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Abstract. The problem of reconstructing the image of a single macromolecular 

object from X-ray diffraction data can be formulated as a problem of the 

reconstruction of the 3D electron density distribution from the magnitudes of its 

Fourier transform. This problem can be reduced to a series of standard X-ray 

crystallography tasks, namely, the recovery of a periodic function from its Fourier 

coefficients (structure factors) magnitudes, which are determined in an X-ray 

diffraction experiment. In this work, a new approach to the solution of these tasks 

is suggested which is based on the use of connected binary masks as an 

approximation of the required electron density distribution. The approach includes 

the random generation of a great number of connected masks, the selection of the 

masks that are in agreement with an experimental and a priori information about 

the object, and the alignment and the averaging of the phase sets of the structure 

factors that correspond to the selected masks. The averaged phase values together 

with the experimentally determined magnitudes are used for the calculation of the 

Fourier synthesis, which is applied for the visualization of the object under study. 

The approach can be used in studies of both single particles and crystalline species; 

however, it holds the greatest promise for investigations of single objects. The 

results of testing the approach are presented. 

Key words: X-ray crystallography, phase problem, XFEL, scattering by a single particle. 

INTRODUCTION 

X-ray diffraction is the main method of determining the atomic structures of biological 

macromolecules and their complexes. However, a serious restriction of the method is that a 

sample for the X-ray experiment has to be prepared as a monocrystal. This requirement is 

dictated by the fact that the intensities of the waves scattered by a single molecule are many 

orders of magnitudes less than the intensity of the incident X-ray beam, which strongly 

complicates their registration. The interference of waves scattered by a set of molecules that 

are in the nodes of the regular periodic grid leads, for some particular directions, to the 

multiple amplification of secondary waves, which makes their registration possible. The 

development of new powerful sources of X-rays, such as X-ray free electron lasers, allows 

one in the nearest future to talk about X-ray diffraction experiments with single big molecules 

or complexes of molecules [1, 2]. This possibility makes timely the development of 

approaches to the determination of the 3D structure of biological macromolecules based on X-

ray diffraction data obtained in the experiment with a single molecule. In the present work, 

one possible approach is suggested.  

The main obstacle for the structure determination from X-ray diffraction data is the phase 

problem. The experiment enables one to determine directly only the magnitude of the 

complex function, which is the Fourier transform of the function that describes the spatial 
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distribution of electrons in the object under study (the function of the distribution of the 

electron density). The solution of the phase problem (calculation of the phase values of the 

Fourier transform) makes it possible to restore the electron density distribution by calculating 

the inverse Fourier transform usually named as the Fourier synthesis of the electron density. It 

should be noted that the solution of the phase problem in the case of a single particle is a 

theoretically simpler task than in the case of a crystal. During X-ray diffraction through a 

crystal, one can measure the intensity of scattered waves only for a discrete set of specific 

directions (Bragg reflections), while, in a successful experiment with a single molecule, one 

can obtain the information about the intensity of scattering in all directions. 

The accuracy of the information obtained by calculating the synthesis of the electron 

density depends on the number of reflections (in case of a crystal) or the size of the region of 

scattering angles (in case of a single molecule) included in the calculation. This accuracy is 

characterized by the resolution value and depends on the limiting values of the scattering 

angles, for which it was possible to register the intensity of scattered waves. A common 

practice in crystallography is a step-by-step progress in the determination of the electron 

density distribution from low to high resolution. It this work, we discuss approaches to the 

solution of the phase problem at the initial stage of the study, namely, in the zone of low and 

medium resolution (small angle scattering). The information obtained allows one to determine 

the general contours of the molecule and is a starting point for the further use of the methods 

for increasing the resolution. The authors of the present work suggested a set of approaches to 

the solution of the phase problem in the low resolution zone in the studies of crystal structures 

[3, 4]. Here, we attempt to extend these approaches [5] into the case of the scattering by a 

single molecule. As it will be shown below, the task of the recovery of the electron density 

distribution in case of the scattering by a single molecule can be considered as a series of 

usual crystallographic tasks relevant to imaginary crystals containing the molecule under 

study buried in a large volume of a solvent in the unit cell. An increase in the portion of the 

solvent in the imaginary cell potentially facilitates the solution of the phase problem but leads 

to a significant increase in the computing time. 

The method is based on the use of the compactness and connectivity features of the region 

of high density values of the electron density in biological macromolecules. Earlier, the 

Monte Carlo type procedure was suggested [5], which consists of a random generation of 

phase sets and the calculation of the corresponding Fourier syntheses, the selection of those 

phase sets that provide the connectivity of the region of high electron density values in 

Fourier synthesis, the alignment and averaging of selected phase sets. Here, we investigate an 

alternative approach to the use of connectivity features. In the new procedure, just 

hypothetically connected regions are randomly generated. For the further work, those regions 

are selected, for which the magnitude of the Fourier transform reproduces well the values 

obtained in the experiment. The phase sets of the Fourier transform corresponding to the 

selected regions are further aligned and averaged, which leads to the required solution of the 

phase problem. This approach demands much less computing calculations and provides a 

higher quality of the resulting phase sets compared with the earlier used approach [5]. 

1. FUNDAMENTALS OF THE METHOD 

1.1. Theoretical basis of the X-ray diffraction analysis 

A principal scheme of an X-ray diffraction experiment is shown in Fig. 1. An object under 

study is placed in an X-ray beam, and the intensities of arising secondary waves diverging in 

all directions are registered. During the experiment, the object is rotated, which makes it 

possible to obtain at the output a set of two-dimensional roentgenograms corresponding to 

different orientations of the object relative to the initial beam. In the kinematic theory of 

diffraction, a primary beam is considered as a plane monochromatic electromagnetic wave, 

and the interaction of electrons only with this primary wave is considered. By the action of 
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this incident wave, electrons of the object begin to oscillate and become the sources of new 

spherical waves. These waves are summed to form scattered waves.  

