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Abstract. MathBrain is a cloud-based application, distributed under Software as a 

Service model. This application provides access to several algorithms of the 

multichannel encephalography data analysis. Spectral methods include direct and 

inverse Fourier transforms and quantitative analysis. Statistical methods involve 

principal component analysis and independent component analysis. The field maps 

of elementary components can be used to solve the magnetic encephalography 

inverse problem and to display the result at the magnetic resonance image. The 

application is designed to be used in human brain studies without mathematical 

training. 
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INTRODUCTION 

Magnetic encephalography (MEG) has become one of the foremost biological 

technologies addressing detailed analysis of human brain function. It is high-precision, non-

invasive method, based on passive registration of electro-magnetic activity and generating 

large amount of detailed data. Magnetic encephalograph register magnetic field for several 

minutes, in hundreds of channels with sampling frequency up to several thousand Hertz. So, 

the problem of data analysis appears a pressing challenge in the MEG technique. Many 

approaches are used to solve various scientific and diagnostic problems of encephalography. 

Fourier analysis in many implementations can be called the oldest and the most popular of 

methods used for the brain data analysis [1–3]. Through the whole history of this method it 

was connected with difficulties of calculations, so the development of the Fast Fourier 

Transform (FFT) [4] dramatically advanced the application of the Fourier analysis in many 

fields, including brain research [5]. In the quantitative electric and magnetic encephalography 

studies, trying to study patterns of the Fourier coefficients, rough spectral analysis is 

combined with statistical analysis of coherence between channels or independent components 

[6–10]. Usually in applications of the Fourier analysis to brain studies the spectra are 

calculated in short (< 10 s) time windows, based on the well-known property of instability of 

the brain processes [11]. 

Recently the method of precise frequency-pattern analysis to decompose complex systems 

into functionally invariant entities was proposed [12, 13]. The method makes it possible to 

address general spectra to the partial spectra of stable functional entities and to restore their 

time series. The method is based on the complete utilization of the long-time series, while the 

multichannel nature of the data is also completely taken into account, making it possible to 

extract elementary sources of the brain activity. It was successively applied in alpha-rhythm 

http://www.matbio.org/journal.php?lang=eng
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studies [14] and in partial spectroscopy of the brain [15]. Mathematical foundations of this 

method were implemented in the MEGMRIAn software [16].  

There are several academic software applications for the MEG data analysis, such as 

FieldTrip [17], EEGLAB [18], BrainStorm [19] and others. These software pieces were 

designed as MATLAB Toolboxes, so they cannot be used without installation of MATLAB. 

Also, due to high-complexity and large size of MEG data, to analyze such data one require 

having a computer with above the average computational power. The MathBrain cloud 

service [http://www.mathbrain.ru], proposed in this paper, is free from such limitations. It is 

based on free and open-source technologies, utilizes computational power of high-

performance cluster and can be accessed from any place, using only a web-browser. It 

provides simple and intuitive access to precise frequency-pattern analysis and other MEG 

analysis methods. The MathBrain cloud application is distributed under Software as a Service 

model. It means, that the user has access to computational facilities and to the hardware, 

installed at these facilities [20].  

The following methods of the MEG analysis are now available at MathBrain: direct and 

inverse Fourier transforms, principal component and independent component decompositions 

and quantitative analysis. Multichannel elementary oscillation, extracted in some or other 

technique, can be characterized by the map of magnetic field. From this map, the inverse 

problem solution in single dipole model can be obtained. Here we present the results of data 

processing, obtained at the experimental data set for control subject. 

MathBrain software architecture 

MathBrain consists of three main modules: 

- front-end module;  

- database and data-storage module;  

- computational back-end module.  

Each of these modules comes in its own Docker virtual container. Such implementation 

provides us with ability to easily migrate them between computational nodes and provides 

great scalability. User authentication, based on stored in database login-password pair is 

implemented. To provide security all passwords are stored as double MD5 hashes. 

Front-end module includes the web-interface written  in HTML and JavaScript languages, 

on server side there are Apache web-server, JSON-RPC sender and PHP scripts. It provides 

user with tools to create new data analysis task, review results and manage user’s data-files 

(e.g. rename, delete and change description). Web-interface utilizes power of Mpld3 library to 

provide user with rich interactive visualization tools, such as dynamically scaling plots and 

plot data pickers. JSON-RPC sender is used to provide communication between front-end and 

computational back-end. Examples of web-interface are shown in Fig. 1. 

Database and data-storage module consists of file storage and MySQL database. Database 

is used to store file descriptions, history of analysis tasks and its parameters, file ownership 

and sharing settings. At the moment, MEG time-series recordings are stored in HDF5-based 

MATLAB file format, data structure (names of fields and MEG device description format) is 

close to FieldTrip [17] file format. Processing results are stored in MATLAB file format. 

