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Abstract. As has been shown in the previous article] an application of
class of the fractional-stable laws to the genes expresseults obtained by
DNA-microarrays leads to poor agreement between expetahand theoretical
distributions. This dference can be explained by the imperfection of the techgolog
of the gene expression determination. In this article ttstributions of the gene
expression obtained by Next Generation Sequence technaleginvestigated. In
this technology the determination technique of the genaesgion difers from
the DNA-microarrays technology. This results to more datlie results of an
approximation. In particular, it is established that thelability density function
of the gene expression has a form of shift-scale mixture obability laws, where
one of the components of the mixture is the fractional-stalidtribution.
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INTRODUCTION

There exist two main technology of genes expression detation today:
DNA-microarrays P, 3] and Next Generation Sequence (NGS) technologyo[ 6, 7, g].
Historically the first technology was the technology of thBlAmicroarray. In the basis of
this technology the hybridization process lies. Oligoeotides (probes) are attached to the
solid substarte, each of which has predefined nucleotidges®eg. The distance between the
probes is 16° meters therefore on each square centimeter it is possiiat® up to 18
probes. The samples under investigation are marked by fcen¢ label and they are added on
the microarray where the hybridization of the probe andatogcurs. After the unhybridized
nucleotides are washed away the fluorescent labels areexwytlaser radiation. The relative
nucleic acid content with defined sequence is determinedubye$cence radiation intensity. It
should be noted the intensity of the fluorescence is definetidital image of the microarray
which is obtained by confocal microscope. Therefore thewarof the hybridized targets is
proportional to the point brightness on the digital image.

The main principles of NGS technology the same as at DNA raitays technology: the
cyclic ferment reactions are used with following receivaofgnformation about DNA structure
in the form of image of fluorescent labels. However, the tetbgy of the preparation of
libraries targets and the method offdrentiation of the dierent nucleotide sequencesfdr. In
common case the sequencing process can be divided by fgesgtsee for examplé]). On the
first stage the library of random sequences of the DNA is etkdifter this these sequences are
ligated by adapter sequences containing universal priteenplates. On the second stage the
amplification of these random sequences DNA are fulfilled blymerase chain reaction. On
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the third stage the primary structure of all samples is detezd. The fourth stage consists in
alignment of the obtained reads to the reference gene. Theadeantage of NGS technology
consists in possibility of determination individual nuafigles in a sequence. This allows to
detect new nucleotide sequences.

A second advantage of NGS technology is possibility to deitee a quantitative content of
defined genes in the sample. This allows reduce an error@ilatibn of the gene expression
levels. Really, as the result of the reads alignment is amotisome gene in the sample.
Of course, there exists probability of wrong determine tsfenence gene. Nevertheless, the
results of the gene expression calculation obtained by NggBnblogy will more qualitative
than results obtained with the DNA-microarray technoloBlyis due to the fact that in the
DNA-microarray technology practically it is not possibedetermine quantitative content of
the genes since the value of the expression is determinddhatintensity of the fluorescence
radiation. At the same time it is unknown the amount fluorestabels having incorporated to
the sample and the radiation intensity of the single labbke Background radiation is also
problem. This radiation introduces the distortion into r@fepicture and it is not possible
exclude one. All these facts lead to less qualitative resoittained with DNA microarrays
in comparison with the results of NGS technology. The rasoilithe article {] confirm these
facts. In this article the probability density functionstbe gene expression levels obtained
with DNA-microarrays of various manufactures are investiggl. It was shown although in
majority cases the distribution can be described by theifnaal-stable law however empirical
distributions deviate from the fractional-stable disstibns. These deviation can be explained
with distortions noted above.

In this article we consider the question about probabilisgribution of the gene expression
obtained with NGS technology. It is well established that #mpirical distributions are
one-sided distributions, they manifest the power-law gsgtics and character of these
distributions is the same for any tissues and organisms fracteria to mammal]. Similar
results have been reported by other authors 1, 12, 13, 14)].