A complex magnitude of a scattered wave E  differs from the magnitude of the primary 

wave 0E  by two multipliers:  

( ) 0= E F s E .                                                               (1) 

The multiplier   is equal to the portion of the energy flow of the initial wave that comes with 

the scattered wave to the detector upon the scattering by only one electron. This portion is 

very small (it can be estimated to be 1210~ −  ), which just presents the main problem during 

the registration of the scattered radiation. The complex multiplier ( )F s  is called the structure 

factor and is determined by the electron density distribution in the object that scatters. 

 

 
 

Fig. 1. Scheme of an X-ray diffraction experiment. 

 

The value of the structure factor depends on the direction of the scattering (more exactly, 

on the vector 

0−
=



σ σ
s ,                                                                (2) 

which is called the vector of scattering) and is related through the Fourier transform to the 

electron density distribution ( ) r  in the object under study: 

( ) ( ) ( )exp 2 ,i dV=     rF s r s r .                                          (3) 

The intensity of the scattered wave registered in the experiment is proportional to the square 

of the structure factor magnitude, i.e., depends on the distribution of electrons in the object 

under study. This allows one to formulate the problem of determination of the distribution 

( ) r  from the set of experimentally determined intensities ( ) I s . 

Theoretically, the electron density distribution can be recovered from structure factor 

values through the inverse Fourier transform 

( ) ( ) ( )exp 2 ,i dV = −    sr F s s r ,                                            (4) 

however, there are two obstacles. First, an X-ray experiment enables one to obtain the values 

of only structure factor magnitudes and does not allow one to measure phase values. Second, 

it follows from formula (2) that the experiment allows one to obtain the values of structure 

factor magnitudes only for the vectors s  that satisfy the restriction 2 s . Therefore, even 

with the known phases of the structure factors, the inverse Fourier transform enables one to 
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obtain, instead of the exact distribution of electron density ( ) r , only the Fourier synthesis of 

a finite resolution d  

( ) ( ) ( )
1

exp 2 ,
d

i dV


 = −   
s

r F s s r .                                          (5) 

In this case, a possible resolution d  cannot be less than half of the wavelength 2 . 

Let the object under study be a crystal; that is, there is a great number of identical 

similarly orientated molecules placed in the nodes of the crystal lattice   built on the basis 

 , ,a b c . A shift of the molecule position in the space by vector u  leads to an appearance of 

an additional phase multiplier ( )exp 2 ,i  s u  in its structure factor. Suppose that vector u  

runs through all nodes of lattice  , and additional conditions for vector s  are satisfied: 

( ) ( ) ( ), , , , , ,h k l= = =s a s b s c where lkh ,,  are integers.                         (6) 

In this case, all additional multipliers in the structure factors that correspond to single 

molecules will be equal to 1; and a multiple amplification of the scattered wave due to the 

summation of identical contributions from a great number of molecules in the crystal will 

happen. The intensity of this wave becomes big enough to be registered in the experiment. If 

conditions (6) are not satisfied, the phases of additional complex multipliers are almost 

random, and the structure factors corresponding to single molecules give zero as a result of 

summation. In this case, the intensity of the scattered wave becomes to be too small to be 

detected experimentally. Conditions (6) are called the diffraction conditions (Laue-Bragg-

Wulff), and the corresponding scattered waves are called the reflections. Below, we will talk 

about the magnitudes and phases of the structure factors corresponding to these or other 

reflections bearing in mind structure factors involved in equation (1) for these waves. 

In the case of a crystal, the formulas for the calculation of structure factors and electron 

density have the form:  

( ) ( ) ( )exp 2
V

i dV=     rF s r s,r ,                                              (7) 

( ) ( ) ( )exp 2 i


 = −   
s

r F s s,r ,                                               (8) 

where V  is a parallelepiped built on vectors  , ,a b c  (the unit cell of the crystal), and V  is 

the volume of the unit cell. The summation in (8) occurs over all nodes of the integer grid 

built on the vectors of the basis  , ,* * *
a b c , which is conjugated to the basis  , ,a b c : 

 where  , ,   are integersh k l h k l  = + +      *
a b c .                                (9) 

Note that these are exactly the same scattering vectors for which the diffraction conditions (6) 

are satisfied, that is, whose structure factor magnitudes can be measured in the experiment. 

1.2. Scattering by a single particle. Reduction to crystallographic problems  

Let us go back to the case of scattering by a single molecule. Let ( )0 r  describes the 

electron density distribution in a single molecule, and ( )sp
F s  are the corresponding structure 

factors calculated according to (3). Let us choose an arbitrary basis  , ,a b c  in the space. Let 

the vectors be chosen big enough for the molecule to be positioned completely in the 
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parallelepiped built on these vectors. Among all structure factors ( ) F s , we will select a 

subset corresponding to the nodes of the integer grid 

 ,   where  , ,   are integersabc h k l h k l   = + +   a b c ,                               (10) 

where  , ,* * *
a b c  is the basis conjugated to the basis  , ,a b c . Consider, finally, an imaginary 

crystal with the unit cell parameters  , ,a b c  inside which there is one molecule with electron 

density distribution ( )0 r inside the molecule and the density outside the boundaries of the 

molecule equal to zero. Structure factors for this crystal have the form: 

( ) ( ) ( ) ( ) ( ) ( )0 0exp 2 , exp 2 ,

abc

cryst sp

V

i dV i dV=   =   =       r rF s r s r r s r F s .        (11) 

Thus, the setting of the Fourier transform for a single particle on an integer grid abc  is 

equivalent to the setting of structure factors for an imaginary crystal structure in which the 

particle is in the crystal unit cell with the parameters  , ,a b c . And, correspondingly, the 

problem of the recovery of electron density from the magnitudes of the Fourier transform 

( )sp
F s  can be reformulated as the problem of the recovery of the electron density 

distribution in the imaginary cell from structure factor magnitudes ( ) :cryst

abc
F s s . 

