

at one generation, i.e. during one generation, the Hamming distance ρ between genotypes SGk 

of organisms and the optimal chain SM changes on average by 1 by means of mutations. The 

selection leads to a decrease of the distance ρ. Since the intensity of the selection is large, and 

the Hamming distance between genotypes SGk in the initial population and the optimal chain 

SM is of the order of N, the whole process of the evolutionary optimization takes 

approximately GT ~ N generations. This estimation of the evolutionary rate is true, if the 

population size is sufficiently large and the fluctuation effects and the neutral selection of 

organisms (that is the selection independent on the fitness of organisms) can be neglected. To 

satisfy this condition, it is enough to require that the characteristic time (a number of 

generations) of the neutral selection, which is of the order of the population size n [15, 16], 

should be greater or of the order of GT, so we believe that n = GT = N. See also Appendix 2 

for more details. 

Thus, the parameters of simulation in accordance with the experience of the work [15] are 

chosen as follows: N = 100, β = 1, pm = N 
–1

 = 0.01, n = N = 100. 

In the current model we also believe that the probability of a random replacement of any 

symbol during learning pl is rather large: pl ~ 1, the number of time moments during any 

generation T is equal to 2 (choice of such parameters pl and T means that learning is rather 

strong), the parameter ε is small: ε = 10
–6

. The majority of simulations are carried out at 

pl = 1, only in one case the value pl is equal to 0.5. 
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In should be underlined that estimations of efficiency of evolutionary optimization for 

several similar evolutionary algorithms were obtained in works [14, 15, 17]. These 

estimations are outlined in Appendix 2. 

The results of simulation are averaged over 1000 or 10000 calculations corresponding 

to different random seeds. This averaging insures good accuracy of simulation; typical errors 

are smaller than 1–2%. The results of simulation are described below. 

Comparison of regimes of pure evolution and evolution combined with learning 

Fig. 1 shows the dependence of the average Hamming distance ρ = ρ(SGk,SM) between 

genotypes SGk of organisms in the population and the optimal chain SM on the generation 

number G. The curve 1 characterizes the regime of evolution combined with learning; the 

curve 2 characterizes the regime of pure evolution. The dependences are averaged over 1000 

calculations. The fitness of organisms is determined by the expression (1). We can see that the 

pure evolution without learning (the curve 2) does not optimize organisms Sk at all; whereas 

evolution combined with learning (the curve 1) obviously ensures the movement towards the 

optimal chain SM. Errors of values ρ at the plots are smaller than 0.3. 
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Fig. 1. The dependence of the average Hamming distance ρ = ρ(SGk,SM) between genotypes SGk and 

the optimal chain SM on the generation number G. The curve 1 characterizes the regime of evolution 

combined with learning; the curve 2 characterizes the regime of pure evolution. 

 

To understand, why the pure evolution does not ensure a decrease of the value ρ, let us 

estimate the value of the fitness (1) in the initial population. The Hamming distance 

ρ = ρ(SGk,SM) for initial genotypes is of the order of N/2 = 50, therefore, exp(ρ) ~ 10
–22

 and 

exp(ρ) ε. This means that all organisms of the population have approximately the same 

value of the fitness fk ≈ ε. Consequently, the evolutionary optimization of genotypes does not 

occur in the case of the pure evolution. Thus, the movement towards SM occurs only in the 

presence of learning; this movement leads to the decrease of the value ρ. A similar influence 

of learning on the evolutionary optimization (though in another context) was described in [7]. 

Let us consider the effect of the acceleration of the evolutionary process by learning (the 

curve 1 in Fig. 1). Analysis of the results of simulations shows that the gradual decrease of the 

values ρ = ρ(SGk,SM) occurs as follows. First, the learning shifts the distribution of organisms 

n(ρ) on the value ρ towards smaller ρ, so the values ρ = ρ(SFk,SM) become small enough, such 

that exp[ρ(SFk,SM)] is of the order of ε. Consequently, the fitnesses of organisms in the 

population in accordance with (1) become essentially different; so organisms with small 

values ρ(SFk,SM) are selected into the population of the next generation. It is intuitively clear 

that the genotypes SGk of selected organisms should be rather close to the final phenotypes SFk 

(obtained as a result of the learning) of these organisms. Thus, the result of the selection is 

choosing of organisms, which genotypes are also moving to the optimal chain SM. Therefore, 

values ρ in the new population decrease. 

