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Abstract. As has been shown in the previous article [1] an application of
class of the fractional-stable laws to the genes expressionresults obtained by
DNA-microarrays leads to poor agreement between experimental and theoretical
distributions. This difference can be explained by the imperfection of the technology
of the gene expression determination. In this article the distributions of the gene
expression obtained by Next Generation Sequence technology are investigated. In
this technology the determination technique of the gene expression differs from
the DNA-microarrays technology. This results to more qualitative results of an
approximation. In particular, it is established that the probability density function
of the gene expression has a form of shift-scale mixture of probability laws, where
one of the components of the mixture is the fractional-stable distribution.
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INTRODUCTION

There exist two main technology of genes expression determination today:
DNA-microarrays [2, 3] and Next Generation Sequence (NGS) technology [4, 5, 6, 7, 8].
Historically the first technology was the technology of the DNA-microarray. In the basis of
this technology the hybridization process lies. Oligonucleotides (probes) are attached to the
solid substarte, each of which has predefined nucleotide sequence. The distance between the
probes is 10−6 meters therefore on each square centimeter it is possible toplace up to 108

probes. The samples under investigation are marked by fluorescent label and they are added on
the microarray where the hybridization of the probe and target occurs. After the unhybridized
nucleotides are washed away the fluorescent labels are excited by laser radiation. The relative
nucleic acid content with defined sequence is determined by fluorescence radiation intensity. It
should be noted the intensity of the fluorescence is defined bydigital image of the microarray
which is obtained by confocal microscope. Therefore the amount of the hybridized targets is
proportional to the point brightness on the digital image.

The main principles of NGS technology the same as at DNA microarrays technology: the
cyclic ferment reactions are used with following receivingof information about DNA structure
in the form of image of fluorescent labels. However, the technology of the preparation of
libraries targets and the method of differentiation of the different nucleotide sequences differ. In
common case the sequencing process can be divided by four stages (see for example [5]). On the
first stage the library of random sequences of the DNA is created. After this these sequences are
ligated by adapter sequences containing universal primerstemplates. On the second stage the
amplification of these random sequences DNA are fulfilled by polymerase chain reaction. On
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the third stage the primary structure of all samples is determined. The fourth stage consists in
alignment of the obtained reads to the reference gene. The main advantage of NGS technology
consists in possibility of determination individual nucleotides in a sequence. This allows to
detect new nucleotide sequences.

A second advantage of NGS technology is possibility to determine a quantitative content of
defined genes in the sample. This allows reduce an error at calculation of the gene expression
levels. Really, as the result of the reads alignment is amount of some gene in the sample.
Of course, there exists probability of wrong determine the reference gene. Nevertheless, the
results of the gene expression calculation obtained by NGS technology will more qualitative
than results obtained with the DNA-microarray technology.This due to the fact that in the
DNA-microarray technology practically it is not possible to determine quantitative content of
the genes since the value of the expression is determined with the intensity of the fluorescence
radiation. At the same time it is unknown the amount fluorescent labels having incorporated to
the sample and the radiation intensity of the single label. The background radiation is also
problem. This radiation introduces the distortion into overall picture and it is not possible
exclude one. All these facts lead to less qualitative results obtained with DNA microarrays
in comparison with the results of NGS technology. The results of the article [1] confirm these
facts. In this article the probability density functions ofthe gene expression levels obtained
with DNA-microarrays of various manufactures are investigated. It was shown although in
majority cases the distribution can be described by the fractional-stable law however empirical
distributions deviate from the fractional-stable distributions. These deviation can be explained
with distortions noted above.

In this article we consider the question about probability distribution of the gene expression
obtained with NGS technology. It is well established that the empirical distributions are
one-sided distributions, they manifest the power-law asymptotics and character of these
distributions is the same for any tissues and organisms frombacteria to mammal [9]. Similar
results have been reported by other authors [10, 11, 12, 13, 14].