Because of this, a vast majority of methods of the solution of the phase problem in protein 

crystallography could be applied to the determination of the structure of a single particle. It 

should be noted that, with this reduction of the problem to the problem of the macromolecular 

crystallography, we use only a part of the potentially available information, i.e., only the 

Fourier transform magnitudes taken in the nodes of the grid (10). Both the basis  , ,1 2 3e e e  

and the lengths cba ,,  of the unit cell can be selected by a variety of ways. The data on the 

scattering by a single particle contain much more information than a usual crystallographic 

problem; and this gives more possibilities for the solution of the phase problem. 

Although, the formulation of the problem suggested in the previous section is formally 

similar to the ordinary crystallographic problem, it has an essential difference. With large 

values of , ,a b c   parameters, we obtain a unit cell in which only a small part is occupied by an 

unknown electron density, and density values in the greater part of the unit cell are known 

(equal to zero). This makes the problem of the structure determination overdetermined [6] and 

makes possible its solution. A significant obstacle for the solution is that we do not know in 

which particular points the density is equal to zero. If this information (a mask of the 

molecule region) is obtained by some way, different iteration procedures can be applied for 

the solution of the phase problem [6–8]. In this paper, we discuss the way to obtain this mask. 

It should be mentioned that, by increasing the cell parameters, we involve a great deal of 

experimental information (a greater quantity of reflections) in the work and deal with a 

greater number of structure factors of the imaginary crystal (with the resolution being the 

same). On the other side, this increase leads to an increase in the portion of the solvent in the 

unit cell, which increases the information redundancy and can facilitate the solution of the 

phase problem. 

1.3. Phase problem. Ab initio methods of the solution 

One of the central problems of the crystal structure determination is a loss in the 

experiment of “half” of the necessary information. For the recovery of the electron density 

using (8), both the magnitudes and phases of structure factors are necessary; an experiment 

allows one to obtain only values of the magnitudes. The lack of the information has to be 

compensated for by some other information about the object. As a rule, either the 
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experimental data obtained in additional experiments (with isomorphous derivatives or at 

different wavelengths of X-rays) or the known structure of a homologous protein are used as 

an additional information. A special group of methods are so-called direct or ab initio 

methods in which additional general information not relevant to a particular object under 

investigation is used. An example of this information is the connectivity of the regions of high 

electron density values [4, 9]. For using this property, a Monte-Carlo type procedure was 

developed, and the complex of the programs GENNEM was created in which this procedure 

is implemented. The procedure consists of a few steps. In the first step, a hypothetical set of 

possible values of structure factor phases is randomly generated. The phases with 

experimental structure factor magnitudes are used to calculate the Fourier synthesis of the 

electron density. From the Fourier synthesis, a region of high density values is determined (a 

cut-off level is a parameter of the method), and the number of the connectivity components of 

this region is determined. If the number of these components is no greater than the given 

number, the phase set generated is considered as “admissible” and is selected for further 

analysis. The generation of the phase sets is repeated until the number of selected admissible 

phase sets reaches a given number. At the second step, the phase sets selected are “aligned” 

[10, 11]. The necessity of the alignment is dictated by the fact that the structure factor 

magnitudes do not fix the choice of the origin. The electron density distribution of the initial 

object and that of the same object but shifted by some vector have identical sets of structure 

factor magnitudes (but different sets of phases). Therefore, with the random generation of the 

phase sets, a situation may arise that two phase sets generated would lead to the same (or very 

similar) images of the molecule but formally different phase values. This difference can be 

eliminated by a shift of the second image (and corresponding transformation of the phases). 

After the alignment of all phase sets, the phase values for each structure factor are averaged, 

and an indicator of the dispersion of the phase value in different sets (a figure of merit) is 

calculated. The mean values and the figures of merit (as correcting multipliers) are used to 

calculate Fourier series (8), which is a current approximation to the solution of the problem of 

determining the electron density in the object. The approximation found can be used for the 

modification of the first step of the procedure. Random phase values can be then be generated 

with allowance for the information about their most probable values. The procedure can be 

repeated several times, with varying individual probability distributions upon the generation 

of the values of structure factor phases until the attainment of convergence. 

An additional criterion for the selection within this procedure can be restrictions upon the 

molecule size; thus, it is required that the region of high values was within the parallelepiped 

of the given size. 

1.4. Using masks of the molecule region for the solution of the phase problem 

In case of low and middle resolution, the main information extracted from the electron 

density distribution ( ) r  is usually a mask of the molecule region (characteristic function). 

This mask is usually defined as a region of the highest values on the Fourier synthesis of the 

electron density (referred below to as the region of high values, RHV). With a given cut-off 

level crit , we define a mask of the region as a binary function 

( )
( )

( )

1, if 

0, if  

critmask

crit

   
 = 

   

r
r

r
.                                               (12) 

An alternative way to define a RHV is to preset the desired size of the high values region and 

choose the cut-off level crit  so that function (12) would distinguish the region of the desired 

size. The desired volume of the region can be specified by different ways. This can be, for 

example, the absolute volume of the region in the three-dimensional space (in Å3) or the 

number of grid nodes if the region is built on some grid in the unit cell. This can be also the 
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relative volume – that is the ratio of the region volume to the volume of the unit cell. In some 

cases, it is convenient to characterize the size of the region by a volume that corresponds to a 

particular structure unit. For this purpose, we will use a specific volume, which is calculated 

as an average volume per one amino acid residue of the protein structure being studied. 

At the initial steps of the structure investigation, an object of the search can be not the 

electron density distribution itself but a binary mask that describes best the molecule. 

Moreover, the property of the binarity per se can be used as an additional information about 

the object under study for the reconstruction of phase values [12]. 

In this work, we suggest a new approach to the ab initio structure determination of 

biological molecules at low and middle resolution. The approach can be applied in cases of 

both crystalline samples and a single molecule, but its computing advantages become 

particularly significant in studies of single molecules. 