The described mechanism of the genetic assimilation is characterized by Fig. 2, which 

shows the distributions of the number of organisms n(ρ) for given ρ in the population for 
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different moments of the first generation. The curve 1 shows the distribution n(ρ) for 

ρ = ρ(SGk,SM) for the initial genotypes of organisms at the beginning of the generation. The 

curve 2 shows the distribution ρ = ρ(SFk,SM) for organisms after the learning, but before the 

selection. The curve 3 shows the distribution ρ = ρ(SFk,SM) for organisms, selected in 

accordance with the fitness (1). The curve 4 shows the distribution ρ = ρ(SGk,SM) for the 

genotypes of selected organisms at the end of the generation. The genotypes of selected 

organisms SGk are sufficiently close to the final phenotypes of learned and selected 

organisms SFk, therefore the distribution ρ = ρ(SGk,SM) for genotypes (the curve 4) moves 

towards the distribution for final phenotypes SFk (the curve 3). Similar displacement of the 

distribution n(ρ) towards smaller values ρ takes place in the next generations. Errors of values 

n(ρ) at the plots are smaller than 0.3. 
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Fig. 2. The distributions n(ρ) in the first generation of evolution for different moments of the generation. 

The curve 1 is the distribution n(ρ) for ρ = ρ(SGk,SM) for the original genotypes before learning. The 

curve 2 is the distribution n(ρ) for ρ = ρ(SFk,SM) for organisms after the learning, but before the selection. 

The curve 3 is the distribution n(ρ) for ρ = ρ(SFk,SM) for selected organisms. The curve 4 is the 

distribution n(ρ) for ρ = ρ(SGk,SM) for the genotypes of selected organisms at the end of the generation. 

Results are averaged over 10000 calculations. 

 

Such displacement reveals the mechanism of reduction of ρ in the presence of learning: 

the selection leads to the genotypes of organisms SGk, which are closer to the phenotypes of 

learned and selected organisms SFk, than the initial genotypes of organisms at the beginning of 

the generation. Consequently, the transition from the curve 1 to the curve 4, i.e. the decrease 

of the values ρ, takes place during the generation. 

It should be underlined that the decrease of values ρ at learning should be sufficiently 

large in order to ensure the small role of the parameter ε and the significant difference of the 

fitnesses (1) of organisms after the learning, and therefore, the effective selection of 

organisms with small values ρ(SFk,SM). This selection corresponds to the essential decrease of 

values ρ at the transition from the curve 2 to the curve 3 in Fig. 2. It is clear that in order to 

guarantee the effective operation this mechanism, the learning should be enough strong. The 

other role of strong learning is characterized in the next subsection. 

It should be noted that the displacement of the distribution n(ρ) at learning in the first 

generation can be estimated as follows. Before learning, the value ρ(SPk,SM) (the number of 

symbols of phenotype SPk that do not coincide with corresponding symbols of the optimal 

chain SM) is approximately equal to N/2 = 50. After the first step of learning approximately a 

half of non-coinciding symbols are changed (pl = 1), so the value ρ(SPk,SM) becomes to be 

approximately equal to N/4 = 25. After the second step of learning (at the end of the 

generation) the next half of non-coinciding symbols are changed, so the value ρ(SPk,SM) 

diminishes to N/8 = 12.5. This is in agreement with the curve 2 in Fig. 2. 

The same mechanism of decreasing the value ρ for the regime of evolution combined with 

learning is illustrated by Fig. 3. This figure shows the dependence of the average distance 
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ρ = ρ(SGk,SM) between the genotypes of organisms of the population SGk and the optimal 

chain SM on the generation number G for the moments of the beginning of the generations 

(the curve 1) and for the moments after selection (the curve 2). Fig. 3 demonstrates that at the 

end of the generation (after the selection) the average value ρ is clearly decreased as 

compared with the beginning of the generation. The value of this decrease of ρ is maximal at 

the first generations, whereas the amount of the decrease becomes smaller at the next 

generations. 
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Fig. 3. The dependence of ρ = ρ(SGk,SM) for the genotypes of organisms on the generation number G 

for different moments of generations: for the beginning of the generations (1) and for the end of the 

generations (2). Results are averaged over 10000 calculations. 

