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Abstract. The main experimental limitation of biological crystallography is 

associated with the need to prepare the object under study in the form of a single 

crystal. New powerful X-ray sources, namely free-electron X-ray lasers, makes it 

possible to raise the question of the determination of the structure of isolated 

biological macromolecules and their complexes in practice. An additional 

advantage of working with isolated particles is the possibility to obtain information 

about scattering in all directions, and not only in those limited by the Laue-Bragg 

diffraction conditions. This significantly facilitates the solution of the phase 

problem of X-ray diffraction analysis. This paper is devoted to two lines of 

development of the method for solving the phase problem, proposed earlier by the 

authors, which is based on the random scanning of the configuration space of 

potential solutions of the phase problem. The paper suggests a new criterion for the 

selection of "candidates" for solving the phase problem in the process of scanning. 

It involves the maximization of statistical likelihood, and its effectiveness is shown 

in test calculations. The second line concerns the choice of the optimal scanning 

strategy. It is shown that the gradual expansion of the set of experimental data used 

in the work allows obtaining solutions of a higher quality than those obtained with 

all available data included into the work simultaneously from the beginning. 

 
Key words: X-ray crystallography, the phase problem, XFEL, single particle diffraction. 

 

1.THE SOLUTION OF THE PHASE PROBLEM FOR ISOLATED PARTICLES BY 

SCANNING THE CONFIGURATION SPACE OF PHASE SETS 

Putting the new generation X-ray sources, X-ray free-electron lasers (XFEL), into 

operation allows one to pose new goals in studies of the structure of biological objects [1–7]. 

One of these tasks is the development of approaches to the study of isolated biological 

particles (Single Particles) by X-ray diffraction [8–16]. These approaches make it possible to 
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remove the main limitation of X-ray crystallography, namely, the necessity of preparing the 

sample in the form of a single crystal. Another important feature of the work with isolated 

particles is the possibility to measure the intensity of scattered waves for all possible 

directions of scattering. Note that, in experiments with crystals, the measurement of the 

intensity of scattered waves is limited by a discrete set of directions determined by the 

parameters of the crystal lattice. 

As in traditional X-ray crystallography, an X-ray experiment with an isolated particle 

allows one to obtain only the values of the modulus    3RF ss  of the complex Fourier 

transform of the function  r  that describes the distribution in the three-dimensional space 

of the electrons of the object under study. The value of the phase part    3R ss  is lost in the 

measurement process, which prevents the direct retrieval of the electron density distribution 

by calculating the inverse Fourier transform: 

          
3

,2expexp

R

dViiF srsssr ,                                     (1) 

where 

          
3

,2expexp

R

dViiF rrsrss .                                    (2) 

This leads to the central problem of diffraction methods, namely the phase problem, i.e., to 

the problem of restoring the phase part of the Fourier transform. A similar problem, the 

recovery of the function from the moduli of its Fourier transform, is also encountered in 

optics [17] and is called the phase retrieval problem. Until recently, the development of 

methods for solving this problem in crystallography and optics was largely independent, and 

similar approaches in these areas had different names. Here, we will adhere to the 

crystallographic terminology. 

The scheme of an X-ray experiment is shown in Figure 1. In the theoretical analysis, the 

direction of the X-ray beam and the direction "from the object to the detector" (given by 

vectors of unit length σσ ,0 ) can be considered as variable parameters. In practice, however, 

the direction 0σ  of the initial beam is fixed, and additional variation of the conditions is 

accomplished by rotating the object under investigation around the original beam. Within the 

framework of the kinematic theory of scattering, the intensity of the scattered wave proves to 

be proportional to the square of the modulus of the Fourier transform (2) calculated at the 

point s, which is defined as a combination of vectors σσ ,0  and the wavelength   of X-rays: 




 0σσ

s .                                                               (3) 

This vector is called the scattering vector. It should be noted that, theoretically, the 

experiment makes it possible to measure the values of the function    3RF ss  not for all 

values of the scattering vector s , but only for a limited range of its values:  2s . In 

practice, this zone is further limited by maxss . The value maxmin 1 sd   is called the 

resolution of the collected data set and is determined by the characteristics of the initial beam, 

the detector, and the experimental conditions. The approximate distribution of the electron 

density, calculated from formula (1) with the use of the restricted data set, is called the 

Fourier synthesis of the electron density of the resolution mind . It can contain distortions, such 

as the series of "termination waves" and "blurring" of density peaks. The resolution of the 

Fourier synthesis determines the size of the minimum details that can be visually discerned 

when analyzing the synthesis [18]. 
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Fig. 1. Scheme of X-ray diffraction experiment. 