The object of the search is a mask of the molecule region given at some grid in the unit 

sell 

 
zyxmnp NpNnNmb  0,0,0, .                                 (13) 

Here, zyx NNN ,,  are the numbers of grid nodes on the sides of the unit cell. At the first step, 

connected sets of points consisting of a given number of points are randomly generated. To 

each set of generated points  , the binary function 

( )
1 for  

0 for  

mask


 = 


r
r

r
                                                  (14) 

is constructed. From this function, the magnitudes and phases of structure factors are 

calculated. If the calculated magnitudes are close enough to the experimental values (for 

example, have a correlation above the given value), then the corresponding phase set is 

considered as admissible and is kept for further work. The generation is repeated until the 

necessary number of admissible phase sets is selected. The next two steps of the work, the 

alignment and averaging, are accomplished as described above in section 1.3. Upon the 

selection of generated masks, additional requirements of the selection can be imposed. These 

requirements are formulated in term of the characteristics of masks; for example, the 

extension of the masks in different directions is limited or the required radius of the inertia of 

masks is given. At the beginning of the work with the structure, the addition of nodes to the 

mask being generated can occur with an equal probability for all grid nodes. With the advance 

of the work, the Fourier synthesis obtained after the averaging of selected phase sets can be 

converted into the distribution of probabilities for the presence in the mask of particular grid 

nodes. After this, the generation of the mask at the next circle can be performed with 

allowance for this probability distribution.  

2. RESULTS 

2.1. Test object 

The atomic model of the trimer of the membrane protein AcrB [13] consisting of 3129 

amino acid residues (23811 non-hydrogen atoms) was used. The overall view of the trimer is 

shown in Fig. 2. 

Two test sets of complex structure factors corresponding to two variants of an 

“imaginary” crystal structure were calculated. The AcrB molecule was assumed to be placed 

in the rectangular unit cell with dimensions 120, 120, and 150. Å in the first case (the small 

unit cell) and 180, 180, 225 Å in the second case (the extended unit cell). In both cases, the 

space group was assumed to be P1 (the absence of crystallographic symmetry). The first case 

resembles an ordinary task of the crystal structure determination in the presence of a large 

volume of the solvent (about 75%). The second case corresponds to an imaginary crystal 
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(with an abnormally large volume of the solvent) considered in the single particle X-ray 

study. The structure factor magnitudes are considered as known experimentally determined 

( )obsF s  values and referred below as “experimental” values. The calculated phases were 

assumed to be exact phase values ( )exact s  and were used only for the control of the results. 

During tests, they were considered as unknown.  

 

 

Fig. 2. Overall structure of the AcrB protein. Three monomers comprising the molecule are shown by 

different colors. The boundaries of a small and an extended unit cell are shown in red and blue. 

 

It should be noted that the AcrB molecule has a symmetry axis of the third order. The 

symmetry was not taken into account either in the choice of the unit cell or during the 

retrieval of the values of structure factor phases. Therefore, the manifestation of this 

symmetry on molecule images obtained served as a confirmation of the correctness of the 

solution. 

The ab initio determination of the structure factor phases was performed in a resolution 

zone of 25 Å. For the control, different indicators were calculated also in the zones of lower 

resolution of 40 and 30 Å. The distribution of the number of the structure factors in the 

resolution zones is shown in Table 1. 

 
Table 1. Distribution of the number of structure factors in the resolution zones 

 
Dimensions of the 

unit cell [Å] 

Resolution zone (dmin) [Å] 

40 30 25 

Number of structure factors 

Small unit cell 120, 120, 150 69 170 288 

Extended unit cell 180, 180, 225 247 555 976 

2.2. Control criteria 

The choice of the most optimal criteria for the comparison of the sets of the phases, or 

structure factor magnitudes, or Fourier syntheses of the electron density is a subject of the 

separate discussion in protein crystallography. In this paper, we use two of the most popular 

criteria. For the comparison of structure factor magnitudes calculated from a binary mask and 

their experimental values ( ) obsF s , we use the non-centric correlation coefficient: 

( ) ( )

( )( ) ( )( )
2 2

obs calc

obs calc

F F

CM

F F

=


 

s

s s

s s

s s

.                                        (15) 
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The criterion for the comparison of two phase sets (for example, ab initio solution and the 

exact phases) is defined in two steps. At the first step, we define a “formal” correlation 

coefficient of two phase sets as: 

( )  ( ) ( ) ( ) ( )( )

( ) ( )

( )( ) ( )( )

( )( ) ( ) ( )( )

( )( )

1 2 1 2

2

1 2
1 2

22 2

1 2

, ,

cos

.

obs

obs

FCP FCP

F
dV

FdV dV

  =   =

 − 
 

=

 



 

r s

r r
s

s s r r

s s s
r r

sr r

                 (16) 

Here, ( )1 r  and ( )2 r  are the Fourier syntheses calculated with experimental magnitudes 

( )obsF s  and the phase sets being compared. (The term ( )0F  is omitted in these calculations.) 

It should be mentioned that this criterion is specific for a particular X-ray experiment because 

it is calculated using the experimental structure factor magnitudes.  

The above formal comparison of phase sets is not always acceptable in the tasks of the 

reconstruction of phase values from the structure factor magnitudes. This is because the 

structure factor magnitudes do not fix the origin of the coordinates. To be more precise, two 

functions, ( )1 =  r  and ( )2 =  −r u , which differ by a shift at the vector u , have the same 

structure factor magnitudes but different phase values 

( ) ( ) ( )2 1 2 , =  + s s s u .                                                 (17) 

These two functions provide one and the same image of the structure and have to be 

considered, in the frame of the structure determination task, as equivalent. During the random 

generation of masks or phases, a case is possible that the images being generated (or Fourier 

synthesis calculated from phases being generated) differ by only a shift or become very 

similar after the application of the properly selected shift. In the frame of our task, these phase 

sets have to be considered as close. Therefore, as the second step in the determination of the 

level of closeness, we introduce the alignment, i.e. the selection of a vector u  that would 

provide a maximal value of the formal criterion (16):  

( )  ( ) ( ) ( ) ( )( )

( )( ) ( ) ( ) ( )( )

( )( )

1 2 1 2

2

1 2

2

, max ,

cos 2 ,

max .

obs

obs

CP FCP

F

F

  =  −  =

 +  − 



u

s

u

s

s s r u r

s s s u s

s

                          (18) 

In the space group P1, the maximization is performed over all vectors of the shift u . A set of 

possible vectors of the shift can be limited in the case of the presence of crystallographic 

symmetry [11]. 

