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Abstract. In computer simulations, we found a new type of spiral wave drift in а 

homogeneous two-dimensional excitable medium, namely, a circular drift of the 

spiral wave with decrease of the drift velocity right up to its total cessation. We 

have investigated certain quantitative characteristics of the new spiral wave 

behavior. As a result, we have demonstrated that the new spiral wave behavior 

essentially differs from the types of its behavior that was known before. This 

discovery can improve comprehension of mechanisms of some potentially life-

threatening cardiac arrhythmias. 
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Excitation waves, a sort of autowave processes, are typical for many physical, chemical, 

and biological systems. Such systems are said to be excitable media. Important instance of 

biological excitable media is cardiac tissue. Normal regimes of excitation wave propagation 

provide for normal cardiac activity, while the other regimes result in heart disturbance and 

even in life-threatening cardiac arrhythmias. These considerations determine the importance 

of investigation of the excitation waves. 

In two-dimensional excitable media, a typical autowave process is a spiral wave (alias 

rotor). Spiral waves appear as rotating phase waves of chemical or some other activity, which 

propagate through a stationary medium. In homogeneous media, rotor can typically be 

approximated by an Archimedean spiral, rotating with roughly constant speed [1]. 

Under some simplification, it is often useful to represent the spiral wave as a bowed half-

wave. A break of the half-wave is called the tip of the rotor. Rotor behavior is commonly 

described in terms of rotor tip movement [2]. 

Until now, three types of rotor tip movement in two-dimensional homogeneous medium 

were known [3, 4]. These are 1) a uniform circular movement, 2) a meander, i.e. a two-

periodic movement, with the tip moving along a curve similar to cycloid (whether epicycloid 

or hypocycloid), and 3) a hyper-meander, i.e. a "complex" or maybe "chaotic" movement 

whose wave tip trajectory could not be described in terms of two periods. 

According to some investigations, a replacement of the uniform circular movement of the 

rotor by the meander and a replacement of the meander by the hyper-meander are caused by 

an Andronov-Hopf bifurcation [1]. 
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We have described a new autowave regime in which the rotor tip moved along the curve 

similar to cycloid, but the rotor tip drift spontaneously decelerated and stopped [5]. As a 

result, spiral wave behavior transformed from meander into circular rotation. The new rotor 

behavior was found in homogeneous two-dimensional excitable medium with use of the 

Aliev-Panfilov model [6] in our simulation. Such a spontaneous halt of the rotor drift in 

homogeneous medium was called the lacet [5] to emphasize its difference from the types of 

rotor behavior that are well-known before. It has been also demonstrated in the computer 

simulation of cardiac arrhythmia [5] that, in the case of the lacet, a spontaneous transition 

from polymorphic to monomorphic arrhythmia is observed. Formerly, such a transition was 

considered to be possible only in the case of essential heterogeneity of the excitable medium. 

However a question still remained whether the rotor drift deceleration would be observed 

in the case of the classic two-periodic meander if the time of observation were increased 

adequately. In this paper, we stated the quantitative method of rotor motion description as 

well as the results of comparative investigation of the rotor drift velocity in the cases of the 

meander and of the new rotor behavior. Some essential differences between the two-periodic 

meander and the lacet are described. 

1. MATHEMATICAL MODEL 

We used the mathematical model of excitable medium by Aliev and Panfilov [6], which is 

a modified version of the popular FitzHugh-Nagumo model [3]. Here are the equations of the 

Aliev-Panfilov model: 
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where u(x,y,t) is a dimensionless function similar to the transmembrane potential in 

myocardial cells and и v(x,y,t) is a dimensionless function similar to a slower recovery 

current. According to its authors, the Aliev-Panfilov model has some important differences 

from the FitzHugh-Nagumo model in order to reach a more adequate description of the 

cardiac tissue. The parameters in the equations (1) were adjusted [6] to reflect the properties 

of the normal cardiac tissue accurately (k = 8.0; 0 = 0.01; a = 0.150; 1 = 0.2; 2 = 0.3). 
In our simulations, the parameters were the same as indicated above, except that the 

parameter a was varied from 0.1100 to 0.2300 by the step a=0.005. In addition, we carry out 

simulations with 0.1800<a<0.1803 varied by a=0.001 as well as with 0.1803<a<0.1804 

varied by a=0.0001. Note that the parameter a specifies the threshold of excitation [7, 8]. 
The threshold of excitation essentially determines the type of rotor circulation as it has clearly 

been demonstrated in [3, 4]. 
The simulations were carried out in two-dimensional excitable media (with 128 as well as 