 

The sampling of experimental data on a uniform grid with a1  step (where the size a  

exceeds the linear dimensions of the particle under study) allows us to consider them as a set 

of the magnitudes of the structure factors (Fourier coefficients) for an imaginary crystal (with 

the length a  of all unit cell sides) and apply the rich toolbox of biological crystallography for 

solving the phase problem [19, 20]. In more detail, let V  be an elementary cell (cube with a  

side) chosen so that the particle under investigation lies inside it, and V  is the volume of the 

unit cell. Let  r  be the function that describes the distribution of the electron density inside 

the particle under study and is equal to zero outside the particle. Let  cryst r  be a periodic 

function which has periods a  along the axes of the unit cell and which coincides with  r  

inside V . In this case, the function  cryst r  can be calculated as the sum of the Fourier series 

       cryst 1
exp exp 2 ,F i i

V 

          
s

r s s s r ,                                  (4) 

where 

          
V

dViiF rrsrss ,2expexp                                       (5) 

are the structure factors, and   is the a1  – spaced grid. The nodes of this lattice are called 

reflexes. The difference from the case with an ordinary crystal is that, by choosing a 

sufficiently large value a , we obtain the function  cryst r  equal to zero almost everywhere in 

the unit cell. This creates a significant redundancy of the experimental data and forms the 

basis for solving the phase problem [19, 21–26]. 

The main approach to the practical use of data redundancy created by the presence in the 

unit cell of a large region of zero electron density values is the implementation of a wide class 

of iterative methods [27–33]. If the parameters of the methods and the starting point are 

selected successfully, these methods can lead to fairly accurate solutions. However, these 

methods work locally, and their stability and convergence to a correct solution may require 

the choice of parameters that is not obvious. A supplement to the local refinement procedures 

can be the use of global procedures for scanning the configuration space of possible solutions, 

which help in choosing the initial approximation. In this paper, we investigate one such 

procedure for the random scanning of a configuration space, which was originally proposed in 

[34] and developed further in [13–15, 35–37, 20]. The procedure is shown in Figure 2. 
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Fig. 2. Scheme of the procedure for random scanning of a configuration space of phase sets. 

 

The main cycle consists in the generation of a large number of random phase sets, the 

selection of those that lead to reasonable electron density distributions, and the alignment and 

averaging of the selected variants. At the same time, the choice of the criterion of "suitability" 

is crucial for the implementation of the approach. The generation of random variants can take 

place without using additional information on phase values (in the first cycle of the 

procedure) or with the use of any information on the probability of phase values obtained in 

previous cycles. When generating random phase sets, the phase values can be generated 

independently or calculated using models that reflect the expected properties of real electron 

density distributions in biological objects. In this case, some preliminary models are 

accidentally generated from which the phases of structural factors are further calculated. In 

this paper, we consider the procedure in which the generated objects are connected binary 

masks of the region occupied by the object [20–37]. These masks  rM  are binary functions 

(with values of 0 or 1) on the grid in the unit cell, which have the connectivity property of the 

mask region, i.e., of the set of points in which the value is equal to 1. Such masks reflect two 

important properties of real electron density distributions in biological macromolecules. First, 

the presence of extended polypeptide chains or DNA chains leads to a connectivity of the 

region of high electron density values or, at least, to the presence of a small number of 

connected components [38]. Binarity underlies the interpretation of electron density 

distributions when points of space are divided into those belonging and not belonging to the 

object. Earlier it was shown that both of these properties allow the selection of acceptable 

solutions separately and together. Especially promising was the use of these properties at the 

level of model generation. 

Once generated, the mask  rM  can be used to calculate the sets of structure factor 

magnitudes  maskF
s  and the values of phases  masks  corresponding to the mask structure 

factors in accordance with (5). The degree of similarity of the calculated and experimental 

structure factors magnitudes can serve as an indicator of the quality of the mask and, 

accordingly, of the accuracy of phases corresponding to the mask, when the exact phase 

values in a real study are unknown. In previous works [20, 37], the correlation coefficient of 
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these values was used as a criterion for the correspondence of two sets of structure factor 

magnitudes 

   

mask obs

2 2
mask obs

F F

CM

F F




 

s s

s

s s

s s

.                                                (6) 

In this paper, we investigate the possibility of using a new type of the selection criterion, 

namely, the value of the mathematical expectation of phase correlation when the generated 

mask is used as a prior distribution for the coordinates of an atomic model of the object under 

study.  

