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Abstract: Volume, mass and envelope surface area of a bacterium are significant 

parameters of cell development during one bacterial cell cycle. In our previous 

studies it was shown that during one division cycle cells can encounter the problem 

of unlimited size growth. Two fundamental types of bacterial growth laws, which 

were called “exponential” and “linear”, have been identified. Under certain 

conditions exponentially growing cells encounter the problem of unlimited growth, 

whereas lineally growing cells don’t [1]. In this study the laws of bacterial size 

growth were shown to belong exclusively to the linear type. It was demonstrated 

that this phenomenon is a consequence of the universal principle of storage and 

transmission of genetic information essential to all living organisms. The bacterial 

growth laws of exponential type could exist only at the very early stages of cell 

evolution, when the genetic machinery had not evolved yet into its modern form. 

 

Key words: modeling, prokaryotes, cell cycle, exponential and linear types of cell growth 
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INTRODUCTION 

Coupling between the growth of different cellular structures during one cell cycle in 

prokaryotes has been under extensive investigation for a long time, starting with the pioneer 

works by Pritchard et.al [2], Donachie [3] and Cooper&Helmsteter [4]. Theoretically the 

problem of coupling between cell volume growth and replication rates was first considered in 

Pritchard et al. [2]. The authors introduced a model of cell cycle with a repressor-controlled 

initiation of genomic DNA replication. In the model the rate of repressor synthesis was set 

proportional to the number of copies of its structural gene while the repressing activity was a 

function of concentration of the repressor’s functional form responsible for the coupling 

between growth and replication processes.  

Experimental data on the constancy of cellular mass/volume per replication origin at the 

moment of genome DNA replication are presented in Donachie [3]. This ratio called 

“initiation mass” also makes it possible to couple the processes of replication and growth.  

In 1968, Cooper&Helmsteter [4] suggested that cell cycle is regulated by the replication 

rates. Assuming that C-period (the time for a round of DNA replication) and D-period (the 

time between termination of DNA replication and cell division) are constants, the authors 

elaborated a model of coordinated cell growth, division and replication. Subsequently it was 

demonstrated that the constancy of C- and D-periods holds only in the cells of Escherichia 

coli with the cell cycle shorter than one hour [5]. 
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Since no global replication initiation repressor has been discovered in E. coli yet (see 

reviews [6, 7]), the model of Pritchardt et al. [2] has been abandoned, whereas the ideas of 

Cooper&Helmsteter [4] and Donachi [3] continue to serve as a base for developing modern 

models of cell cycle in E. coli [8–10]. 

Notably, the above-mentioned studies took the coupling problem for granted. Despite the 

fact that the existence of the coupling problem is reflected in the titles of the subsequent 

studies [10–13], it has not been solved to date even for a model organism such as E. coli. The 

theoretical aspects of the coupling problem have not been addressed in the previous studies. 

For instance, we could not find answers to some questions such as whether a cell always 

encounters the problem of coupling between growth rate and replication. Or whether there are 

certain conditions in which the coupling problem just does not exist. To find answers to these 

questions we carried out a theoretical analysis of the problem of coupling between cell growth 

and DNA replication [1, 14].  

According to our results, under assumption of Cooper&Helmsteter [4] (cell cycle duration 

depends on replication initiation rates) in cell cycle models no coupling problem arises for the 

processes of replication initiation. This is evidently an expectable result: under the assumption 

of Cooper&Helmsteter [4] replication is the driving cell cycle process that sets its duration 

and ensures automatic coupling in the once-cycle replication model. At the same time under 

the assumption of Cooper&Helmsteter [4] and in the models of cell volume growing 

according to a phenomenological function with fixed parameters a modeled cell encounters 

the problem of coupling of cell volume growth and replication rates. The analysis performed 

in [1] demonstrated that the existence/nonexistence of the coupling problem directly depends 

on the phenomenological law of growth accepted in the model. For instance, if the volume 

growth is described by function 0( ) exp( )V t V kt=  or ( )0( ) 1V t V kt= + , then the “cell” 

encounters a problem of unlimited growth of its volume. On the contrary, laws 

0 1( )V t V kV t= +  and ( )0 1( ) exp( ) 1V t V V kt= + −  do not generate the coupling problem [1]. 