One more transformation of the function of the electron density distribution that does not 

lead to a change in the structure factor magnitudes is the transition to an enantiomer; the 

functions ( ) r  and ( ) −r  have the same set of the structure factor magnitudes. At low and 

medium resolutions, the choice of a correct enantiomer is usually impossible. Therefore, in 

the procedure of the alignment, an additional possibility of the change of the enantiomer is 

introduced in cases that such a change is not limited due to the symmetry (for example, when 

one works with the group P1): 

( )  ( ) ( ) ( ) ( )( )1 2 1 2
1

, max max ,CP FCP
=

  =   −  
u

s s r u r .                       (19) 
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2.3. Averaging of the phase sets. Weighted Fourier synthesis 

In ab initio phase determination procedures discussed in this work, the result of the first 

step is a population of the phase sets chosen. The simplest processing procedure of the phase 

sets is their averaging, which is applied to the phase sets previously aligned relative to each 

other [4]. To be more precise, the averaging is applied to the Fourier syntheses calculated 

using experimental structure factor magnitudes ( )obsF s  and different phase sets. This leads to 

a “weighted” Fourier synthesis which can be calculated as  

( ) ( ) ( ) ( ) ( )
1

exp exp 2 ,obs bestm F i i
V

  =     
s

r s s s s r .                        (20) 

For each structure factor, the best phase ( )best s  and the indicator of the reliability of its 

determination (the figure of merit) are determined:  

( ) ( ) ( )
1

1
exp exp

M
best

j

j

m i i
M =

    =    s s s .                                     (21) 

It is easily seen that ( )m s  characterizes the scatter of phase values in different sets relative to 

the averaged phase value ( )best s : 

( ) ( ) ( )( )
1

1
cos

M
best

j

j

m
M =

=  −s s s .                                         (22) 

When using the weighted Fourier syntheses (20), we will also apply, along with the phase 

correlation coefficient, the weighted correlation coefficient wCP , which is the result of the 

optimization over all possible phase shifts 

( )  ( ) ( ) ( ) ( )( )1 2 1 2
1

, max max ,w wCP FCP
=

  =   − 
u

s s r u r ,                       (23) 

where instead of the formal correlation coefficient (16), the weighted formal correlation 

coefficient is used: 

( )  ( ) ( )
( ) ( )( ) ( ) ( )( )

( )( ) ( ) ( )( )

2

1 2

1 2
2 2

cos

, .

obs

w
obs obs

m F

FCP

F m F

 − 

  =


 

s

s s

s s s s

s s

s s s

                 (24) 

2.4. The averaging of random phase sets. The efficiency of ab initio procedures 

At low resolution, the correlation coefficient CP as a criterion of success should be used 

with caution. The point is that the sets of the structure factor magnitudes for biological 

macromolecules often have anomalously large values for a relatively small number of 

reflections in the low resolution zone (Fig. 3). This is why the images on low resolution maps 

can be determined mostly by a small number of these strong reflections. In this case, high CP  

values can indicate a consensus of phase values only for a small number of dominant 

reflections. In addition, it is necessary to take into account that when random and exact phase 

values are compared, then the intuitively expected zero value of the correlation coefficient can 

appear only when the formal criterion FCP is used. In case of the preliminary alignment of 

the phase sets being compared, the values of the correlation coefficient can be much higher. 

The distributions of the values of the CP  correlation coefficient calculated for randomly 

generated phase sets are shown on Fig. 4, and the characteristics of these distributions are 

given in Table 2. 
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The averaging of the preliminary aligned phase sets leads to greater values of the 

correlation coefficient wCP  (Tables 3, 4). Thus, for a test object in the resolution zone of 40 

Å, the correlation coefficient value of 0.7 can be obtained simply by the averaging of 

randomly generated phase sets. This base value has to be taken into account when evaluating 

the success of any procedure of the solution of the phase problem. The procedure can be 

considered successful only if it allows one to obtain higher values of the correlation 

coefficient than those allowed by the averaging of random phase sets. 
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Fig. 3. Structure factor magnitudes for AcrB (the small cell case). For each reflection, the structure factor 

magnitude is shown as a function of s2. 
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Fig. 4. Empirical distributions of the correlation coefficient CP of exact and randomly generated phases of the 

structure factors in different resolution zones (AcrB, the small cell case). 
 

Table 2. Values of the correlation coefficient CP for randomly generated and exact phase 

values (AcrB, the small cell case) 

Resolution 

dmin [Å] 

Number of 

reflections 

CP 

min max ave sigma ave+3sigma 

40 69 0.4457 0.7739 0.5791 0.0464 0.7183 

30 170 0.3863 0.6971 0.512 0.0412 0.6355 

25 288 0.3585 0.6433 0.4767 0.0379 0.5904 
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Table 3. Values of the correlation coefficient CPw for exact phases and phases obtained by the 

averaging of 100 randomly generated phase sets (AcrB, the small cell case, five independent 

tests a–e) 

Resolution 

dmin [Å] 

Variant 

a b c d e 

CPw 

40 0.696 0.713 0.679 0.713 0.718 

30 0.646 0.653 0.643 0.626 0.665 

25 0.625 0.632 0.623 0.647 0.644 

 

Table 4. Values of the correlation coefficient CPw for exact phases and phases obtained by the 

averaging of 100 randomly generated phase sets (AcrB, the extended cell, five tests a-e) 

Resolution 

dmin [Å] 

Variant 

a b c d e 

CPw 

40 0.50 0.54 0.55 0.56 0.49 

30 0.48 0.52 0.52 0.54 0.46 

25 0.46 0.40 0.50 0.52 0.45 
 

A comparison of Tables 3 and 4 shows that the quality of averaged random phases 

decreases with an increase in the cell dimensions of the imaginary crystal.  