The power-law asymptotics of the experimental distributroeans that the theoretical
distribution must have the asymptotics of the followingnfop(x) o« x*1,x — co. In the
above work of ], the same distribution was applied for approximation e grofiles of the
gene expression in various organisms. The parameteas shown to vary within the limits
from 0.69 to 1.09. In the workl1]?] the authors have investigated more than 40 tissues for
six organisms and the power-law distribution was obtairedafl samples with value of the
parametere. € (0.86,1). In the work [L4] the discrete Pareto distribution was used. There
were processed more than 50 human tissues, mouse tissugeastdtissues including 30
samples of the human cancer tissues and 30 normal humaedissuhis article reported that
the best approximation among the Poisson distributionpe&ptial distribution, logarithmic
distribution, power-law distribution, paretolike digtutions and mixtures of the logarithmic
and the exponential distributions is the discrete Parestridition p(m) = (m + b)=*1/z,
wherea is varying within the limits from 0.974 to 1.88. In the argc]11], the authors use
the double Pareto-log-normal distribution. Along with tRareto-log-normal distribution the
authors tested the Zipf-Pareto distribution, log-normstiribution, log-gamma distribution, log
logistic distribution, right-side Pareto-distributidfinally, the authors conclude that the double
Pareto-lognormal distribution provides the best results.

However the authors of these articles had not consideredname sdficiently significant
class of distributions the Fractional-Stable DistribnqFSD). The fractional-stable laws are
limit distributions of sums of independent identical distited random variables (se&f]). At
working with these distributions the mainfiiiculty consists in absence of explicit expressions
for densities. Probably this fact is main reason excludimg distribution class from the list
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of the potential candidates of theoretical densities f@ragimation of the genes expression.
However there exist some methods of calculation of the tiesswhich allow circumvent
this difficulty. Moreover this class of the distributions posseshescharacteristic property
which inherent to the experimental distributions. Thesritiutions possess by power-law
asymptotics. All above noted facts make the fractiondbstalistribution good candidate
for approximation of the experimental data. In this artisle consider the question about
possibility of the approximation of the genes expressiotaioled with NGS technology by
the fractional-stable laws.

2 FRACTIONAL-STABLE LAWS AND ESTIMATORS OF THEIR PARAMETER S

Fractional-stable laws are limit distributions of sumsitidependent identically distributed
random variables. For the first time, FSD was introduced btuls&i [16]. The name FSD
was introduced in 20011[/]. FSD are expressed through Mellins transformation of ttable
distributions

0% 0. B. 0,) = f gy 1,0, 1)g(y; B. 1, LyP/edly 1)
0

Hereg(x; a, 0, ) is the density function of the strictly stable law ag@@; 3, 1, 1) is the density
of the one-sided strictly stable law with the characteriBinction (see€])

a(k; o, 0, 1) = exp—MKI* expi—ia0(rr/2)signk)}. )

As we can see fromlj, FSD is defined by four parameters.andf§ are two characteristic
parameters. They vary in the limits € (0,2] andf € (0O, 1]. The variation domain of the
parameter® andh coincides with the domain of the variation respective pai@ns of the stable
distribution and they have the same meanihg,the asymmetry parametéd|(< min(l, 2/a —
1)) and) > O is the scale parameter. FSDs have the power-law asymgpgioo, 8, 0, 1) o«

x %1 x — co. Whenp = 1, the class of FSD passes into the class of strictly stabtalalitions.
Indeed, wheffs = 1 andb = 1 the strictly-stable law(y; 1, 1, 1) is the singular distribution at the
pointy = 1. Hence, from {) we obtainfow a(xy?'*; a, 0, M)S(y — 1)yP/*dy = g(x; a, 0, 1), where
d(y—1) is Dirac’s function. In the case when= 2,3 = 1 and6 = 0 from (1) and @) we obtain
that FSD passes into the normal distribution. Hence, thesaéfractional-stable laws involves
the class of stable distributions. Since the FSD are fulscdbed by their four parameters then
knowledge of these parameters allows to calculate theildision. One of the main tasks in
the work is parameter estimation upon experimental datrtiglone can formulate this task as
follows. LetZ,, Z,, ... ., Z, is the sample of independent identically distributed randariables.
Each random variablg has the FSD. It is necessary by this sample to calculate theatsrs
a, 3, é, A of the parameters, 3, 0, A of the FSD.