2. MASK QUALITY INDICATORS BASED ON THE MAXIMIZATION OF THE 

LIKELYHOOD 

The use of statistical likelihood as a criterion for selecting solutions was discussed earlier 

in [36], where a laborious simulation procedure was used to calculate the likelihood. In this 

paper, a significantly less time-consuming procedure is proposed, which is based on the use of 

the diagonal approximation of the likelihood function [39–42]. 

Suppose that an atomic model is randomly generated inside a mask region. For the 

particular mask and scattering vector s, the joint probability distribution for the modulus and 

phase of the complex structure factor F  calculated from the atomic model, in the framework 

of the approximation of the central limit theorem of theory of probabilities, can be presented 

in the form  

 
 

 
2

2 mask mask
mask, exp exp 2 cos

F FF FF
P F

         
    
 

.               (7) 

Here,   and   are the parameters specific for each reflection, which accumulate 

uncertainties in the choice of the model. For some simple cases of the uncertainty, the 

parameters   and   can be written out explicitly [41], while in the general case they are to 

be determined. In many cases, these parameters vary little within groups of reflections 

  jjj sss:sS  where   is small ("shells" in the reciprocal space) and, therefore, can 

be considered to be constant in the shells. With the availability of experimental data  obsF
s , 

the values of the parameters   and   for the shell jS  can be determined from the maximum 

likelihood principle by maximizing the function 

   obs, ; , max
j

FL P F


      s

s S

.                                       (8) 

Here,  ,;FPF  is the distribution of the structure factor magnitude that can be obtained by 

integrating (7) over the phase  

 
 

2
2 mask mask

0

2
; , exp 2F

F FF FF
P F I

    
      
    
 

,                              (9) 

and distributions corresponding to different reflections s  are supposed to be independent ("the 

diagonal approximation" of the likelihood function [39–42]), 0I  is the modified Bessel 

function of the zero order. 
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After the optimal values of the parameters j̂  and j̂  have been determined for all shells, 

it is possible to calculate the likelihood value taking into account all the reflexes and use it 

(or, rather, its logarithm) as an indicator of the quality of the mask. However, it seems more 

convenient to use as a selection criterion the derivative characteristic, namely, the 

mathematical expectation of the coefficient of phase correlation. The distribution (7) makes it 

possible to write out the conditional distribution of phase values, provided that the value of 

the modulus is equal to the value observed in the experiment  

 
 

 
obs mask

obs mask

obs mask

0

ˆ1
exp 2 cos

ˆˆˆ2 2

F F
P F F

I F F


 
    

      
 

.      (10) 

The last distribution allows the calculation of 

 
 

 
1mask obs

0

cos
I T

c F F
I T

    
s

s s s s s

s

   ,                                     (11) 

obs maskˆ
2

ˆ

F F
T






s s s
s

s

                                                         (12) 

and the conditional expected value of the phase correlation coefficient 

 

 

2
obs

2
obs

CP

F c

E
F






s s

s

s

s

.                                                        (13) 

This value can be used as a criterion for the selection of acceptable masks. In this paper, we 

will discuss the possibility of solving the phase problem with this criterion with the use of 

different protocols for scanning the configurational space. 

The results of testing several work protocols are given below. The first problem being 

investigated was the choice of the strategy for the inclusion of the data into the work. In the 

biological crystallography, by convention, the data are included into the work progressively, 

with a gradual expansion of the data set used. An alternative is the simultaneous inclusion in 

the work of all available data. 