The power-law asymptotics of the experimental distribution means that the theoretical
distribution must have the asymptotics of the following form p(x) ∝ x−α−1, x → ∞. In the
above work of [9], the same distribution was applied for approximation of the profiles of the
gene expression in various organisms. The parameterα was shown to vary within the limits
from 0.69 to 1.09. In the work [12] the authors have investigated more than 40 tissues for
six organisms and the power-law distribution was obtained for all samples with value of the
parameterα ∈ (0.86, 1). In the work [14] the discrete Pareto distribution was used. There
were processed more than 50 human tissues, mouse tissues andyeast tissues including 30
samples of the human cancer tissues and 30 normal human tissues. In this article reported that
the best approximation among the Poisson distribution, exponential distribution, logarithmic
distribution, power-law distribution, paretolike distributions and mixtures of the logarithmic
and the exponential distributions is the discrete Pareto distribution p(m) = (m + b)−α−1/z,
whereα is varying within the limits from 0.974 to 1.88. In the article [11], the authors use
the double Pareto-log-normal distribution. Along with thePareto-log-normal distribution the
authors tested the Zipf-Pareto distribution, log-normal distribution, log-gamma distribution, log
logistic distribution, right-side Pareto-distribution.Finally, the authors conclude that the double
Pareto-lognormal distribution provides the best results.

However the authors of these articles had not considered onemore sufficiently significant
class of distributions the Fractional-Stable Distributions (FSD). The fractional-stable laws are
limit distributions of sums of independent identical distributed random variables (see [15]). At
working with these distributions the main difficulty consists in absence of explicit expressions
for densities. Probably this fact is main reason excluding this distribution class from the list
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of the potential candidates of theoretical densities for approximation of the genes expression.
However there exist some methods of calculation of the densities which allow circumvent
this difficulty. Moreover this class of the distributions possesses the characteristic property
which inherent to the experimental distributions. These distributions possess by power-law
asymptotics. All above noted facts make the fractional-stable distribution good candidate
for approximation of the experimental data. In this articlewe consider the question about
possibility of the approximation of the genes expression obtained with NGS technology by
the fractional-stable laws.

2 FRACTIONAL-STABLE LAWS AND ESTIMATORS OF THEIR PARAMETER S

Fractional-stable laws are limit distributions of sums theindependent identically distributed
random variables. For the first time, FSD was introduced by Kotulski [16]. The name FSD
was introduced in 2001 [17]. FSD are expressed through Mellins transformation of two stable
distributions

q(x;α, β, θ, λ) =

∞∫

0

g(xyβ/α;α, θ, λ)g(y; β, 1, 1)yβ/αdy. (1)

Hereg(x;α, θ, λ) is the density function of the strictly stable law andg(y; β, 1, 1) is the density
of the one-sided strictly stable law with the characteristic function (see [18])

ĝ(k;α, θ, λ) = exp{−λ|k|α exp{−iαθ(π/2)sign(k)}}. (2)

As we can see from (1), FSD is defined by four parameters.α andβ are two characteristic
parameters. They vary in the limitsα ∈ (0, 2] andβ ∈ (0, 1]. The variation domain of the
parametersθ andλ coincides with the domain of the variation respective parameters of the stable
distribution and they have the same meaning,θ is the asymmetry parameter (|θ| 6 min(1, 2/α−
1)) andλ > 0 is the scale parameter. FSDs have the power-law asymptotics q(x;α, β, θ, λ) ∝
x−α−1, x→∞. Whenβ = 1, the class of FSD passes into the class of strictly stable distributions.
Indeed, whenβ = 1 andθ = 1 the strictly-stable lawg(y; 1, 1, 1) is the singular distribution at the
point y = 1. Hence, from (1) we obtain

∫ ∞
0

g(xyβ/α;α, θ, λ)δ(y− 1)yβ/αdy= g(x;α, θ, λ), where
δ(y−1) is Dirac’s function. In the case whenα = 2,β = 1 andθ = 0 from (1) and (2) we obtain
that FSD passes into the normal distribution. Hence, the class of fractional-stable laws involves
the class of stable distributions. Since the FSD are fully described by their four parameters then
knowledge of these parameters allows to calculate the distribution. One of the main tasks in
the work is parameter estimation upon experimental data. Shortly one can formulate this task as
follows. LetZ1,Z2, . . . ,Zn is the sample of independent identically distributed random variables.
Each random variableZi has the FSD. It is necessary by this sample to calculate the estimators
α̂, β̂, θ̂, λ̂ of the parametersα, β, θ, λ of the FSD.