200 elements along each dimension) with von Neumann boundary conditions. For calculation, 

we used a forward Euler numerical approximation (t = 0.01 t.u., x = y = 0.50 s.u.). 

A rotor was produced from a planar half-wave by a temporal impenetrable barrier (with 

no-flux boundary conditions), which separated the medium into two isolated rectangular areas 

and was removed at a suitable instant of simulation. In each case, the barrier position and the 

duration of its existence were chosen so that the rotation of the rotor tip when the rotor has 

reached its stationary circulation should occur approximately in the center of the medium. The 

planar half-wave was triggered along the medium boundary that was perpendicular to the 

temporal impenetrable barrier. The location of the rotor tip was defined as the point of 
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intersection of the excitation and recovery state variables for their particular values (u = 0.89; 

v = 0.50). 

All the computer simulations were carried out with use of the application developed by 

Yu.E.Elkin for investigation of autowave processes [9]. 

2. RESULTS OF COMPUTER SIMULATION 

The classical meander is considered to be two-periodic motion of the spiral wave tip, with 

the tip uniformly moving along the circumference, the center of which uniformly moves, in its 

turn, along another circumference [1-4]. During the computer simulation carried out under 

conditions described above, we found a new type of rotor behavior on which the rotor tip 

trajectory appeared loops squeezed one after another. Because these trajectories show formal 

resemblance to carnival streamers of paper, such a spontaneous halt of the rotor drift in 

homogeneous two-dimensional medium we called the lacet (which means "carnival streamers 

of paper" in the translation from French into English) [5]. In this case, the center of the 

circumference, along which the rotor tip moves, does not move uniformly, but the rotor drift 

velocity decreases, i.e. the rotor drift has some deceleration. The deceleration occurs right up 

to total cessation of the rotor drift. After the rotor drift has halted, the rotor behavior appears 

similar to the uniform circular movement. Thus the lacet is characterized by spontaneous 

transformation of the rotor behavior from its motion similar to classical two-periodic meander 

into its uniform circular movement. 

 
Fig. 1. An example of the rotor tip trajectory in the case of the rotor drift deceleration (the lacet 

type of the rotor motion). For the convenience, the trajectory is segregated into two pictures 

because some different parts of the trajectory overlap. Left side presents the rotor location at the 

moment t=979.87t.u. as well as the rotor tip trajectory within the term from t=100.00t.u to 

t=979.87t.u. Right side shows the part of the trajectory within the term from t=510.12t.u. to 

t=1510.12t.u.  
 

Figure 1 demonstrates the lacet type of the rotor behavior with a=0.180. It is clearly 
evident from the picture that the distance between adjacent loops of the rotor tip trajectory 

decreased with time. After a time the rotor drift ceased, and then the rotor tip depicted a 

circle. 

The results of the rotor drift deceleration are entirely identical for the media with size of 

128х128 and 200х200. This reason excludes the supposition that the drift deceleration was 

caused by some boundary influence. The results were also repeated when the step of 

integration has been halved, that excludes the supposition that the drift deceleration was 

caused by the computing circuit. 
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We were successful in observing the lacet during the simulations with a>0.150, with the 

duration of the rotor behavior transformation into the uniform circular movement increasing 

monotonically with increasing the initial value of a. 

With a<0.150, the autowave turned from a planar half-wave to a rotor with its stable 

circular movement after two to three rotations. 

With a>0.18035, we were not successful in observing either drift halt or any visual 

deceleration of the rotor drift during the time of observation. Figure 2 demonstrates two 

examples of the tip trajectories in the cases of a=0.190 and a=0.200. 