 

The described results show that learning can lead to the effective genetic assimilation and 

to the radical acceleration of the evolutionary search. 

Hiding effect 

Thus, the strong learning can accelerate the evolutionary search. However, the strong 

learning can also prevent a finding of the optimal genotype. The curve 1 in Fig. 1 shows that 

at large G the decrease of values ρ = ρ(SGk,SM) is limited: the final value ρ remains quite 

large, the asymptotic value ρ is approximately equal to 6.2. This is due to the fact that at 

large G (G ~1000) the strong learning (pl = 1, Т = 2) results in finding the optimal phenotype 

SPopt = SM independently on the genotype SGk. Therefore, at the final stages of the 

evolutionary process, the genotypes SGk do not move towards the optimum SM. So, the hiding 

effect [8] is observed. 

Fig. 4 characterizes the mechanism of the hiding effect. This figure represents the 

distributions n(ρ) at the end of the evolutionary process (at G = 2000) for different moments 

of the generation. The results are for the described case of simulation for the regime of 

evolution combined with learning. Figure 4 shows that the distribution n(ρ) after the learning 

includes organisms, for which ρ(SFk,SM) = 0, i.e. the optimal phenotype SPopt = SM is found by 

means of the learning. Though the selection in accordance with values ρ(SFk,SM) occurs, the 

distance between the initial genotype distribution (the curve 1) and the final genotype 

distribution (the curve 4) is sufficiently small. Therefore, further reduction of ρ = ρ(SGk,SM) at 

the end of the evolutionary process does not occur. The hiding effect is confirmed by the fact 

that at the end of the evolution the curves (that are shown in Fig. 4) do not shift for successive 

generations. This effect is also consistent with the fact that the value ρ = ρ(SGk,SM) 

becomes constant at large G (see the curve 1 in Fig. 1). The distributions n(ρ) for genotypes at 

the beginning of the generation and after the selection (curves 1 and 4 in Fig. 4) differ 

slightly, this is due to mutations that lead to a small increase of ρ in the beginning of a 

generation as compared with the distribution after selection. Thus, at the end of the 
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evolutionary process, the strong learning results in finding of the optimal phenotype; hence a 

further optimization of genotypes does not occur. 
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Fig. 4. The distributions n(ρ) at the end of the evolutionary process (at G = 2000) for different moments 

of the generation. The curve 1 is the distribution of ρ = ρ(SGk,SM) for the initial genotypes before 

learning. The curve 2 is the distribution of ρ = ρ(SFk,SM) for organisms after the learning, but before the 

selection. The curve 3 is the distribution of ρ = ρ(SFk,SM) for selected organisms. The curve 4 is the 

distribution of ρ = ρ(SGk,SM) for the genotypes of selected organisms at the end of the generation. Results 

are averaged over 1000 calculations. 

 

The hiding effect can be substantially relaxed by reducing the intensity of learning. The 

dependence of ρ = ρ(SGk,SM) for genotypes on the generation number G for the weakened 

learning (pl = 0.5) is represented in Fig. 5. For this case, the rate of the decrease of the value 

ρ during the evolutionary process is smaller as compared with the previous result (Fig. 1, the 

curve 1); however, the final value ρ = ρ(SGk,SM) is essentially reduced and becomes 

approximately equal to 1.4. Consequently, the weakening of the learning leads to the fact that 

the phenotype, which determines the selection, in the greater degree depends on the genotype 

SGk; so, the selection of organisms having genotypes, which are quite close to SM, takes place. 
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Fig. 5. The dependence of ρ = ρ(SGk,SM) on the generation number G for the case of the weakened 

learning: pl = 0.5 (results are averaged over 1000 calculations); as compared with the case of pl = 1, the 

evolutionary rate is reduced, but genotypes of organisms, which are essentially closer to SM, are found. 

The hiding effect can be eliminated in another way: the learning process can be turned off 

at large G. Fig. 6 shows the simulation result, for which the learning is turned off at G = 1000. 

Simulation parameters are the same as for the calculation represented in Fig. 1 (the curve 1). 