There exist several methods of estimation of the FSD paemnélhe first method has been
described in the work![J] and the estimators were obtained on basis of the method ofents.
However, it has been established that usage of these estgedd to wrong parameters values.
The second method{] is based on the maximum likelihood method. However thishoets
also unhandy for approximation of the gene expression.lRealthis method it is necessary
to calculate the probability density function at the poidégined by the value of the random
variablesZ,, Z,, . . ., Z,. The main dfficulty here consists exactly this since there does not exist
explicit expression for the FSD. In the article by the author avoided this fliculty by usage
of the local estimator of the Monte Carlo method for caldolaof the symmetric (a6 = 0)
FSD. However, it is not possible to apply this method for diéstg the expression data since
the® # 0. Even in the cas® = 0 to use this method would be a very tedious task since in
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this case it would be necessary to estimate the density htggaotZy, Z,, . . ., Z,. Taking into
account that expression data contain tens thousand védleesestimation will takes big time
span.

The third method {1] is based on minimization of the distance between theaktiod
empirical distributions. As the distance between two distions they? distance was chosen

_ o (NPo(A) — wi)?
d(P@,Q)—; NPoa) (3

Here Q is experimental distributionRg is theoretical distributionPg(Ax) is the theoretical
probability corresponding to the intervaj, @ is a vector of parameteray is the partition of
the domain under considerati®= {x : a < x < b} onndisjoint intervals|_J;_; Ax = R, v is
the number of observations fallen into intergal As a result, the estimat@ of the parameters
O obtains the values of tH® at which the distance(Pg, Q) possesses the most minimal value.
We will use this estimator for estimation of the FSD paramsete

Applying this algorithm to the considered task the disttidm Q in (3) corresponds to the
experimental distribution of the gene expression andiligion Pg corresponds to the FSD
with parameter® = (a,,0,)). The FSD is estimated by Monte Carlo method. Namely, the
histogram of the density is constructed. The fractionablet random variables are simulated
with algorithm

Z(a, B, 6,2) = Y(a, 0)/[S(B, 1)), 4)

where Y(a,0) S(B,1) and S(B,1) are stable and one-sided stable random variables with
characteristic function?). For simulation of the random variab¥a, 0) is used the algorithm
described in}2] and for simulation the random varial®[3, 1) was used the algorithm {].

3 EXPERIMENTAL DATA AND RESULTS

As a source of the experimental data the Gene Expression EDsni
(http//www.ncbi.nlm.nih.goygeq) database was chosen. Several experimental series were
chosen from the database. They were obtained with the NG8$aexgy (the results are
expressed in FPKM units). In particular, the experimendghdor the human (series GSE44875
and GSE50760), macaque (series GSE53690), mouse (seri&#s36%) and GSE53110) and
for drosophila (series GSE54600 and GSE41487) were prede3$ie results of processing
are shown below. It is established that the experimentatfiloigsions have fractional-stable
character within the range of11000 FPKM units only. Beyond this interval deviations of the
experimental distribution from the FSD are observed.

Methods of the analysis of experimental data are as folldWws.expression data are divided
into three disjoint domain® = {X : Eqnin < X < Epady, R1 = (X X < Epin} Ro = {X: x>
Emax, @and behaviour of the probability density function withiace domain is considered.
It is visually established that in the domakthe behaviour of the empirical distribution is
characteristic for FSD. Therefore the expression valugsfgag to the conditionX € R are
chosen for the approximation of the experimental data withis domain. The obtained sample
is considered as a samplg, . . ., X, of independent identically distributed random variables.
Further parameters of the FSD are estimated with obtaimegle,i = 1,...,n.