 
Fig. 2. Examples of the rotor tip trajectory in the case of absence of visual deceleration of rotor 

drift (the case corresponds to the concept of the classical two-periodic meander). Left side presents 

the rotor location at the moment t=1213.18t.u. as well as a part of the rotor tip trajectory in the 

case of a=0.190. Right side shows the rotor location at the moment t=596.58t.u. and a part of the 

rotor tip trajectory in the case of a=0.200. 

 

To solve a question whether the rotor motion with a>0.18035 occurs like the classical 

two-periodic meander or like the lacet, we determined to work out a quantitative description 

of the rotor drift velocity with different values of the parameter a. 

In the following sections, the quantitative method of rotor motion description is depicted 

as well as the results of comparative investigation of the rotor drift velocity in the cases of the 

meander and of the lacet are presented. 

3. APPROACH TO COMPUTING THE ROTOR DRIFT VELOCITY 

For the trajectories obtained in this simulations in both cases, the meander and the lacet, 

the rotor tip motion can be described as a superposition of two approximately circular 

motions: a rapid motion of the tip about an instant center, which in its turn slowly drifts about 

some fixed center. To measure the velocity of the instant center, we evaluated the parameters 

of either circular movement (i.e., coordinates of the centers and the radiuses) utilizing the 

least-squares method (LSM). To reveal the fixed center we used the iterative procedure as 

following. 

First, we chose an initial location of the fixed center. We sought the points of the 

trajectory in which the distance to the fixed center amounts to the local maximums. The 

envelope obtained in this manner was approximated with circumference by LSM, and the 

center of the circumference fitted was chosen as a location of the fixed center in the next step 

of iteration. The procedure was repeated until the location of the fixed center became steady. 

After finding the location of the fixed center, every section of the trajectory between the 

adjacent local maximums of the distance to the fixed center was approximated with 

circumference by LSM. The center of this circumference was assumed to be the instant center 
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in the moment equal to average value of the time in which the rotor tip passed the 

corresponding section of the trajectory. 

Using the location of the instant centers, we calculated the average speed of the instant 

center, which was assumed to be the velocity magnitude of the rotor drift. 

4. COMPARISON OF ROTOR DRIFT AS MEANDER AND LACET 

Figure 3 demonstrates dynamics of the rotor drift velocity in the cases of the meander and 

of the lacet. The velocity was calculated as it is described in Section 3 of this paper. In the 

case of the lacet (a=0.1803), the rotor made more than two rotations about the fixed center, 

performing approximately 50 rotations about the instant center, before it reached the final 

uniform circular movement. Note that no one would visually distinguish that rotor behavior 

from the two-periodic meander if the time of observation were less than about 2000 t.u. 

 

 
Fig. 3. Comparison of dynamics of the rotor drift in the case of the meander (left side) and of the 

lacet (right side). Higher row of the graphs presents the dynamics of the space coordinates (x - blue 

line and y - red one). Lower row shoes the dynamics of the velocity magnitude of the rotor drift. 

All the graphs have the same scale for abscissa. 

 

One should pay attention to an important difference in the rotor behavior in the case of the 

meander and of the lacet. In the case of the meander, the velocity magnitude of the rotor drift 

slightly increases verging towards some limiting value. In the case of the lacet, the velocity 

magnitude of the rotor drift is dramatically different. First it slightly decreases, then abruptly 

falls down and finally tends monotonically to zero. In other words, it is as if it were a 

spontaneous transformation of spiral wave behavior from the meander into the uniform 

circular rotation, with two phases of the drift deceleration being distinguished. 

Therefore, this analysis of the instant center velocity enables one to distinguish the 

meander and the lacet types of rotor tip motion even in the case that the tip drift halt (in the 

case of the lacet) is not complete during the observation. 