Turning off the learning results in the sudden decrease of the value ρ = ρ(SGk,SM) 

immediately after the generation G = 1000, this has the following explanation. As at 

G = 1000, the value ρ(SGk,SM) is approximately equal to 6, then for this population we have 

exp(ρ) ~ 0.001 ε, consequently, fitnesses of the organisms (calculated according to (1)) are 

essentially different. Therefore, the evolutionary optimization of genotypes is successfully 

functioning; then the evolutionary process leads to the effective finding of the optimal 

genotype SGopt = SM. 
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Fig. 6. The dependence of ρ = ρ(SGk,SM) on the generation number G; the learning is turned off at G = 

1000, then the evolutionary process leads to the effective finding of the optimal genotype (results are 

averaged over 1000 calculations). 

Thus, the mechanism of the hiding effect is analyzed. This effect means that the strong 

leaning prevents a finding of the optimal genotype, as such learning increases the chances of 

finding a good phenotype independently on the genotype of the organism. In our case, the 

hiding effect is observed at the end of the evolutionary process. 

Influence of the learning load on the modeled processes 

We also analyzed the influence of the learning load on the modeled processes. For this 

case, the fitness of organisms is determined by the expression (2). The simulation is 

performed for the mentioned parameters (N = n =100, β = 1, pm = 0.01, pl = 1, Т = 2, ε = 10
6

), 

the value α is equal to 1. The simulation results are represented in Figs. 7, 8. Fig. 7 shows the 

dependence of the average Hamming distance ρ = ρ(SGk,SM) between genotypes SGk and 

the optimal chain SM on the generation number G. Fig. 8 shows the distributions n(ρ) of 

values ρ for different moments of the first generation of the evolution. 
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Fig. 7. The dependence of ρ = ρ(SGk,SM) on generation number G; the influence of the learning load is 

considered; the fitness of organisms is determined by the expression (2); the decrease of values <ρ> is 

much faster than that of in Fig. 1 (results are averaged over 1000 calculations). 
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Fig. 8. The distributions n(ρ) for different moments of the first generation of evolution; the learning load 

is taken into account; the fitness of organisms is determined by the expression (2). The curve 1 is the 

distribution of ρ = ρ(SGk,SM) for the original genotypes before learning. The curve 2 is the distribution of 

ρ = ρ(SFk,SM) for organisms after the learning, but before the selection. The curve 3 is the distribution of 

ρ = ρ(SFk,SM) for selected organisms. The curve 4 is the distribution of ρ = ρ(SGk,SM) for the genotypes of 

selected organisms at the end of the generation. The displacement of the distribution 4 to smaller values ρ 

is significantly larger than in Figure 2. Results are averaged over 10000 calculations. 
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The comparison of Figs. 1, 2 and Figs. 7, 8 shows that the learning load leads to the 

considerable acceleration of the evolutionary search for the optimal chain SM. This 

acceleration is due to the fact that the learning load results in the more strong selection of 

organisms that have small distance ρ(SGk,SFk) between the initial SPk(t = 1) = SGk and the final 

SPk(t = Т) = SFk phenotypes, than for the case of the fitness (1). This form of the selection in 

accordance with the expression (2) leads to the additional minimization of changes of 

phenotypes SPk during the learning process. The distribution 3 in Fig. 8 has some “extended 

tail” to the right; this is in accordance with the minimization of changes of phenotypes SPk 

during the learning. 

It should be underlined that the genetic assimilation for cases of the fitness, which is 

determined by the expression (1) and the expression (2), has the same nature. In both cases, 

genotypes of selected organisms SGk approach to final phenotypes SFk of learned and selected 

organisms. That is in both Figure 2 and Figure 8 the curve 4 moves towards the curve 3. A 

significant difference consists only in the fact that the learning load makes this movement 

more evident and more effective. Thus, the learning load leads to more effective optimization 

of genotypes SGk; and consequently, the evolution process is significantly accelerated. 

Analysis of the computer simulation demonstrates that the learning load results in finding of 

the optimal genotype SGopt = SM. The hiding effect is absent in this case. 

Thus, the computer simulation shows that the genetic assimilation, the hiding effect, and 

the significant acceleration of the genetic assimilation and the evolutionary process under the 

influence of the learning load are observed in the current model. 