For checking the assumption about fractional-stale tistion of the random variables
the hypothesid, is suggested which can be formulated as follow® random variables
Xi,i = 1,...,n have the fractional-stable distribution with densffy). Since the parameters
of this distribution are unknown then the hypothebig is a complex one. To obtain the
estimators , p, 0,1) of the parameterso( 3, 0, A) the statistical algorithm of the estimation
of the fractional stable parameters based on the minimutardie method41] is used. The
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Figure 1. Probability density distribution of gene expression foman Homo sapiens mouse
(Mus musculus macaque Nlacaca mulatq and drosophilaProsophila melanogastértissues.
Solid circles are experimental data, solid lines are FSb#testimated values of the parameters
a, B é, . The values of the parameters are shown on the figure.

hypothesidHy was chi-square Fisher tested. As it was noted above, thediféoulty of using
the FSD consists in the absence of explicit expression fositles. Therefore a numerical
method is used for calculating the density. In this work thstdgram estimation of the
distribution is used for calculation of the assumed distitn q(x; ., {3, 0, A). The sample of
random variableZ(a, p, 0, 1) was simulated and the histogram of the density was computed
The volume of the modeled sample iT@ndom variables for reducing the statistical error.

The approximation results for experimental densities efgane expression within domain
R are presented in the Figufe It was established that the boundaries of the dorkaere
defined by the valueEni, = 1, Enax < 1000 for the processed data. As it is seen from the
figures the FSD proves good to describe experimental dabarviiiis domain. The chi-square
Fisher’s test confirms this conclusion. For the experimatdta shown on the figures this test
does not reject thély, hypothesis at the significance level of 1%. More completelteof
the parameter estimation and checking Hiehypothesis are presented in the Tabl¢See
Appendix 1). The results of chi-square Fisher testing aesgmted in the columHy (where
"0” means that the test rejects the hypothddisand "1” means the test does not reject the
hypothesis). As we can see from the table the hypothesig #imfractional-stable nature of the
experimental data is not rejected almost for all processea. Gince we know the boundaries
of the domairRk we can calculate the probability contained inside: P{Ein < X < Enad =
(1/N) 3N 1(Emin < Xi < Emay) Wherel (A) is the indicator of the evem, N is the total sample
volume. The values of the probabilifyare also presented in the TalileAs we can see from
36% to 55% of the data in the initial sample have fractionabke law of distribution.
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Figure 2. The probability density function of the gene expressionawmietd with the NGS
technology within the full range of data variation. Solidotés are experimental data for human
tissues (series GSE50760), solid curve is FSD within theailorR® for shown values of the
parameters, dashed curve is FSD for the same parametes @lde ¢ R.

Let us consider the behaviour of the experimental densithiwithe domains< ¢ R. In
the Figure2 the probability density function is shown within the fullnge of experimental
data variation. It is seen from the figure that the deviatibthe empirical from theoretical
distribution within the domainx € R, is weak. Indeed, within the domaff, the experimental
distribution has power-law dependencé-! well described by FSD extended into this domain.
However, attempts to check the hypothdsisfor the domainsk + R, lead to the rejecting of
this hypothesis. The reason underlies in fluctuations oethpirical and theoretical (since the
theoretical distribution is estimated by Monte Carlo methdistributions. These fluctuations
are caused by statistical error. Such increasing of statistrror R, is caused by the small
sample volume. Indeed, in Tablethe probabilityp, = P{X € R} is presented. As it is seen
from the Table the domaiR, contains no more than 2% of all data. Therefore, the inangasi
of the fluctuation leads to the increasing of the calculatades ofy? statistics. This can lead
to false-negative result of checking the hypothéjsTherefore, without the loss of generality,
we can claim that within the domaiR, experimental data also follow the fractional-stable
distribution, but only in case of power-law dependence.

Within the domairR; the empirical distribution has absolutelyiérent behaviour from that
of FSD (see Fig2). One of possible reasons of such behaviour can consistpi@asng of an
additional component in the distribution of the experina¢iata. This means that within this
domain one part of the data has FSD while another part of tkee idalistributed according
to some unknown law of distributiof(x; ®), where® is the vector of parameters of this
distribution. Such models are well known and named shdtesenixture of distributions. In
common case such shift-scale mixtures have the followingfo

FO) = D wifi((x— ) /A5 @), (5)
j=1

wherew; are weight cofficients (v + W, + --- + wy = 1), fj(x; ;) are components of this
mixture, M is the total number of componentB; are parameters of thieth component of the
mixture,u; andi; are shift and scale parameters of jHén component of the mixture.