There exist several methods of estimation of the FSD parameters. The first method has been
described in the work [19] and the estimators were obtained on basis of the method of moments.
However, it has been established that usage of these estimators lead to wrong parameters values.
The second method [20] is based on the maximum likelihood method. However this method is
also unhandy for approximation of the gene expression. Really, in this method it is necessary
to calculate the probability density function at the pointsdefined by the value of the random
variablesZ1,Z2, . . . ,Zn. The main difficulty here consists exactly this since there does not exist
explicit expression for the FSD. In the article by [20] the author avoided this difficulty by usage
of the local estimator of the Monte Carlo method for calculation of the symmetric (atθ = 0)
FSD. However, it is not possible to apply this method for describing the expression data since
the θ , 0. Even in the caseθ = 0 to use this method would be a very tedious task since in
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this case it would be necessary to estimate the density at each pointZ1,Z2, . . . ,Zn. Taking into
account that expression data contain tens thousand values then estimation will takes big time
span.

The third method [21] is based on minimization of the distance between theoretical and
empirical distributions. As the distance between two distributions theχ2 distance was chosen

d(PΘ,Q) =
n∑

k=1

(NPΘ(∆k) − νk)2

NPΘ(∆k)
. (3)

Here Q is experimental distribution,PΘ is theoretical distribution,PΘ(∆k) is the theoretical
probability corresponding to the interval∆k, Θ is a vector of parameters,∆k is the partition of
the domain under considerationR ≡ {x : a 6 x 6 b} on n disjoint intervals

⋃n
k=1∆k = R, νk is

the number of observations fallen into interval∆k. As a result, the estimator̂Θ of the parameters
Θ obtains the values of thêΘ at which the distanced(P

Θ̂
,Q) possesses the most minimal value.

We will use this estimator for estimation of the FSD parameters.
Applying this algorithm to the considered task the distribution Q in (3) corresponds to the

experimental distribution of the gene expression and distribution PΘ corresponds to the FSD
with parametersΘ = (α, β, θ, λ). The FSD is estimated by Monte Carlo method. Namely, the
histogram of the density is constructed. The fractional-stable random variables are simulated
with algorithm

Z(α, β, θ, λ) = λY(α, θ)/[S(β, 1)]β/α, (4)

where Y(α, θ) S(β, 1) and S(β, 1) are stable and one-sided stable random variables with
characteristic function (2). For simulation of the random variableY(α, θ) is used the algorithm
described in [22] and for simulation the random variableS(β, 1) was used the algorithm [23].

3 EXPERIMENTAL DATA AND RESULTS

As a source of the experimental data the Gene Expression Omnibus
(http://www.ncbi.nlm.nih.gov/geo/) database was chosen. Several experimental series were
chosen from the database. They were obtained with the NGS technology (the results are
expressed in FPKM units). In particular, the experimental data for the human (series GSE44875
and GSE50760), macaque (series GSE53690), mouse (series GSE53690 and GSE53110) and
for drosophila (series GSE54600 and GSE41487) were processed. The results of processing
are shown below. It is established that the experimental distributions have fractional-stable
character within the range of 1÷ 1000 FPKM units only. Beyond this interval deviations of the
experimental distribution from the FSD are observed.

Methods of the analysis of experimental data are as follows.The expression data are divided
into three disjoint domainsR = {x : Emin 6 x 6 Emax}, R1 = {x : x 6 Emin} R2 = {x : x >

Emax}, and behaviour of the probability density function within each domain is considered.
It is visually established that in the domainR the behaviour of the empirical distribution is
characteristic for FSD. Therefore the expression values satisfying to the conditionX ∈ R are
chosen for the approximation of the experimental data within this domain. The obtained sample
is considered as a sampleXi , . . . ,Xn of independent identically distributed random variables.
Further parameters of the FSD are estimated with obtained sampleXi , i = 1, . . . , n.