2.5. Generation of random phase sets. The criterion of finiteness for the region of high 

electron density values. Restriction of the number of connected components 

Here, the tests were arranged in the following way. In each test, a desired volume VHDR of 

the region of high electron density values was set. A great number (up to hundred millions) of 

random phases was generated. For every phase set, the Fourier synthesis was calculated using 

these phases and the set of the experimental structure factor magnitudes. A region of high 

values of the given volume VHDR was selected, and it was checked whether this region can be 

placed entirely in the crystal cell without crossing the border. If this condition was satisfied, 

the checked phase set was considered as admissible and was selected for further analysis. The 

generation of phase sets was continued until 100 admissible phase sets were selected. Then, 

these 100 phase sets were aligned and averaged. The accuracy of the phase sets thus obtained 

is given in Tables 5 and 6. For each preset value of volume VHDR, the test was repeated five 

times with different starting constants for the generator of random numbers. It is necessary to 

point out that at big VHDR values, the calculation procedure required considerable processor 

time (about a full day). 

 
Table 5. Accuracy of the phase values obtained by averaging the randomly generated phase sets 

leading to a finite region of high values on the Fourier synthesis. The phase correlation CPw 

values calculated in different resolution zones (40, 30, 25 Å) are given for five independent tests 

(the small cell case) 

 

Volume of high density region: specific [Å3 per residue]/relative/number of points 

50 

0.072 

334 

75 

0.109 

501 

100 

0.145 

668 

125 

0.181 

834 

150 

0.218 

1002 

175 

0.254 

1168 

200 

0.290 

1336 

 

CPw*100 

 

40/30/25Å 

69/65/63 78/72/70 76/71/69 81/75/73 84/78/75 87/81/78  

74/69/67 76/72/69 81/75/73 82/77/74 82/77/74   

75/70/67 76/71/68 79/74/71 80/75/72 86/80/77 86/80/77  

74/69/66 78/73/70 80/75/72 83/78/75 86/80/77   

75/70/68 75/68/66 81/76/75 83/78/75 85/79/75 86/80/78  
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Table 6. Accuracy of the phase values obtained by averaging the randomly generated phase sets 

leading to a finite region of high values on the Fourier synthesis. The phase correlation CPw 

values calculated in different resolution zones (40, 30, 25 Å) are given for five independent tests 

(the extended cell case) 

 Volume of high density region: specific [Å3 per residue]/relative/number of points 

75 

0.0322 

436 

100 

0.0429 

582 

125 

0.0636 

727 

150 

0.0644 

873 

175 

0.0751 

1018 

200 

0.0859 

1164 

225 

0.0966 

1309 

 

CPw*100 

 

40/30/25Å 

53/51/49 55/53/51 50/48/46 62/59/57 65/62/60 73/69/67 75/71/69 

57/54/53 55/52/50 54/51/50 64/61/60 66/63/61 72/68/66 74/70/68 

53/51/49 65/62/60 66/63/61 67/64/62 67/64/62 72/69/66 73/70/67 

56/53/52 56/54/52 63/60/58 65/62/60 67/64/62 70/67/65 73/69/67 

49/47/46 51/49/48 61/58/56 61/58/56 63/59/58 69/66/64 73/69/67 

 

An analysis of Tables 3 and 4, as well as Tables 5 and 6, allows one to make following 

conclusions. First, the procedure described in this section makes it possible to obtain a higher 

quality of averaged phases than in case of phases obtained by averaging randomly generated 

phases without any preliminary selection. Therefore, this procedure can be considered as a 

working ab initio procedure of the determination of the phases. Second, an increase in the cell 

volume with the retention of the specific volume of the region of high values having a 

physical sense leads to a considerable decrease in the quality of the phase sets obtained. In 

other words, the procedure considered seems to be more suited for the work with “real” 

crystals than with “imaginary” crystals in studies of single particles. 

In the selection of generated phase sets, the attempt to impose additional restrictions on 

the number of connectivity components in the region of high values led only to an 

inconsiderable increase in the quality of averaged phase sets.  

2.6. Generation of random connected masks. Averaging without selection 

The goal of this series of tests was to examine how useful, in terms of the phase problem 

solution, the restrictions such as the connectivity and binarity of the region of high values may 

be. The test was performed in the following way. In the unit cell, a uniform grid with a step 

approximately equal to the third of the nominal resolution of 25 Å (i.e., about 8.3 Å) was 

introduced. Each test was performed for a given volume VHDR of the region of high values on 

the Fourier synthesis of the electron density, with the number of the grid nodes inside the 

mask Nmask corresponding to this volume (Tables 7, 8). A hundred of random connected 

masks consisting of Nmask nodes were generated. Each mask was used for the calculation of 

the structure factor magnitudes and phases. These 100 phase sets were aligned and averaged. 

The accuracy of the phase values thus obtained is given in Tables 7, 8. For each given value 

of the volume VHDR, the test was repeated five times with different start constants of the 

generator of random numbers. 
 