On this assumption we can conclude that the experimental afathe gene expression
within the domainR; + R, + R most probably are described by the shift-scale mixture with
two components

F(X) = wiq(x a, B, 0, 1) + wo f(X; @).
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The first componeng(x; o, 3, 0,1) is FSD (1), the second componeri{(x; ®) is the law of
distribution which is unknown for the time being. The inflgenof the component(x; ®)
dominates within the domaiR; and, at the same time, the influence of this component within
the domainR + R, is negligibly small. This leads to the fact that the FSD dibss the
experimental data within the domak+ R, appropriately.

4 CONCLUSION

Possibly, one of the reasons of poor agreement of the expetaland model distributions
in [1, 24] consists in distortions introduced during the stage okdeining the amount of
the hybridized material. Indeed, within the DNA microarr@ghnology gene expression is
determined with the intensity of the fluorescence radiatbthe material joined to probes.
On this stage the radiation of the substrate overlaps tha@restjsignal from the hybridized
material, being parasitic. Moreover, the distortions dse atroduced on the next stage which
is the digitization of the image. Since the intensity of thefescence is determined not by direct
measurements but by the brightness of dots in the digitajénihis process also introduces the
distortion to the expression data. All these facts lead égtioblems of probability distribution
law detection.

Another principle underlies the method of calculating gemression in the NGS
technology (se€d, 4]). In this technology the DNA-polymerase attaches only timerescently
modified nucleotide being complementary to the base templ@ince each type of the
nucleotide is labeled with own color, this allows to ideyntif unambiguously. As a result
only one nucleotide is recognized for one cycle. After nmldticycle repetition a file is
created containing recognized DNA fragments and congigifmucleotides codes. Then the
alignment of these fragments to a reference genome is édfdhd gene expression in FPKM
or RPKM units is calculated. Thus, the NGS technology of gexpgression is derived by direct
calculation of the synthesised amount of the cell molecience, more qualitative results in
approximation of the experimental data are expected.

This assumption is confirmed by the obtained results. Ittabéished that the distribution
of gene expression has the form of a shift-scale mixturesifibutions defined by the formula
(5) where one of the components is defined by FSP The domain boundaries where each
of the components dominates are established. In partjcwidinin the domainR + R, the
FSD dominated. Influence of other mixture components ardigiely small. It is possible
to assert that within this range of values gene expressidessribed by the fractional-stable
distributions. This assumption is confirmed by the chi-sguasher test. Within the domafy
the influence of other components of the mixture becomesfiignt. This fact is expressed
by the appearance of the "hump” in the experimental distidou(see Fig.2). We failed to
determine the type of this mixture component currently. idesy taking into account that
influence of these components in the dom&ir R, are negligibly small we can claim that
these components rapidly decrease with the increasing of

This work was supported by the Ministry of Education and Boge of the
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APPENDIX 1.

Table 1. The results of gene expression approximation obtained WS technology by the
FSD and chi-square Fisher testing of the hypothékjs The results are presented for human
(series GSE50760), mouse (series GSE53110), macaques(§&BE53690), drosophila (series

GSE54600)

Organism Channel name a B 0 A Ho p P
AMC_2.2 FPKM 1.01 051 030 6.72 1 |0.543 0.002
AMC_3.2FPKM 098 046 030 6.91 1 |0.536 0.003
AMC _5.2 FPKM 1.00 0.50 0.30 6.67 1 | 0.540 0.002
AMC_6.2.FPKM 0.99 040 035 6.52 0 | 0541 0.002
AMC_7.2.FPKM 0.98 050 030 6.82 1 |0.545 0.002
AMC_8.2 FPKM 0.97 040 031 7.33 0| 0.540 0.003