Computational back-end module consists of JSON-RPC listener/task-dispatcher script, 

SLURM resource manager and computational programs. RPC listener is a Flask application, 

responsible for communication between MathBrain’s front-end and SLURM scheduler, it is 

written in Python and uses RADICAL-SAGA library. It has the following methods: 

computational task creation, task status check and task cancellation. Usage of RADICAL-

SAGA library allows us to use local SLURM-cluster as well as external cloud computational 

services, such Amazon EC. Computational programs are written in Python, using Scipy [21], 

Numpy [21], scikit-learn [22] and FFTW3 [23] libraries.  
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Fig. 1. Web-interface examples: a) – file upload form; b) – parameters for MEG inverse problem. 

 

 

Data analysis workflow performs the following steps. 

1. User logs in MathBrain service, using his login and password. After login, “my files” 

tab is showed, on which one can review existing files and upload new. 

2. After clicking on “Upload new file” button, pop-up form with file selection dialog, 

type selection and comments text-box is shown. User selects file on his hard drive, selects 

proper type, enters comments and presses “Upload file” button. File starts to upload to server. 

After transfer is complete, pop-up form closes. Uploaded file receives unique name and ID, 

then it’s ID, original name, type, comments, and file system path are added to database. From 

this moment, uploaded file is available for analysis. 

3. From tabs at top side of the page user selects analysis method. On corresponding tab 

user selects file to analyze and enters analysis parameters. After clicking on “Process” button 

analysis process starts. It consists of the following steps: 

- RPC-sender transmits processing parameters and file ID to computational back-

end; 

- RPC-listener creates and submits computational task to the queue, adds task record 

to the database; 

- input file is transferred to assigned computational node, and task is executed, output 

file is transferred to file storage, database entry for output file is added;  

- results are available for viewing and downloading at “my tasks” tab. 

Experimental data description 

The complete set of the experimental data for brain studies consists of the magnetic 

encephalogram (MEG) and magnetic resonance image (MRI) of the subject's head. The 

inverse problem solutions, to be physiologically interpreted, must be plotted at the MRI. 

During the MEG recording, three fiducial markers are applied for the correct localization of 

the head. In this article, we use MEG and MRI for one control subject, obtained in the brain 

spontaneous activity study in the Center for Neuromagnetism of New York University School 

of Medicine [13, 14]. The MEG data were recorded with a 275-channel synthetic third order 

gradiometer (VSM MedTech LTD) in a magnetically shielded room, sampling rate was 1200 

Hz. The NYU Institutional Review Board approved the study and an informed written 

consent was obtained from subject before the MEG recording. The subject was asked to relax 

but stay awake with eyes closed during 7-minute recording period. 
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Inverse problem solution 

The inverse problem solution in MEG addresses the finding of the magnetic field sources 

from the known values of magnetic induction at some sensors on the head surface. To solve 

this problem, the following function depending on the magnetic field sources is minimized: 

0 2
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N

i i i

i

f B B
=

=  − → .     (1) 

Here 0

iB  are the values of the magnetic induction measured by the sensors, Bi are the relevant 

values from forward field modeling, ωi are the sensors’ weights, and N is the number of 

sensors. In terms of spectral-based approach 0

iB  are the values of restored MEG channels at 

selected frequency at given moment of time. Provided with the initial guess, the dipoles 

location is determined b y standard mathematical methods designed for searching the local 

minimum of the function of several variables. Since in this case the information on the 

derivatives of the function being minimized is difficult to obtain, the zero-order methods were 

selected. Namely, the Nelder-Mead simplex method [25] is used for minimization. As forward 

field model, we use equivalent current dipole model in conducting sphere [26]. The results of 

this procedure are dipole coordinates and direction. These results are shown superimposed at 

subject’s MRI. In this article, the inverse problem was solved from the field maps, extracted 

by methods of the data analysis, presented at the MathBrain. 

Fourier transform 

Direct and inverse Fourier transforms are the basic methods for the analysis of MEG time-

series. Multichannel magnetic recording can be presented as the set of discrete experimental 

vectors { }lB , where l is the number of registration channel. The instantaneous field values 

  ( )lB i  are registered at the time moments 0;    0,   ,  1  ;     0.i i N   =  −  =  Discrete-time Fourier 

transform of these vectors is defined as: 
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Since our input vectors are real-valued, we use only first / 2N  components of DFT. Phase 

and amplitude of corresponding sinusoidal component of Fourier series can be defined as: 

( ) ( )( ) 2( ( , ( )l l lk atan Im b k Re b k = ,    (3) 
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where ( )( )  lRe b k  is the real part of ),(lb k  and ( )( )lIm b k  is the imaginary part. The 

frequencies of this transform are: ;  0, ,
2

k
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, where 1NT −=   is the length of the 

recording. 

The MathBrain service makes it possible to study the detailed frequency structure of the 

brain, restoring multichannel signal at every frequency and analyzing the field maps obtained. 

The multichannel signal is restored at the particular frequency in all channels: 
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The summarized instantaneous power produced by all channels is: 
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The field map for the inverse problem solution is selected at the moment of maximal 

power  

( ) , 1, , .lk max lB n L =        (7) 

Selection of the frequency, maximal power field map and inverse problem solution are 

illustrated in Fig. 2. 