Therefore, the coupling problem in the models under consideration depends on the growth 

law, on the one hand, and manifests itself as a tendency to unlimited growth of volume in the 

cell progeny, on the other hand. Based on the studies performed in [1] “exponential” and 

“linear” types of cell growth laws were identified. The growth laws generating the problem of 

unlimited growth were referred to the exponential type and the growth laws not generating 

this problem were referred to the linear type. The types of growth laws were named by their 

typical representatives: phenomenological exponential law 0( ) exp( )V t V kt=  and 

phenomenological linear law 0 1( )V t V V kt= + , respectively [1, 14]. 

Therefore, the problem of coupling between size growth rates and one cell cycle duration 

appears to be directly dependent on the type of growth law. The available experimental data 

on the dynamics of bacterial length/mass/volume during a cell cycle on the level of 

populations and individual cells are often approximated by exponential or linear, or bilinear, 

or even trilinear functions [15–26] belonging to both linear and exponential types. Since the 

resulting approximations are essentially the phenomenological functions, they cannot serve as 

a base for determining the true type of growth laws implemented in natural unicellular 

organisms. 

Information essential for establishing the type of the law governing bacterial growth 

during a cell cycle can be derived only from the analysis of molecular mechanisms of cellular 

processes. In the recent studies of some aspects of the cell growth/division coupling problem 

the authors emphasized the necessity to search for new theoretical approaches to its solution 

[27]. 

In this work we consider the exponential mechanism of cell surface area growth and 

investigate the conditions under which a cell employs exponential or linear types of growth 

laws. The fundamental principles of genetic information storage and transmission underlying 
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the functioning of all known living organisms were shown to entail the fact that all cell 

growth laws belong to one type - linear. This peculiarity of a cell as a self-reproducing system 

does not depend on specific control mechanisms for cell volume/envelope surface area 

growth, which may differ in different species. This means that in modern bacterial species the 

growth laws of exponential type do not exist. Exponential growth laws (including the classical 

exponential law F(t)=F0exp(kt)) could exist at the very early (pregenetic and early genetic) 

stages of evolution of a cell as a self-reproducing system, however, the emergence of a 

modern-type molecular-genetic machinery resulted in the elimination of exponential growth 

laws or their transformation into linear growth laws. 

RESULTS 

1. Formulation of the problem of unlimited growth  

Let us consider a typical bacterium with a classical cell cycle scenario: …→ {birth of a 

cell as a result of the parent cell division → cell growth → cell division into two daughter 

cells } → …. The cell cycle of an individual bacterium starts at the moment of its birth and 

ends at the moment of its division. During the time interval between the onset and end of the 

cell cycle the bacterium actively consumes nutrients to synthesize substances in the quantities 

sufficient to produce two daughter cells at the end of the cell cycle. In a cell, some structural 

components are represented by sufficiently large macrosystems. Such macrosystems include 

cell envelope whose growth is a complex molecular process. Under the assumption of 

symmetric division at the moment of division the envelope surface is distributed equally 

between the two daughter cells. This means that at birth the surface of the daughter cell 

envelope becomes half the surface of the parent cell envelope at the moment of division. In 

the successive cell generations the process of cell envelope growth is represented by a cyclic 

reproducible sequence of events: … → {surface area growth during cell cycle → surface area 

halving at the moment of division} → …. 

Then if at the current moment of cell cycle bacterial surface area is denoted by S(t), the 

sequence of surface area values for successively descending cells can be put down as  

01 2 1 1

1 1
(0) , (0) ( ),..., (0) ( ), ...

2 2
D Dl l l l

S S S S T S S T
+

= = = .                     (1) 

Where l is the number of the cell cycle resulting in the birth of a daughter cell of the (l+1)-

th generation (only one cell is under consideration as under the symmetric division 

assumption all daughter cells are identical), TDl is the duration of the l-th cell cycle, Sl is the 

function of surface area growth for the l-th cell, Sl(0) is the surface area of the l-th cell, 

Sl(TDl) is the surface area at the moment of the l-th cell division.  

If the behavior of a succession of cells (1) generated in a real experiment is observed, the 

surface area value turns out to be bounded above. Therefore, in a real system cell growth is 

coupled with cell cycle duration. In this case there arises the question on the nature of 

coupling maintenance.  