We suppose that the two-phase dynamics of the rotor drift deceleration in the case of the 

lacet is an interesting and important observation. But the cause of the effect stays 

incomprehensible. 
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5. APPROXIMATION OF DYNAMICS OF ROTOR DRIFT HALT IN THE CASE OF 

LACET  

When the lacet occurred, we approximated the velocity magnitude of rotor drift by the 

function: 
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Here is used the least-squares method to obtain the values of 1, 2, V0. The parameter 

1 is the characteristic time of the first phase of rotor drift halt, which corresponds to the 

departure of rotor drift velocity from the pseudo-stationary value. And the parameter 2 is 

the characteristic time of the second phase of rotor drift halt, which corresponds to the fall 

of rotor drift velocity to zero. 

Figure 4 shows an example of such approximation of the rotor drift velocity 

magnitude in the case of a=0.1803. 

 
Fig. 4. Result of approximation of the velocity magnitude of rotor drift in the case of the lacet. 

Triangles show the velocities measured, the solid line is the approximation of these values by 

equation (2). The approximation performed by the application SigmaPlot. 

6. DEPENDENCE OF CHARACTERISTIC TIMES OF ROTOR DRIFT HALT ON 

PARAMETER OF MODEL 

We observed the lacet with different values of the parameter of the Aliev-Panfilov model, 

a, which controls the excitability of the medium. Both characteristic times, 1 and 2, were 

measured for each case of our simulation when we observed the lacet. The results of the 

measurement were approximated with the following power dependence: 

 1,2

0( )n

A

a a
 =

−
 (3) 

The LSM is used to obtain the values of A, n, a0. For 1, the following values of the 

parameters in equation (3) were obtained: 

A = 19  8, 

n = 0.50  0.07,  
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a0 = 0.18036  0.00007.  

 

For 2, a similar procedure has given the following values of the parameters in equation 

(3): 

A = 172  6, 

n = 0.063  0.006, 

a0 = 0.18038  0.00005. 

Fig 5 shows the measured values of 1 and 2 for different values of the a as well as the results 

of their approximation. 

 
Fig. 5. Dependence of the characteristic times of the lacet drift halt, 1 and  2, on the parameter of 

the Aliev-Panfilov model, a. Triangles show measured 1 and  2, the solid lines are the 

approximations of these values by equation (3). 
 

Note that, for either characteristic time, the value a0 is the value of the model parameter a 

with which 1 or 2 tends to infinity. In other words, the lacet could be observed if a < a0, 

while the classical two-periodic meander exists if a > a0. One should pay attention for the fact 

that the values of a0 are almost equal for 1 and 2. Also one should note high accuracy of the 

measurement of the values. 

7. CONCLUSION 

It was shown in this work that the new type of the spiral wave behavior, which was 

discovered previously and named the lacet [5], have some essential differences from all type 

of the spiral wave behavior known before. The lacet is characterized by circular kind of the 

rotor drift with deceleration of the rotor drift velocity. 

This work describes a method to compute the rotor drift velocity in the case, when the 

drift can be described as a superposition of two approximately circular motions. We measured 

the drift velocity in the case of different values of the model parameter a. Two-phase 

dynamics of the rotor drift deceleration in the case of the lacet was revealed, and the 

quantitative descriptions of the deceleration, a characteristic time of each phase of the rotor 
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deceleration, was measured. The analysis of the instant center velocity is shown to enable one 

to distinguish the meander and the lacet types of rotor tip motion even in the case that the tip 

drift halt (in the case of the lacet) is not complete during the observation. 

The lacet was observed in a sufficiently wide range of the parameter of the Aliev-Panfilov 

model a set as an initial condition. With increasing the initial value of a, each of the 

characteristic time increases monotonically and is power-behaved. They tend to infinity when 

the parameter approaches to some critical value. When the parameter a is set to a value higher 

than the critical value, the rotor behave as classical two-periodic meander. 

Recently a phenomenon similar to the lacet was described in [10] for a simplest blood 

coagulation model consisted of a three-component set of differential equations of the reaction-

diffusion type and observed in spatially one-dimensional systems. The authors of the paper 

indicated concluded that the origin of such transitional solutions of the system of differential 

equations was related to the so-called 'bifurcation memory'. It is interesting that, in all cases, 

the authors observed effects of 'bifurcation memory' only near those parts of the boundaries 

between parametric regions where bifurcation of merging occurred. It stays vaguely whether 

the observation is accidental or regular. 