 

Fig. 2. a – Multichannel spectrum in the alpha-rhythm frequency band. Frequency to be analyzed is 

shown by arrow. b – Magnetic field map for the moment of maximal power. c – Inverse problem solution 

(red circle) shown at the MRI tomographic sections. 

 

To calculate the direct and inverse Fourier transforms we are using Python wrapper for 

FFTW3 library [23, 24]. User can specify output frequency band, in this case all coefficients, 

corresponding to frequencies lower than user-selected lower bound are filled with zeroes, 

frequencies higher than upper-bound are truncated. Inverse Fourier transform is used for 

restoration of time-series from spectrum. It can be computed on selected time-frame or on the 

whole length of the original time-series. Also at this stage one can select frequency band for 

restoration. Restored time-series can be used in further PCA and ICA analysis. 

Karhunen-Loeve transform 

Discrete Karhunen-Loeve transform [27, 28] or principal component analysis is 

multivariate signal processing technique widely used in neuroimaging to decompose a 

multivariate dataset in a set of successive orthogonal components that explain a maximum 
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amount of the variance. Let ( )1 2        
T

Nb b b= B , were N is number of channels, 
nb  is the 

experimental vector of the magnetic recordings in the 𝑛-th channel. Principal component 

transform of B is: 

,TY =Φ B       (8) 

where ( )1 2      
T

N=    Φ  is the orthonormal matrix, consisting of   n  – eigenvectors of the 

following covariance matrix: 

Σ ,   , {1, , }ij i jB B i j N   =      E .    (9) 

In MathBrain the Karhunen-Loeve transform is applied to multi-channel MEG time-series 

in “temporal” variant, i.e. variance is intended in the domain of temporal observations 

whereas the number of channels defines the original dimensionality of the multivariate data 

set. The principal components can be used as input field-maps for the inverse problem 

solution, as is illustrated in Fig. 3. 

 

 
Fig. 3. a – Projection of the MEG at the first (most powerful) principal component. Time moment to be 

analyzed is shown by red cursor. b – Magnetic field map for the selected time moment. c – Inverse 

problem solution (red circle) shown at the MRI tomographic sections.  

Independent Component Analysis 

Independent component analysis (ICA) is a statistical and computational technique for 

revealing hidden factors that underlie sets of random variables, measurements, or signals. It is 

well known in neuroimaging and MEG data processing and is used to separate mixed signals. 

Let ( )1 2    
T

Nb b b= B , where N is number of channels, bn is an experimental vector of the 

magnetic recordings in the n-th channel. Independent component decomposition for B is:  
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=X WB       (10) 

Where X  is set of independent components and W  is unmixing matrix. To calculate 

unmixing matrix we use FastICA algorithm [29], implemented in scikit-learn library [22]. 

From independent components and mixing matrix one can reconstruct multichannel time-

series for each of independent components and solve the inverse MEG problem (see Fig. 4).  

 

 

 
Fig. 4. a – The most powerful independent component. Time moment to be analyzed is shown by red 

cursor. b – Magnetic field map for the selected time moment. c – Inverse problem solution (red circle) 

shown at the MRI tomographic sections.  

 

Quantitative analysis 

The quantitative analysis of encephalography data is performed by direct Fourier 

transform in user-defined moving time-window of MEG time-series. As the result of this 

analysis, one-dimensional power spectrogram (sum of powers in all channels in 

corresponding frequency bin) is produced, this is used to evaluate spectral changes of signal 

value during the time of measurement. 

From the spectrogram one can select the time moment and frequency to be analyzed. Then 

the one-frequency MEG can be reconstructed, using (6), and the field map (7) can be selected 

for inverse problem solution (See Fig. 5). 
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Fig. 5. a – The spectrogram, calculated in 15 second time-window. Time moment and frequency to be 

analyzed is shown by white arrow. b – multichannel spectrum for selected time moment. Frequency to be 

reconstructed is shown by black arrow. c – Magnetic field map for the reconstructed MEG. d – Inverse 

problem solution (red circle) shown at the MRI tomographic sections.  

 

CONCLUSIONS 

The cloud service MathBrain was developed, providing several MEG data processing 

methods. In this article, we have used these methods for the analysis of the real data set for 

the control subject, including MEG and MRI. The alpha rhythm frequency band (8–12 Hz) 

was selected, containing powerful broad peak for the «Eyes closed» condition of the subject 

(See Fig. 2,a). Using inverse Fourier transform, we have reconstructed MEG in the band 

8–12 Hz, and further analyzed it using all methods of the MathBrain service.  

The main problem of the multicomponent analysis methods is to find the criteria for 

component selection. Here we used the criterion of maximal power, in every method picking 

the strongest components for inverse problem solution. It can be concluded, that results of 

various methods are substantially similar, and generally correspond to present knowledge 

about the alpha rhythm localization. Variations between methods can be explained by the fact, 

that alpha rhythm is generated by many sources, covering rather broad space (5–8 cm), see 

[14]. 

Further development of the MathBrain service will include methods of integrated analysis, 

such as Functional Tomography [12–14], Partial Spectroscopy [15] and connectivity analysis. 
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