A priori there are two options. First, a cell can restrain itself from unlimited growth using 

a special molecular mechanism. Therefore, if this mechanism fails, the cells become incapable 

of coordinating the growth rates and cell cycle duration and potentially can maximally 

increase their sizes. In this case the maximum possible size serves as the limiting factor and 

exceeding this size results in the loss of viability.  

The phenomenological growth laws with the above-stated characteristics are represented 

by exponential  

0( ) exp( )Z t Z kt= ,                                                          (2) 

and linear  
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0( ) (1 )Z t Z kt= + ,                                                          (3) 

laws [1]. There is strong evidence that these laws provide accurate approximation of the cell 

growth kinetics [15–26]. In line with [1], let us describe the properties of series (1) after 

substituting exponential function (2). Simple transformations give the series 

2

11 2

0 0 01 1 2

...1 1 1
exp( ), exp( ) ,..., exp( ) ,...

2 2 2 2

l

D DD D l

D l

T TT T
Z Z kT Z Z k Z Z k

l

 + +  + 
= = =      

   

(4) 

Then if 1
... ln 2

lim
D D l

l

T T

l k→

+ +
 , series (4) is unbounded above and if 

1
... ln 2

lim
D D l

l

T T

l k→

+ +
 , this series is infinitely close to zero. There is only one limit value, 

1
... ln 2

lim
D D l

l

T T

l k→

+ +
= , at which series (4) can be maintained in a finite range. To maintain 

the surface area of a cell as a self-reproducing system within a certain range, it is necessary 

for the cell to have a specific control mechanism. We proposed to call all the laws 

demonstrating a potential for unlimited size growth the laws of exponential type [1]. 

Another option that cannot be excluded is that the bacterial envelope growth is controlled 

by a mechanism with an immanence of limited surface area. In this case a cell is not required 

to employ a growth-restraining mechanism as unlimited growth is just impossible. This holds, 

for instance, for the linear  

0( ) cZ t Z kZ t= + ,                                                           (5) 

and exponential 

0( ) (exp( ) 1)cZ t Z Z kt= + −                                                    (6) 

laws. If these laws are substituted into series (1), one gets the series bound above (the proof is 

given in [1]). These are the so-called laws of the linear type.  

There arises a question about the conditions under which the laws of the exponential type 

can be implemented. It is quite evident that under the conditions of unlimited resources for 

cell envelope growth and in the absence of limiting factors all growth laws (2), (3), (5), (6) 

can be implemented under realistic assumptions on the molecular mechanisms of bacterial 

envelope construction. 

For example, assume that the number of elements required for cell envelope growth is 

proportional to the envelope surface and that each newly constructed envelope element is an 

independent growth element. Therefore, the rate of growth can be described by the following 

differential equation  

0, (0) .GR

dS
k S S S

dt
= =                                                     (7) 

In (7) kGR is a constant of surface area growth rate, S0 – surface area at the moment of cell 

birth. Equation (7) has an obvious analytical solution (2). Therefore, one gets an exponential 

law of the exponential type.  

Assume that for all cells growing under equivalent conditions at birth the number of 

growth elements is the same and does not depend on the surface area at birth, but all newly 

constructed envelope elements are the growth sites. Then the growth rate is described by the 

following equation  
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1 0 0( ), (0) .GR

dS
k S S S S S

dt
= + − =                                            (8) 

In (8) kGR and S0 mean the same as analogous parameters in (7), S1 is cell surface area at 

birth of a cell capable of growing. In this case we obtain equation (6) describing the 

exponential law of the linear type.  

Laws (3) and (5) are implemented under the following assumptions. Law (3) is valid 

under the assumption that at birth the number of constructive elements is proportional to the 

surface area and remains constant during the cell cycle. For law (5) to be valid assume that all 

cells growing under equivalent conditions independently of the size have the same number of 

constructive elements during the entire cell cycle. 