S AMC_9.2 FPKM 0.98 050 0.30 6.87 1 |0.545 0.002
g AMC_10.2FPKM 1.00 045 0.31 6.9 1 | 0.542 0.003
I AMC_12.2 FPKM 0.99 044 030 7.25 1 |0.546 0.003
AMC_13.2FPKM 0.95 0.39 030 7.42 1 |0.537 0.003
AMC_17.2FPKM 1.01 036 0.34 7.89 1 |0.567 0.003
AMC_18.2FPKM 096 0.39 0.30 7.43 0 | 0.539 0.003
AMC_19.2 FPKM 0.99 054 031 7.21 0 | 0555 0.002
AMC_20.2FPKM 0.99 049 030 7.25 1 |0.546 0.003
AMC_21.2 FPKM 0.99 0.38 030 7.35 1 |0.544 0.003

cTEC 1.20 0.54 0.15 12.00 1 | 0.440 0.001

mMTEC 0.91 023 065 7.70 0 | 0.515 0.001

g immaturemTEC 1.16 0.38 0.30 10.02 1 | 0.515 0.001
3 maturemTECE 1.06 0.17 045 953 1 |0.470 0.001
= Aire_negmTEC 1.05 0.35 0.32 9.62 1 | 0.508 0.001
Aire_posmTEC 0.94 0.21 0.60 8.61 O | 0.500 0.001
Aire_knockoutmTEC || 1.05 0.37 0.32 9.79 1 | 0.462 0.001
s1.1.7.130430 1.10 0.38 0.28 17.85 1 | 0.554 0.005
s1.1.9.130430 1.08 050 0.26 17.21 1 | 0.548 0.005

s 2.1.20.130607 0.97 057 040 16.321 | 0.599 0.005
s1.112130430 1.07 0.66 0.27 16.58 0 | 0.556 0.006

o s.1.1.22 130607 1.10 0.61 0.30 17.27Y 0 | 0.557 0.005
=> s.2.1.25.130607 1.11 0.49 0.28 17.31 1 | 0.558 0.006
§ s1.1.11.130430 1.13 052 0.29 17.76 1 | 0.559 0.005
S s.1.1.10.130430 1.13 0.59 0.25 17.70 1 | 0.555 0.006
s.1.1.16.130430 1.11 0.63 0.25 18.191 | 0.554 0.005
s1.1.18130430 1.19 051 0.23 19.10 1 | 0.550 0.005
s.1.1.15.130430 1.16 0.63 0.19 19.311 | 0.535 0.004
s.1.1.19.130430 1.12 0.36 0.30 18.84 1 | 0.552 0.006
s1.1.5.130430 1.14 0.46 0.21 20.34 1 | 0.541 0.005

D_Yki_1 1.04 0.46 0.27 18.68 1 | 0.415 0.010

D_Yki_2 1.00 0.37 0.39 18.38 1 | 0.369 0.011

D_Yki_3 1.10 059 0.20 21951 | 0.374 0.012

Continuation on the next page

285

Mathematical Biology and Bioinformatics. 2016. V. 11. Nod@: 10.175372016.11.278



SAENKO

Organism Channel name & B 0 A Ho p P
M_Yki_1 1.07 0.41 030 20.111 | 0.364 0.011
M_Yki_2 0.93 047 0.30 16.2Y 0 | 0.361 0.011
© M_Yki_3 1.10 0.60 0.26 21.80 1 | 0.407 0.011
%_ M_Yki_T_1 1.15 0.48 0.20 22.60 1 | 0.398 0.008
2 M_Yki_T_2 1.08 0.48 0.28 24.72 0 | 0.383 0.012
g M_Yki_T_3 1.13 0.56 0.20 22.21 1 | 0.510 0.008
Tr_Yki_13 1.22 0.69 0.15 23.001 | 0.512 0.008
Tr_Yki_23 1.14 0.74 0.15 22.61 1 | 0.509 0.008
Tr_Yki_33 1.24 0.75 0.11 2554 1 | 0.431 0.008
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