Probabilistic and deterministic selection 

The considered model uses the probabilistic selection of individuals in accordance with 

their fitness; the method of fitness proportionate selection is used. Therefore, the presence of 

the small parameter ε in expressions (1) and (2) leads to the fact that a purely evolutionary 

process did not ensure finding the optimal sequence SM. It is possible to use the deterministic 

selection instead of the probabilistic one. For example, we can calculate the fitness of all 

organisms in a computer program and select into the next generation exactly the half of the 

individuals, which have larger fitness as compared with the rest of organisms of the 

population, and duplicate selected organisms. We have executed the simulation for this case 

of the deterministic selection. The simulation showed that in this case, the pure evolution 

leads to finding the optimal genotype SGopt = SM; the characteristic time of convergence of the 

evolutionary process is of the order of N generations. However, the deterministic selection 

implies that the fitness of the individuals (1) is calculated with great accuracy in a computer 

program; this is unnatural for real biological processes. For the biological processes, it is more 

natural to suppose that the selection has the probabilistic character, as it is assumed above. 

Modeling of Lamarckian type evolution 

We also have analyzed Lamarckian type evolution. In this case, the genotypes of 

descendants of organisms are equal to final phenotypes of their parents. The example of the 

computer simulation for the fitness of organisms determined by the expression (1) is shown in 

Fig. 9. The simulation is performed for the mentioned parameters (N = n =100, β = 1, 

pm = 0.01, pl = 1, Т = 2, ε = 10
6

). Fig. 9 demonstrates that the optimal chain SM is found very 

quickly. 

Comparison with the approach by Hinton and Nowlan 

Using the approach by Hinton and Nowlan [7] as well as the quasispecies model [12,13] it 

is possible to design the additional model that is very similar to the main model described 

above. The fitness of learning organisms in the additional model is defined by expressions (1) 

and (2), where ε = 0. 
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Fig. 9. The dependence of average distance to the optimal chain SM ρ = ρ(SGk,SM) on generation 

number G; the case of Lamarckian type evolution (results are averaged over 1000 calculations). 

The results for the additional model are almost the same as the described results for the 

main model. The genetic assimilation, the hiding effect, and the influence of leaning load are 

observed in the case of the additional model. 

CONCLUSION 

Thus, the model of interaction between learning and evolution has been constructed and 

investigated. 

The mechanism of the genetic assimilation is studied in detail. It is shown that the genetic 

assimilation takes place as follows. The phenotypes of modeled organisms move towards the 

optimum at learning; then the selection in accordance with final phenotypes takes place; the 

genotypes of selected organisms also move towards the optimum. It is shown that the genetic 

assimilation can lead to a radical acceleration of the evolutionary search. 

The mechanism of the hiding effect is analyzed. This effect means that the strong learning 

inhibits the evolutionary search for the optimal genotype, if this learning increases the 

chances of finding a good phenotype regardless of the genotype. 

The influence of the learning load on the interaction between learning and evolution is 

studied. It is shown that the learning load leads to the effective genetic assimilation and to the 

considerable acceleration of the evolutionary process. 

It should be underlined that our analysis essentially uses the quasispecies model [12, 13]. 

Basing on this model, it is sufficient to consider only single significant variable, the distance 

to the optimum ρ. This ensures the clear understanding of mechanisms of interaction between 

learning and evolution. 
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APPENDIX 1. SCHEMA OF ROULETTE METHOD 

This Appendix describes the schema of the roulette method. The formation of a new 

population is organized as follows. Let us imagine that we have a roulette (Fig. 10). For any 

generation, n sectors of the roulette are formed. The relative part of k-th sector is equal to 
1

1

n

k k ll
q f f




 
  , where fk is the fitness of k-th organism. The roulette is twisted n times. 

Every time, the sector, at which the roulette arrow stops, is determined. The organism 

corresponding to this sector is selected into the population of the next generation. Thus, 

exactly n organisms are selected into the next generation. For each twist of the roulette, the 

probability of k-th organisms to get into the next generation is proportional to the fitness of 

this organism fk. 