Therefore, under the unlimited resource conditions different molecular mechanisms lead 

to the growth laws of both exponential and linear types. This result is based on the simplified 

assumption on unlimited resources and absence of other limiting factors. Therefore, at this 

level of simplification the existence of bacteria implementing different growth laws is not 

forbidden. Moreover, some molecular mechanisms generate the laws of the exponential type, 

other mechanisms – the laws of the liner type. Nonetheless, it could be important that there 

are molecular mechanisms which on this level of elaboration of envelope growth processes 

finally lead to the laws of the linear type. It is quite evident that a more elaborated description 

of the growth mechanism is not longer significant for such mechanisms since additional 

details make it possible to clarify the type of the law rather than to change it from linear to 

exponential. On this basis in the context of the coupling problem of special interest is the 

analysis of growth mechanisms (2) and (3) with inclusion into the model of a larger number 

of details inherent in modern cells. In the next section the exponential mechanism of cell 

growth (2) is analyzed. The results of the analysis of the molecular mechanism (3) are omitted 

as the analysis is carried out in a similar way and the results are qualitatively analogous. 

2. Model of a genetically controlled exponential mechanism of cell envelope growth 

Let us make model (2) more complex assuming that cell envelope grows under control of 

a functional protein encoded by a gene belonging to the genome. As a result the envelope 

surface growth model can be expressed as follows  

, , ,

,

g p d p

GR

dP
k g k P

dt

dS P
k S

dt V


= −


 =


                                                      (9) 

where g is the number of gene copies inside a cell, P is the quantity of protein inside a cell, S 

is envelope surface area, V is cell volume, function g describes the dynamics of active gene 

copies during the cell cycle.  

Assume that for each cell cycle functions g and V are known and genome doubling rates 

in a succession of cell generations are coordinated with cell cycle duration. Therefore, by the 

end of each cell cycle immediately before division a cell has at least two complete genomes 

and on average the full genome number in a succession of cell generations remains globally 

bounded. Therefore, on the basis of total cell cycles functions 
l

g are bounded above by one 

finite number. 

Let us investigate the type of the growth law for envelope surface area S. Notably, it is 

evident that global boundedness above for function g(t) directly entails global boundedness 

above for function P(t) for all cell cycles: 

0 : ( ) , 1,...
i

B P t B i    = .                                            (10) 
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Let us turn to the second equation of system (9). Its right part is the product GR

S
k P

V
. The 

boundedness of function P has just been established. Let us consider the surface to volume 

ratio. Proceeding from the general principles of bacterial structure, it seems there is practically 

no alternative to the postulate that the surface to volume ratio is a value globally bounded 

above. Actually, it is difficult to conceive of a cell with the surface to volume ratio growing 

unrestrictedly during a cell cycle. Therefore, for a finite number R for all cell cycles the 

following inequality holds 

( )

( )
l

S t
R

V t
 .                                                        (11) 

Assume the restrictions (10) and (11) are satisfied. Then solution ( )
l

S t  of system (9) for 

the l-th descendant is dominated by function ( ) (0)l
l

S t S BRt= + . In the division sites  
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Denote the maximum duration of cell cycle in a succession of descendants by TD. From 

the biological expedience one can hold that 

TD  .                                                              (12) 

Hence we get global boundedness above for the surface area of all cells in succession of 

cell generations (1): 0: ( )
2

Dl

S
l S t BRT  + . Therefore, it is concluded that the surface area 

growth law implemented in model (9) belongs to the linear type. 

In conclusion, note that the inclusion into the model of the genetic principle of encoding 

functional molecules in its explicit form was an essential point of the study. The use of a 

single functional element in model (9) had no essential impact on the results. It is groundless 

to presume that the inclusion of more details (ideally all) on cell-cycle molecular-genetic and 

metabolic processes would change the conclusion qualitatively. It is also worth noting that, in 

our opinion, conditions (10)–(12) are fulfilled for the overwhelming majority, if not for all, 

prokaryotic cells. It is difficult to conceive of any cells with an unlimited set of genomes and 

cells living and growing for an unrestrictedly long time without division. Also it is easy to 

give examples of cells for which condition (12) is fulfilled, such as cylindrical and spherical 

cells. Hence, for the living systems implementing the modern genetic principle of information 

storage and transmission the law of envelope surface area growth can be exclusively of the 

linear type.  

DISCUSSION AND CONCLUSION 

Previously we demonstrated that the existence of the problem of coupling between cell 

growth and replication initiation rates depends on the type of growth law – exponential or 

linear, each of which can be described both by exponential and linear dependencies [1].  