Table 7. Results of the averaging of phase sets calculated from randomly generated connected 

masks. The phase correlation CPw values calculated in different resolution zones (40, 30, 25 Å) 

are given for five independent tests (the small cell case) 

 The volume of the mask: specific [Å3 per residue]/relative/number of points 

50 

0.072 

334 

75 

0.109 

501 

100 

0.145 

668 

125 

0.181 

834 

150 

0.218 

1002 

175 

0.254 

1168 

200 

0.290 

1336 

 

CPw*100 

 
40/30/25Å 

61/57/55 70/65/63 77/73/70 77/72/69 85/80/77 85/80/77 85/80/77 

64/60/57 70/65/63 75/71/68 81/77/74 83/78/75 85/79/77 85/80/77 

66/61/58 72/67/65 78/74/71 80/75/72 84/80/77 87/82/79 84/79/76 

63/59/57 72/68/66 78/73/71 80/76/73 82/77/74 86/81/78 87/81/78 

62/57/55 71/65/63 75/70/68 81/76/73 87/82/79 83/78/75 86/80/77 
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Table 8. Results of the averaging of phase sets calculated from randomly generated connected 

masks. The phase correlation CPw values calculated in different resolution zones (40, 30, 25 Å) 

are given for five independent tests (the extended cell case) 

 The volume of the mask: specific [Å3 per residue]/relative/number of points 

50 

0.072 

334 

75 

0.109 

501 

100 

0.145 

668 

125 

0.181 

834 

150 

0.218 

1002 

175 

0.254 

1168 

200 

0.290 

1336 

 

CPw*100 

 

40/30/25Å 

61/57/55 70/65/63 77/73/70 77/72/69 85/80/77 85/80/77 85/80/77 

64/60/57 70/65/63 75/71/68 81/77/74 83/78/75 85/79/77 85/80/77 

66/61/58 72/67/65 78/74/71 80/75/72 84/80/77 87/82/79 84/79/76 

63/59/57 72/68/66 78/73/71 80/76/73 82/77/74 86/81/78 87/81/78 

62/57/55 71/65/63 75/70/68 81/76/73 87/82/79 83/78/75 86/80/77 

 

An analysis of the tables allows one to make the following conclusions. First, the 

procedure described above makes it possible to obtain phases of higher quality than the 

quality of averaged randomly generated phase sets used without any preliminary selection. 

Thus, this procedure can be considered as a working ab initio procedure for phase 

determination. Second, a comparison of Tables 5 and 7 shows that, in the case of a small cell, 

the quality of the phase sets obtained as a result of the averaging is approximately the same in 

both cases, when phases are randomly generated and the selection of the variants is based on 

the demand of the finiteness of HDR, and when connected masks are generated and the 

phases calculated from the masks are directly averaged. However, the computational expenses 

with the second approach are considerably lower. Third, in the case of the averaging of phases 

obtained from connected masks, the extending of unit cell dimensions leads to a considerable 

increase in the quality of the solution of the phase problem. Thus, the new approach 

implements the advantages when working with a single particle, which are attained due to the 

possibility of using more experimental information (a greater number of structure factor 

magnitudes, which are included in the calculation when one works with a large unit cell of an 

imaginary crystal).  

2.7. Generation of random connected masks. Selection based on the correlation of 

structure factor magnitudes 

In this series of tests, an additional requirement to randomly generated masks was 

included, namely the correspondence of the structure factor magnitudes calculated from the 

masks to the experimental ones.  

The test was performed in the following way. In the unit cell, a uniform grid with a step 

approximately equal to the third of the nominal resolution of 25 Å (i. e., about 8.3 Å) was 

introduced. Each test was carried with two parameters preset: the volume VHDR of the region 

of high values on the Fourier synthesis of the electron density and the required accuracy of the 

correspondence of  structure factor magnitudes calculated from the mask to the experiment. A 

great number of random connected masks consisting of Nmask nodes were generated. Each 

generated mask was used to calculate structure factor magnitudes and phases. For the 

calculated structure factor magnitudes, the coefficient of their correlation with experimental 

values (15) was calculated. If this coefficient was higher than a given threshold value, the 

generated phase set was considered as acceptable and was kept for further analysis. The 

generation was continued until 100 acceptable phase sets were selected. The selected phase 

sets were aligned and averaged. 
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Table 9. Results of the averaging of phase sets calculated from randomly generated connected 

masks having a given level of correlation (25) of structure factor magnitudes. The phase 

correlation CPw values calculated in different resolution zones (40, 30, 25 Å) are given for five 

independent tests (the small cell case). The best result is highlighted 

CPw* 100 

 

40/30/25 Å 

Mask volume: specific [Å3 per residue]/relative/number of points 

50 

0.072 

334 

75 

0.109 

501 

100 

0.145 

668 

125 

0.181 

834 

150 

0.218 

1002 

175 

0.254 

1168 

200 

0.290 

1336 

Correlation 

of 

magnitudes 

zcrit (25 Å) 

1.5 60/57/54 69/64/62 72/67/64 80/75/72 87/82/79 88/83/80 87/82/79 

2.0 61/57/55 68/63/61 73/68/66 83/78/75 88/83/80 90/84/81 89/83/81 

2.5 59/55/53 65/60/57 73/68/66 81/76/73 88/83/80 89/83/80 89/83/79 

3.0 59/55/53 62/58/56 71/66/64 81/76/73 88/83/79 83/78/74  

 
Table 10. Results of the averaging of phase sets calculated from randomly generated connected 

masks having a given level of correlation (25) of structure factor magnitudes. The phase 

correlation CPw values calculated in different resolution zones (40, 30, 25 Å) are given for five 

independent tests (the extended cell case). The best results are highlighted 

CPw* 100% 

 

40/30/25 Å 

Mask volume: specific [Å3 per a.a.]/relative/number of points 

50 

0.0215 

291 

75 

0.0322 

436 

100 

0.0429 

582 

125 

0.0636 

727 

150 

0.0644 

873 

175 

0.0751 

1018 

200 

0.0859 

1164 

Correlation 

of 

magnitudes 

zcrit (25 Å) 

1.5 72/69/67 78/74/71 86/82/79 89/85/83 91/86/84 91/87/85 90/86/83 

2.0 72/68/66 77/73/71 85/81/79 90/86/84 91/87/85 92/88/85 91/87/84 

2.5 71/68/66 77/73/70 88/84/82 91/87/84 92/88/85 92/88/86 90/86/83 

3.0 71/69/67 81/77/74 89/85/83 92/88/85 94/90/87 94/90/87 93/88/86 

 

a b

c d

 
 