The second problem is related to the construction of the prior probability distribution for 

the mask generation. Following [20], this probability distribution is built in the form: 

   










 rr

minmax

ln
exp

t
Cp ,                                                (14) 

where C is the normalizing factor,  r  is an approximate electron density distribution 

obtained at the previous step, t  is the parameter that regulates the contrast of the probability 

distribution  rp :  

minmax ppt  .                                                              (15) 

We compared two simplest ways of building such distribution which are based on the results 

of the selection of acceptable masks from randomly generated masks. Let 

        mask mask mask

1 2, ,..., K  s s s  be the phase sets corresponding to the masks that were 

selected during the generation process and, then, optimally superimposed by shifts and a 

change of enantiomers (below, this operation will be called optimal alignment [20]). We 

define “the best phases” and “the figures of merits” by the formula: 
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     best mask

1

1
exp exp

K

k

k

m i i
K 

        s s s                                             (16) 

As an approximation to the electron density values, we will consider two types of the 

synthesis Fourier, not weighted   

       obs best1
exp exp 2 ,u F i i

V
        

s

r s s s r                                (17) 

and weighted  

         obs best1
exp exp 2 ,w m F i i

V
        

s

r s s s s r .                           (18) 

As is easily seen, the weighted Fourier synthesis is nothing else but the arithmetic mean of the 

synthesis calculated using experimental modules and alternative variants of the phase values. 

In this study, two strategies for constructing the prior distributions (15) used in the mask 

generation procedure were compared. The strategy with the simultaneous use of all reflections 

during all calculations was tested in two variants, with two different types of Fourier synthesis 

(17) and (18). 

3. TEST OBJECT AND CONDITIONS OF TESTING  

The criteria for the mask selection were tested using the known structure of the 

monomeric form of Photosystem II (Thermosynechococcus elongatus photosystem II, [43], 

PDB entry 3KZI [44], below PS-II) as a testing object. This complex contains 19 protein 

subunits and multiple cofactors, which comprises in total about 25 000 non-hydrogen atoms. 

The molecular weight of PS-II from PDB is approximately equal to 360 KDa. Below, this 

value was used to estimate of the specific volume of the region of the molecule. The external 

dimensions of the monomer are approximately equal to 100 Å. An overall structure of the 

complex is shown in Figгку 3. 

The unit cell dimensions of the imaginary crystal were chosen to be 200 × 200 × 200 Å, 

and, from the atomic coordinates, a set of the structure factors     obs true,F s s  of a 

resolution 16 Å was calculated (The total number of reflections was 4108). The magnitudes of 

these structure factors were considered in the tests as the experimental information about the 

object, and the values of phases   true s  were used only for the control of the results. At 

every step, random masks were generated until 100 masks satisfying the imposed restrictions 

were accumulated. The value of the contrast t in the distribution (14) was 10
6
. 

The accuracy of the phase determination was characterized by the coefficients of the 

correlation of the Fourier syntheses with the experimental values of the moduli and the phase 

sets being compared at different resolution zones [20]. In terms of the structure factors values, 

these correlation coefficients can be presented in the form  

     
       

  

2
obs true

max min 2
obs

cos

,

F

CP d d
F





 

 



s S

s S

s s s

s
s

.                             (19) 

Here, the summation is over the structure factors with  minmax 11: dsd  sSs ,   s~  is 

the phase set obtained from the set being evaluated by its optimal alignment relative to 

  true . s  In tests 2 and 3, the alignment was performed over all reflections of the zone ∞ – 

16 Å; in test 1, the upper limit was dependent on the step of the procedure (25, 20, 16 Å, 

correspondingly).  



THE USE OF CONNECTED MASKS FOR RECONSTRUCTING THE SINGLE PARTICLE IMAGE – III 

t77 

Mathematical Biology and Bioinformatics. 2018. V. 13. № S. doi: 10.17537/2018.13.t70 

 

Fig. 3. PS-II. The protein part of the complex is shown in green, the cofactors are shown in orange. 

 

One of the crucial parameters in the method is the size of generated masks or, what is the 

same, the hypothetical volume of the particle. Here, we characterize the supposed size of the 

region either by the number of the points inside a mask, or by a specific volume defined as the 

ratio of the volume of the region (in Å
3
) to the molecular mass of the particle (in Da). In 

crystallography, upon estimation of the percentage of the solvent in the unit cell, the specific 

volume of the molecule region is conventionally taken to be 1.23 Å
3
/Da [45, 46]. However, 

this estimate is not optimal for low resolution studies, when the borders of the molecule 

region are significantly smoothed. Therefore, in this study, the specific volume of the 

molecule region was taken to be 1.33 Å
3
/Da. As a result, the grid and the number of the points 

inside the mask were determined at the resolution of 25, 20, and 16 as (24 × 24 × 24, 831), 

(30 × 30 × 30, 1623), and (40 × 40 × 40, 3847), correspondingly.  