For checking the assumption about fractional-stale distribution of the random variablesXi

the hypothesisH0 is suggested which can be formulated as follows:the random variables
Xi , i = 1, . . . , n have the fractional-stable distribution with density(1). Since the parameters
of this distribution are unknown then the hypothesisH0 is a complex one. To obtain the
estimators (̂α, β̂, θ̂, λ̂) of the parameters (α, β, θ, λ) the statistical algorithm of the estimation
of the fractional stable parameters based on the minimum distance method [21] is used. The

281

Mathematical Biology and Bioinformatics. 2016. V. 11. No. 2. doi: 10.17537/2016.11.278



SAENKO

Figure 1. Probability density distribution of gene expression for human (Homo sapiens), mouse
(Mus musculus), macaque (Macaca mulata) and drosophila (Drosophila melanogaster) tissues.
Solid circles are experimental data, solid lines are FSDs for the estimated values of the parameters
α̂, β̂, θ̂, λ̂. The values of the parameters are shown on the figure.

hypothesisH0 was chi-square Fisher tested. As it was noted above, the maindifficulty of using
the FSD consists in the absence of explicit expression for densities. Therefore a numerical
method is used for calculating the density. In this work the histogram estimation of the
distribution is used for calculation of the assumed distribution q(x; α̂, β̂, θ̂, λ̂). The sample of
random variablesZ(α̂, β̂, θ̂, λ̂) was simulated and the histogram of the density was computed.
The volume of the modeled sample is 106 random variables for reducing the statistical error.

The approximation results for experimental densities of the gene expression within domain
R are presented in the Figure1. It was established that the boundaries of the domainR are
defined by the valuesEmin & 1,Emax . 1000 for the processed data. As it is seen from the
figures the FSD proves good to describe experimental data within this domain. The chi-square
Fisher’s test confirms this conclusion. For the experimental data shown on the figures this test
does not reject theH0 hypothesis at the significance level of 1%. More complete results of
the parameter estimation and checking theH0 hypothesis are presented in the Table1 (See
Appendix 1). The results of chi-square Fisher testing are presented in the columnH0 (where
”0” means that the test rejects the hypothesisH0 and ”1” means the test does not reject the
hypothesis). As we can see from the table the hypothesis about the fractional-stable nature of the
experimental data is not rejected almost for all processed data. Since we know the boundaries
of the domainR we can calculate the probability contained inside:p = P{Emin 6 X 6 Emax} =

(1/N)
∑N

i=1 I (Emin 6 Xi 6 Emax) whereI (A) is the indicator of the eventA, N is the total sample
volume. The values of the probabilityp are also presented in the Table1. As we can see from
36% to 55% of the data in the initial sample have fractional-stable law of distribution.
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Figure 2. The probability density function of the gene expression obtained with the NGS
technology within the full range of data variation. Solid circles are experimental data for human
tissues (series GSE50760), solid curve is FSD within the domain R for shown values of the
parameters, dashed curve is FSD for the same parameter values andx < R.

Let us consider the behaviour of the experimental density within the domainsx < R. In
the Figure2 the probability density function is shown within the full range of experimental
data variation. It is seen from the figure that the deviation of the empirical from theoretical
distribution within the domainx ∈ R2 is weak. Indeed, within the domainR2 the experimental
distribution has power-law dependencex−α−1 well described by FSD extended into this domain.
However, attempts to check the hypothesisH0 for the domainsR + R2 lead to the rejecting of
this hypothesis. The reason underlies in fluctuations of theempirical and theoretical (since the
theoretical distribution is estimated by Monte Carlo method) distributions. These fluctuations
are caused by statistical error. Such increasing of statistical errorR2 is caused by the small
sample volume. Indeed, in Table1 the probabilityp2 = P{X ∈ R2} is presented. As it is seen
from the Table the domainR2 contains no more than 2% of all data. Therefore, the increasing
of the fluctuation leads to the increasing of the calculated value ofχ2 statistics. This can lead
to false-negative result of checking the hypothesisH0. Therefore, without the loss of generality,
we can claim that within the domainR2 experimental data also follow the fractional-stable
distribution, but only in case of power-law dependence.