In this study we performed a theoretical analysis of the conditions of the formation of 

these types of prokaryotic cell growth laws and found that in the models ignoring the genetic 



LIKHOSHVAI, KHLEBODAROVA 

t26 

Mathematical Biology and Bioinformatics. 2015. V. 10. № Suppl. doi: 10.17537/2015.10.t20 

level of cell growth processes control it is possible to specify the molecular mechanisms of 

envelope growth underlying the growth laws of both exponential and linear types.  

We also carried out the analysis of a model describing a molecular-level mechanism 

ensuring exponential growth and including functional molecules encoding on the gene level. 

It was found that in a succession of growing and dividing cells the law of envelope surface 

area growth inevitably belongs to the linear type. Therefore, inclusion into the analysis of the 

genetic control of the processes of surface area growth automatically ensures that the law of 

envelope surface area growth belongs to the linear type. 

Therefore, it is reasonable to suggest that the linear type of the growth law is a 

fundamental and universal property of a cell as self-reproducing systems. In evolutionary 

perspective this property emerged as a consequence of the development by living systems of 

molecular-genetic principles of information storage and transmission during cell reproduction.  

The theoretical data obtained indicate that the exponential type of cell growth, even if 

such type did exist in nature, could occur in the early stages of life evolution, in the epoch 

preceding the development of modern principles of information storage and transmission. 

It is to be noted that the coupling problem exists as a composition of two problems rather 

than a separate problem: coordination of the rates of cell growth and replication initiation as 

separate macroprocesses with the duration of cell cycle.  

In this work it was shown that in no circumstances modern bacteria can enlarge their cell 

size indefinitely. However, as regards the process of replication one cannot assert the same 

because the replication system is essentially a system of exponential type: one genome 

generates two genomes and two genomes generate four genomes etc. Therefore, the problem 

of coordination of the replication initiation rate and the duration of cell cycle can potentially 

arise. The question on its existence can be answered on the basis of the knowledge about the 

mechanisms of cell cycle duration control. There are different ways of looking at this 

problem. For example, under the “sizer” hypothesis the duration of cell cycle depends on the 

bacterium growth rate [28]. For such cells there arises the problem of unrestricted growth of 

genome number, i.e. the problem of coordination of replication rates and cell cycle duration. 

From a different viewpoint stated in Cooper&Helmsteter back in 1968 the initiation of cell 

division occurs after replication termination, so the rate of replication initiation actually sets 

the duration of cell cycle [4]. Evidently, in this case the problem of coupling between 

replication initiation rates and cell cycle duration does not arise.  

While we still lack a complete understanding of the mechanisms for the control of cell 

cycle duration that could be implemented in natural bacteria, it is, however, reasonable to 

suggest that in a general case growth or replication initiation rates are not the only factors that 

set the cell cycle duration. This assumption follows from the concept of limiting factor.  

Assume that a parent cell can divide into two daughter cells only when the parameters of a 

series of macrosystems (Mi) exceed certain minimum critical values ( ,i cZ ). In this case a cell 

cycle length TD cannot be smaller than the value TD,min= , 1, ,max( , ( ),..., ( ))D c c n cT T Z T Z , where 

TD,c is the minimum possible cell cycle length, ,( )i cT Z  is the time to achieve the minimum 

critical value ,i cZ  for macrosystem Mi.  

If in a series of cell cycle lengths for a succession of progeny ,1 ,,..., ,...D D lT T  on the basis 

of above-stated it is assumed that ,D l D,minT T , then at different moments of time different 

factors can be limiting.  

The results obtained in this work indicate that independently of the nature of limiting 

factors no problem of unlimited size growth arises for a cell. On the contrary, if the duration 

of cell cycle is limited by any factor except the replication initiation rate, the latter has to be 

coupled with the cell cycle duration.  
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In conclusion, it is necessary to note that our results do not exclude the fact that the 

bacterial growth curves for E. coli and possibly for other bacteria can most accurately be 

described just by exponential functions [24–26, 29]. However, from our studies it follows that 

real growth laws approximated by these functions belong to the laws of the linear type, which, 

in turn, follows from the emergence of the genetic level of cellular organization.  
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