1

4
q1 =

1

8
q4 =

1

8
q3 =

1

2
q2 =

 
Fig. 10. The schema of the roulette method. Organisms are selected into the population of new generation 

with probabilities qk that are proportional to their fitness fk. For the shown example n = 4, f1 = 2, f2 = 4, 

f3 = 1, f4 = 1. 
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APPENDIX 2: RESULTS OF ESTIMATION OF EFFICIENCY OF EVOLUTIONARY 

ALGORITHMS 

The estimations [14, 15, 17] were made for the model of quasispecies [12, 13]. This model 

describes the evolution of the population of organisms Sk; each organism Sk is determined by 

the chain of symbols Ski, symbols take two values: Ski = 0 or Ski = 1; i = 1,2,…,N; k = 1,2,…,n; 

N is the length of chains; n is the number of organisms in the population. The fitness of an 

organism S decreases exponentially with the Hamming distance ρ(S,SM) between S and the 

certain optimal chain SM: 

f(S) = exp[βρ(S,SM)] ,      (3) 

where β is the parameter of selection intensity. 

The evolutionary process consists of a number of generations; each generation consists of 

a) the selection of the organisms into the next generation that is performed by means of the 

method of fitness proportionate selection and b) the mutations that are random replacements 

of symbols Ski. The probability of changing of any symbol in one generation at mutations is 

equal to pm. The probability of the selection of a particular organism S into the new generation 

is proportional to its fitness f(S). It is assumed that N, n 1 and 2
N

n (N, n = const). The 

initial population consists of random organisms, so the characteristic distance ρ between the 

organisms S of this population and the optimal chain SM is approximately equal to N/2. 

New organisms having small values ρ appear in the population owing to mutations and are 

fixed in the population by means of selection. The characteristic number of generations G-1, 

which is needed to reduce the mean value ρ in the population by 1, can be estimated as 

follows: G1 ~ Gm + Gs. Here Gm ~ (Npm)
1

 is the characteristic number of generations that is 

needed for mutations of organisms of the population, Gs ~ β
1 

is the characteristic number of 

generations that is needed for replacement of organisms, having ρ = ρ, by more preferable 

organisms, having ρ = ρ  1. 

The total number of generations GT of the evolutionary process, which is needed for 

finding the optimal chain SM, is of the order of GT ~ G1 N , therefore, we have: 

GT ~ (pm)
1

 + Nβ
1

.       (4) 

Let us choose the parameters of the model for the given value N in such a manner to 

minimize the total number of organisms participating in the evolutionary search for the 

optimal chain SM. We use the following assumptions. 

1) The intensity of selection is enough large: β  pmN; in this case we can neglect the 

second term in the expression (4), i.e., the speed of evolution is determined by the intensity of 

mutations. 

2) The intensity of mutations must not be too large, in order to remove the possibility of 

mutational losses of already found successful organisms, and the intensity of mutations must 

not be too small in order to ensure rather quick evolutionary search for the optimal chain SM. 

We believe that pm = N
 1

. Consequently, from (4) we estimate the total number of generations 

of the evolutionary search: GT ~ N. 

3) We assume the minimal allowable population size n, at which there is no significant 

losses of successful organisms as a result of the neutral selection. The characteristic number 

of generations of the neutral selection Gn is of the order of the population size n [14–16]: 

Gn ~ n. Gn should be no less than GT. Thus, the minimal allowable population size can be 

estimated as n ~ GT.  

Using these assumptions, we have n ~ GT ~ N. Finally, we obtain estimations of the total 

number of generations of the evolutionary process GT and the total number of organisms 

involved in the evolutionary search ntotal (ntotal = n GT): 

GT ~ N , ntotal ~ N
 2
 .     (5) 
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Computer simulations [14, 15] confirmed the estimations (5).  

It should be noted that similar estimations were obtained for several similar models, in 

particular, for the evolutionary search for minimums of energy of spin glasses [14, 17, 18]. 

Thus, the parameters of the effective evolutionary search are: n = N, pm = N 
1

, β = 1. 

Fig. 11 represents the dynamics of the average Hamming distance ρ between S and the 

optimal chain SM in the quasispecies model; the fitness of organisms is determined by the 

expression (3). The parameters of simulation are: n = N =100, pm = 0.01, β = 1. The rate of the 

evolutionary search is consistent with the estimations (5). 
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Fig. 11. The dependence of ρ on generation number G in the quasispecies model; the fitness of 

organisms is determined by the expression (3) (results are averaged over 1000 calculations). 

 

It should be underlined that the quasispecies model can be considered as a canonical 

model of evolution, which is based on mutations and selection of genotypes of organisms. 

The efficiency of the evolutionary search for this model is determined by the expressions (5). 
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