Though there is no general theory of active media yet, the available experience indicates 

that, once described, a new dynamic regime or bifurcation is thereafter found in other 

systems, even those that have been investigated for a long time. We suppose that the new type 

of rotor behavior that we found in one simple model of cardiac tissue, the Aliev-Panfilov 

model, is not unique, i.e. not specific for this model. Therefore it should be anticipated that 

the lacet will be find not only in classical and popular FitzHugh-Nagumo model, but also in 

realistic ionic models of myocardium such as described in [4, 11]. 

The disclosure of the lacet in the realistic models of cardiac tissue would be important, as 

lacet-like dynamics of an autowave can be critical in some cases of spontaneous transition 

from polymorphic to monomorphic arrhythmia [5]. Extending human knowledge about 

peculiar properties of cardiac arrhythmia will lead to more effective treatment of potentially 

life-threatening arrhythmia. 

 
A.V.M. expresses his deep gratitude to A.Yu. Loskutov and E.E. Snol' for useful discussions of 

important aspects of this research. Yu.E.E. was supported in part by Grant No. 06-07-89274 from the 

RFBR. 

REFERENCES 

1. Biktashev V., Holden A., Nikolaev E. Spiral wave meander and symmetry of the plane. 

Int. J. Bifurc. Chaos. 1996. 6(12A). 2433–2440. 

2. Elkin Yu. Autowave processes. Matematicheskaja biologija i bioinformatika. 2006. 1(1). 

27-40. http://www.matbio.org/downloads/Elkin2006(1_27).pdf (in Russian) 

3. Winfree A. Varieties of spiral wave behavior: An experimentalist's approach to the theory 

of excitable media. Chaos. 1991. 1(3). 303-334. 

4. Efimov I., Krinsky V., Jalife J. Chaos, Solitons & Fractals. Dynamics of rotating vortices 

in the Beeler-Reuter model of cardiac tissue. 1995. 5(3/4). 513-526. 

5. Moskalenko A., Elkin Yu. Is monomorphic arrhythmia monomorphic? Biophysics. 2007. 

52(2). 339-343. 

6. Aliev R., Panfilov A. A simple two-variable model of cardiac excitation. Chaos, Solitons 

& Fractals. 1996. 7(3). 293-301. 

7. Medvinsky A., Rusakov A., Moskalenko A., Fedorov M., Panfilov A. Autowave 

mechanisms of electrocardiographic variability during high-frequency arrhythmias: A 

study by mathematical modeling. Biophysics. 2003. 48(2). 297-305. 

8. Rusakov A. & Medvinsky A. Autowaves that Penetrate and then Circulate around an 

Array of Obstacles as a Mechanism of Arrhythmias in the Aging Heart. Biophysics. 2005. 

50(1). 119-123. 

http://www.matbio.org/downloads/Elkin2006(1_27).pdf


SPONTANEOUS HALT OF SPIRAL WAVE DRIFT IN HOMOGENEOUS EXCITABLE MEDIA 

MATHEMATICAL BIOLOGY & BIOINFORMATICS, 2007, v 2, №1, http://www.matbio.org/downloads/Elkin_en2007(2_1).pdf 

9 

9. Application for simulation of the autowave processes, AWM, version 1.3 beta, freeware. 

http://www.maths.liv.ac.uk/~vadim/Elkin/AW/progs.htm 

10. Ataullakhanov F., Lobanova E., Morozova O., Shnol' E., Ermakova E., Butylin A., 

Zaikin A. Intricate regimes of propagation of an excitation and self-organization in the 

blood clotting model. Physics — Uspekhi. 2007. 50(1). 89-94. 

11. Noble D. Modelling the heart: from genes to cells to whole organ. Science. 2002. 295. 

1678-1682. 
 

 

 

Received: April 25, 2007  

Published: May 21, 2007 

http://www.maths.liv.ac.uk/~vadim/Elkin/AW/progs.htm