Within the domainR1 the empirical distribution has absolutely different behaviour from that
of FSD (see Fig.2). One of possible reasons of such behaviour can consist in appearing of an
additional component in the distribution of the experimental data. This means that within this
domain one part of the data has FSD while another part of the data is distributed according
to some unknown law of distributionf (x;Φ), whereΦ is the vector of parameters of this
distribution. Such models are well known and named shift-scale mixture of distributions. In
common case such shift-scale mixtures have the following form:

F(x) =
M∑
j=1

wj f j((x− µ j)/λ j;Φ j), (5)

wherewj are weight coefficients (w1 + w2 + · · · + wM = 1), f j(x;Φ j) are components of this
mixture,M is the total number of components,Φ j are parameters of thej-th component of the
mixture,µ j andλ j are shift and scale parameters of thej-th component of the mixture.

On this assumption we can conclude that the experimental data of the gene expression
within the domainR1 + R2 + R most probably are described by the shift-scale mixture with
two components

F(x) = w1q(x;α, β, θ, λ) + w2 f (x;Φ).
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The first componentq(x;α, β, θ, λ) is FSD (1), the second componentf (x;Φ) is the law of
distribution which is unknown for the time being. The influence of the componentf (x;Φ)
dominates within the domainR1 and, at the same time, the influence of this component within
the domainR + R2 is negligibly small. This leads to the fact that the FSD describes the
experimental data within the domainR + R2 appropriately.

4 CONCLUSION

Possibly, one of the reasons of poor agreement of the experimental and model distributions
in [1, 24] consists in distortions introduced during the stage of determining the amount of
the hybridized material. Indeed, within the DNA microarraytechnology gene expression is
determined with the intensity of the fluorescence radiationof the material joined to probes.
On this stage the radiation of the substrate overlaps the required signal from the hybridized
material, being parasitic. Moreover, the distortions are also introduced on the next stage which
is the digitization of the image. Since the intensity of the fluorescence is determined not by direct
measurements but by the brightness of dots in the digital image, this process also introduces the
distortion to the expression data. All these facts lead to the problems of probability distribution
law detection.

Another principle underlies the method of calculating geneexpression in the NGS
technology (see [5, 4]). In this technology the DNA-polymerase attaches only onefluorescently
modified nucleotide being complementary to the base template. Since each type of the
nucleotide is labeled with own color, this allows to identify it unambiguously. As a result
only one nucleotide is recognized for one cycle. After multiple cycle repetition a file is
created containing recognized DNA fragments and consisting of nucleotides codes. Then the
alignment of these fragments to a reference genome is fulfilled and gene expression in FPKM
or RPKM units is calculated. Thus, the NGS technology of geneexpression is derived by direct
calculation of the synthesised amount of the cell molecules. Hence, more qualitative results in
approximation of the experimental data are expected.

This assumption is confirmed by the obtained results. It is established that the distribution
of gene expression has the form of a shift-scale mixture of distributions defined by the formula
(5) where one of the components is defined by FSD (1). The domain boundaries where each
of the components dominates are established. In particular, within the domainR + R2 the
FSD dominated. Influence of other mixture components are negligibly small. It is possible
to assert that within this range of values gene expression isdescribed by the fractional-stable
distributions. This assumption is confirmed by the chi-square Fisher test. Within the domainR1

the influence of other components of the mixture becomes significant. This fact is expressed
by the appearance of the ”hump” in the experimental distribution (see Fig.2). We failed to
determine the type of this mixture component currently. However taking into account that
influence of these components in the domainR + R2 are negligibly small we can claim that
these components rapidly decrease with the increasing ofx.

This work was supported by the Ministry of Education and Science of the
Russian Federation (No. 6.1617.2014/K) and Russian Foundation for Basic Research (No.
16-04-00504).
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APPENDIX 1.

Table 1. The results of gene expression approximation obtained withNGS technology by the
FSD and chi-square Fisher testing of the hypothesisH0. The results are presented for human
(series GSE50760), mouse (series GSE53110), macaque (series GSE53690), drosophila (series
GSE54600)