4. THE RESULTS OF TESTS 

4.1. Test 1 

In biological crystallography, the determination of the structure of the model goes usually 

through several stages with a gradual increase in the amount of the experimental data used 

[47]. According to this rule, the phase values were sequentially reconstructed in three stages, 

with the quantity of data at each stage being doubled. At the beginning, we used a set of 

reflections of the resolution 25 Å (1054 reflections, steps 1–5). At the next steps, the 

resolution was increased to 20 Å (2082 reflections, steps 6–10) and, then, to 16 Å (4108 

reflections, steps 11–16). At the first step, the masks were generated with the uniform prior 

probability distribution. At the next steps, we used the probability distribution (14) with the 

value of the contrast t = 10
6
 and not weighted synthesis (17) being built from the results of the 

previous step. In Figure 4, a change in the value of phase correlation with the exact phases for 

the different shells in the reciprocal space during the whole procedure is shown. Table 1 

contains the values of the correlation between the final phase set and the exact phases for the 

extending zones and shells in the reciprocal space.  
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Fig. 4. A change in the value of phase correlation with the exact phases during the solution of the phase 

problem. The values calculated by the formula (19) are shown for different intervals dmin – dmax. 

 
Table 1. The quality of the final data sets. The value of the phase correlation is given (in 

percent). 

 Resolution zone dmax – dmin (Å) 

∞–60 ∞–40 ∞–30 ∞–25 ∞–20 ∞–16 60–40 40–30 30–25 25–20 20–16 

Test 1 100 100 99 99 99 98 97 95 92 85 71 

Test 2 100 100 99 99 98 96 97 94 89 72 54 

Test 3 100 100 99 99 98 97 98 93 87 83 66 

Number refl 

in the zone 
85 255 618 1054 2082 4108 170 363 436 1028 2026 

 

4.2. Test 2 

In the second test, all reflections of the resolution zone ∞–16 Å were included in the work 

simultaneously. Figure 4 shows a change in the value of phase correlation with the exact 

phases for different shells in the reciprocal space at different steps of the test. The 

corresponding values of the correlation between the final phase set and the exact phases for 

extending zones and shells in the reciprocal space are shown in Table 1. 

4.3. Test 3 

In the third test, an intermediate strategy was used. Formally, all reflections were 

involved, but for the construction of the prior probability distribution, the weighted Fourier 

synthesis (18) was used. Because the figures of merit (16) for the shells of the high resolution 

at initial steps are small, the high-resolution reflections were not involved in the calculation of 
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prior distributions. At the same time, the selection criteria were calculated using all reflections 

of the zone 16 Å. Figure 4 and Table 1, along with the results of the previous tests, give the 

results of Test 3.  

 

    
 

    
 

Fig. 5. "An ideal" Fourier synthesis at a resolution of 16 Å (on the left) and the synthesis calculated with 

the phase values obtained at the 16
th

 step in test 3 (on the right). The syntheses are superimposed with the 

model of PS-II. The specific volume of the object region shown is 1.23 Å3/Da. 

 

The final Fourier synthesis obtained in Test 3 and an “ideal” Fourier synthesis calculated 

using the exact phase values at a resolution of 16 Å are shown in Figure 5. 

5. CONCLUSIONS 

Our results have shown that the use of the new type of the selection criterion allows one to 

solve the phase problem in X-ray diffraction studies of single particles. The number of the 

determined phase values increased two times in comparison with the tests performed in the 

earlier studies based on the previous criterion, the correlation coefficient of magnitudes [20–

37].  

A gradual increase in resolution in calculations of prior distributions and the selection 

criterion gives better results compared with the simultaneous use of all reflections. 

The study has shown that in the case of all reflection included into the work 

simultaneously, the use of weighed syntheses in the calculation of the prior distribution leads 

to the convergence to the solution for highest-resolution reflections that is faster than the 

convergence achieved with the use of non-weighted syntheses. Another advantage of this 

approach is that it automatically takes the reflections of the highest resolution shell into the 
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work, in accordance with the increasing reliability of the corresponding phase information and 

does not demand a manual intervention and an expert evaluation. 
This work was supported by the Russian Foundation for Basic Research (project 16-04-01037a). 

The calculations were performed at the multiprocessor computing complex K100 of Keldysh Institute 
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