Fig. 5. AcrB model and the regions of high electron density values on unweighted Fourier synthesis 

calculated with experimental values of structure factor magnitudes and ab initio determined phases: a – 

resolution 25 Å, cut-off level 3σ; b – resolution 40 Å, cut-off level 3σ, one of the monomers of the model 

is not shown; c – resolution 40 Å, cut-off level 2σ; d – resolution 40 Å, cut-off level 3σ. 
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The accuracy of the phase values obtained in this way is given in Tables 9 and 10. In these 

tables, the rigidity of the selection of acceptable masks is given in terms of the normalized 

CMz  score, which was determined in the following way. As a preliminary step, a great number 

(in our tests, 10000) of random connected masks of the given size were generated. For each 

mask, the coefficient of the correlation between the calculated and the exact structure factor 

magnitudes was calculated. For 10000 values of CM , the mean value CM  and the mean 

standard deviation CM  were calculated. Then, when the mask generation was performed with 

the selection, the calculated CM  value for each set of structure factor magnitudes was 

transformed to a normalized value 

CM

CM

CMCM
z



−
= ,                                                      (25) 

which just was compared with the given threshold value critz .  

The tables show that the introduction of the selection according to the correspondence of 

the calculated structure factor magnitudes to the experiment significantly improves the quality 

of the resulting phases compared with that attained in the averaging procedure without 

selection. Fig. 5 shows the images of the object obtained from the Fourier synthesis calculated 

with experimental structure factor magnitudes and the best phases found. 

ADDITIONAL NOTES AND CONCLUSIONS 

The testing of the new approach to the ab initio solution of the phase problem of the 

biological crystallography showed its applicability in both traditional studies of crystal 

species and investigations of single biological macromolecular objects. 

The approach is based on the Monte-Carlo type procedure [2, 3], which consists of a few 

steps. At the first step, an object of the search is binary masks serving as an approximation of 

the region of high values of the electron density function in the object under study. For this 

purpose, a great number of connected binary masks are randomly generated, and for each of 

them, the structure factor magnitudes and phases are calculated. The mask (and the phases 

corresponding to it) is considered as admissible if the level of the correspondence of the 

structure factor magnitudes calculated from the mask and the experimental values exceeds a 

given limit. The generation is performed until the preset number of admissible phase sets are 

obtained. A criterion of the closeness of the structure factor magnitudes may be the coefficient 

of the magnitude correlation, although other criteria may be used (for example, the statistical 

likelihood [16]). Along with the criterion of the closeness of structure factors, the criteria of 

another type may be used at the step of the selection of masks, which are related to their 

expected parameters or are based on the results of other experiments (e.g., small angle X-ray 

diffraction or neutron scattering). Random masks can be generated either on assumption of 

the equal probability of all grid nodes in the unit cell or with the use of a priori preferences 

established at previous steps of the work. In case of large unit cell values and rigid restrictions 

on the degree of correspondence of the mask to experimental data, the generation of the 

required number of admissible masks can demand a significant amount of the computer time. 

However, the natural parallelism of the selection process allows one to significantly decrease 

time expenses in the work on computers with parallel architecture.  

At the second step, the alignment and, in the simplest case, the averaging of the phase sets 

are performed. A more accurate procedure involves using the methods of the cluster analysis, 

which allows one to distinguish, among selected variants, compact clusters for further 

averaging inside these clusters. It should be noted that the averaging and cluster analysis are 

performed using special metric relevant to a specific X-ray experiment. The phase values 
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obtained as a result of the averaging together with structure factor magnitudes determined 

experimentally are used to build Fourier synthesis. 
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Fig. 6. Phase correlation CPw*100 in the resolution zone of 40 Å for averaged phase sets with the 

different size of the region of high values: rand – random phases without selection (section 2.4); rp – 

random phases with selection based on the finiteness property of the region of high values (section 3.5); 

rm – random masks without selection (section 2.6); rmz – random masks with selection based on the 

magnitude correlation at different selection levels (section 2.7). The specific volume of the region of high 

values is shown on the X-axis. For all conditions, the results of five independent experiments in the small 

cell are shown.  

 

 

 

 
 

Fig. 7. Phase correlation CPw*100 in the resolution zone of 40 Å for averaged phase sets with the 

different size of the region of high values: rand – random phases without selection (section 2.4); rp – 

random phases with selection based on the finiteness property of the region of high values (section 3.5); 

rm – random masks without selection (section 2.6); rmz – random masks with selection based on the 

magnitude correlation at different selection levels (section 2.7). The specific volume of the region of high 

values is shown on the X-axis. For all conditions, the results of five independent experiments in the 

extended cell are shown.  

40

50

60

70

80

90

100 rp
rp 75
rp 100
rp 125
rp 150
rp 175
rp 200
rp 225
rm 75
rm 100
rm 125
rm 150
rm 175
rm 200
rm 225
rm 150 z=1.5
rm 150 z=2
rm 175 z=1.5
rm 175 z=2
rm 175 z=2.5
rm 200 z=1.5
rm 150 z=2.5
rm 200 z=2
rm 200 z=2.5

10075 125 150 175 200 225

CPw*100

Å3/res



LUNIN et al. 

t18 

Mathematical Biology and Bioinformatics. 2015. V. 10. № Suppl. doi: 10.17537/2015.10.t1 

The method was tested in two regimes. A “small” unit cell modeled a crystal sample with 

a large content of the solvent in the cell. An “extended” unit cell modeled a reduced task of 

structure determination using X-ray diffracting from a single particle.  

The results of the testing allowed one to find optimal parameters for the procedure and 

showed that the procedure does make it possible to advance in the determination of the phases 

of the structure factors. The accuracy of the values found increases with increasing size of the 

unit cell, which makes this method especially promising for the investigation of single 

particles. 

In the case of the traditional crystallographic task, a comparison of the new method with 

the one suggested earlier showed a compatible efficiency of the solution of the phase problem, 

with the computing efficiency of the new approach being higher. At the same time, the new 

method leads to a much better solution of the phase problem when one has to do with cells 

containing artificially increased portions of the solvent. 

Fig. 6 and 7 illustrate the accuracy of determining the phases of structure factors with the 

use of different approaches and parameters of the method.  
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