Organism Channel name α̂ β̂ θ̂ λ̂ H0 p p2

H
u

m
an

AMC 2.2 FPKM 1.01 0.51 0.30 6.72 1 0.543 0.002
AMC 3.2 FPKM 0.98 0.46 0.30 6.91 1 0.536 0.003
AMC 5.2 FPKM 1.00 0.50 0.30 6.67 1 0.540 0.002
AMC 6.2 FPKM 0.99 0.40 0.35 6.52 0 0.541 0.002
AMC 7.2 FPKM 0.98 0.50 0.30 6.82 1 0.545 0.002
AMC 8.2 FPKM 0.97 0.40 0.31 7.33 0 0.540 0.003
AMC 9.2 FPKM 0.98 0.50 0.30 6.87 1 0.545 0.002
AMC 10.2 FPKM 1.00 0.45 0.31 6.98 1 0.542 0.003
AMC 12.2 FPKM 0.99 0.44 0.30 7.25 1 0.546 0.003
AMC 13.2 FPKM 0.95 0.39 0.30 7.42 1 0.537 0.003
AMC 17.2 FPKM 1.01 0.36 0.34 7.89 1 0.567 0.003
AMC 18.2 FPKM 0.96 0.39 0.30 7.43 0 0.539 0.003
AMC 19.2 FPKM 0.99 0.54 0.31 7.21 0 0.555 0.002
AMC 20.2 FPKM 0.99 0.49 0.30 7.25 1 0.546 0.003
AMC 21.2 FPKM 0.99 0.38 0.30 7.35 1 0.544 0.003

M
o

u
se

cTEC 1.20 0.54 0.15 12.00 1 0.440 0.001
mTEC 0.91 0.23 0.65 7.70 0 0.515 0.001

immaturemTEC 1.16 0.38 0.30 10.02 1 0.515 0.001
maturemTECE 1.06 0.17 0.45 9.53 1 0.470 0.001
Aire negmTEC 1.05 0.35 0.32 9.62 1 0.508 0.001
Aire pos mTEC 0.94 0.21 0.60 8.61 0 0.500 0.001

Aire knockoutmTEC 1.05 0.37 0.32 9.79 1 0.462 0.001

M
ac

aq
u

e

s 1 1 7 130430 1.10 0.38 0.28 17.85 1 0.554 0.005
s 1 1 9 130430 1.08 0.50 0.26 17.21 1 0.548 0.005
s 2 1 20 130607 0.97 0.57 0.40 16.32 1 0.599 0.005
s 1 1 12 130430 1.07 0.66 0.27 16.58 0 0.556 0.006
s 1 1 22 130607 1.10 0.61 0.30 17.27 0 0.557 0.005
s 2 1 25 130607 1.11 0.49 0.28 17.31 1 0.558 0.006
s 1 1 11 130430 1.13 0.52 0.29 17.76 1 0.559 0.005
s 1 1 10 130430 1.13 0.59 0.25 17.70 1 0.555 0.006
s 1 1 16 130430 1.11 0.63 0.25 18.19 1 0.554 0.005
s 1 1 18 130430 1.19 0.51 0.23 19.10 1 0.550 0.005
s 1 1 15 130430 1.16 0.63 0.19 19.31 1 0.535 0.004
s 1 1 19 130430 1.12 0.36 0.30 18.84 1 0.552 0.006
s 1 1 5 130430 1.14 0.46 0.21 20.34 1 0.541 0.005

D Yki 1 1.04 0.46 0.27 18.68 1 0.415 0.010
D Yki 2 1.00 0.37 0.39 18.38 1 0.369 0.011
D Yki 3 1.10 0.59 0.20 21.95 1 0.374 0.012

Continuation on the next page
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Organism Channel name α̂ β̂ θ̂ λ̂ H0 p p2

D
ro

so
p

h
ila

M Yki 1 1.07 0.41 0.30 20.11 1 0.364 0.011
M Yki 2 0.93 0.47 0.30 16.27 0 0.361 0.011
M Yki 3 1.10 0.60 0.26 21.80 1 0.407 0.011

M Yki T 1 1.15 0.48 0.20 22.60 1 0.398 0.008
M Yki T 2 1.08 0.48 0.28 24.72 0 0.383 0.012
M Yki T 3 1.13 0.56 0.20 22.21 1 0.510 0.008
Tr Yki 13 1.22 0.69 0.15 23.00 1 0.512 0.008
Tr Yki 23 1.14 0.74 0.15 22.61 1 0.509 0.008
Tr Yki 33 1.24 0.75 0.11 25.54 1 0.431 0.008
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