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Abstract. In this paper we present an algorithm to filter amplicon paired-end NGS 

raw data which is used to capture genetic and taxonomic diversity of communities 

of unicellular microorganisms. The suggested approach allows one to overcome the 

issue of massive data loss during filtration of raw sequences and increases the static 

representativeness of analyzed amplicons. Furthermore, an unequal elimination of 

sequences belonging to different taxonomic groups was shown to occur if one 

applies standard trimming methods based on filtration of quality of raw reads, for 

instance, using sliding window approach. This bias may result in a skew of taxon 

counts and depletion of taxonomic diversity of analyzed communities. The 

suggested method does not introduce the errors of this kind. The implementation of 

the algorithm in R as well as a number of example files for analysis is available at 

https://github.com/barnsys/metagenomic_analysis. 
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INTRODUCTION 

Metagenomic analysis conducted on the basis of Next-Generation Sequencing of 

amplicons is widely used to study taxonomic diversity of microorganisms (Petrosino J.F., et 

al, 2009; Kim M., et al, 2013). Different targets, such as fragments of 16S and 18S rRNAs, 

protein-coding genes, and neutrally evolving sequences are analyzed to produce amplicon 

libraries using total DNA isolated from environmental samples. The length and count of reads 

are important parameters that should be taken into account in order to obtain statistically 

sound results. Illumina MiSeq instrument with v.3 500 cycles sequencing kit producing 

paired-end reads is a popular solution for amplicon metagenomic studies (Quail M.A. et al. 

2012). Theoretically, using this approach, analysis of contiguous gene fragments of the length 

up to 500 bp can be performed.  

Raw NGS data processing approaches can fall into one of the two major strategies (Kim 

M., et al, 2013): 

1) Generation of sequence groups – Operational Taxonomic Units (OTUs) – which is 

performed on the basis of similarity of analyzed DNA fragments and their subsequent 

clustering; when performing comparative analysis of different communities, OTUs can be 

thought as groups of sequences representing a taxon of specific rank. 

2) Direct classification of sequences using a reference database. 

Both strategies are based on comparing sequences to an external database to assign query 

sequence to a specific taxon: the representative sequences of OTUs can be generated and used 

for taxonomic identification. However, OTU approach allows decreasing data dimensions by 

several orders of magnitude, making the subsequent analyses easier. 

http://www.matbio.org/journal.php?lang=eng
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Accuracy of genetic distance measurement is an important factor, influencing the results 

of the OTU clustering. Biases of distance calculation may be introduced at any stage of 

sample preparation, sequencing, and data processing prior to clustering. For instance, 

“species-like” clustering distance, which is widely used for analysis of bacterial 16S rRNA 

amplicon sequences, is assumed to be 0.03. Applying this threshold, two 500bp sequences 

should differ by at least 15 positions to be assigned into different OTUs. Obviously, 

sequencing errors will introduce uncertainty in clustering results. 

A major drawback of Illumina sequencing reagents producing long reads (more than 

2 × 150bp) is a significant sequencing quality drop to the end of forward and reverse reads. 

This results in errors at the OTU generation stage which, in turn, may affect conclusions 

drawn from the comparison of the communities. Therefore, filtration of sequencing errors 

should be performed prior to clustering stage. Common methods to filter raw sequencing 

reads (Morgan, M., et al, 2009; Bolger A.M., et al. 2014) on the basis of quality scores 

generated by the NGS instrument are 1) cutting several positions from 5'- and 3'-ends of the 

read if these regions contain bases below the quality threshold, and 2) sliding window 

approach, when the sequencing quality is assessed within the region of read of defined length; 

the downstream part of sequence is trimmed once the average quality in current region falls 

below threshold. During filtration, too short reads are also removed from the resulted dataset. 

For paired-end data, filtration can be performed either after or before generation of consensus 

sequences from forward and reverse reads. In the former case, if length of amplicon exceeds 

read length by 50–80 %, the middle parts of consensus sequences will contain regions of low 

quality and trimming such sequences using sliding window approach will drop considerable 

portion of data. If the trimming is performed before generation of consensus sequences, a 

significant number of reads are truncated by 3'-end, resulting in no overlap between forward 

and reverse reads to be stitched. Therefore, standard trimming procedure may result in 

significant reduction of analyzed dataset. 

As noted earlier, several factors may result in bias of community composition in amplicon 

metagenomic studies (Zhou J., et al, 2011). First, members of analyzed community may bear 

non-equal number of copies of the target gene. Second, at the stage of total DNA isolation 

from environmental sample, skew could result from non-uniform efficiency of unsealing and 

capturing the DNA from different microorganisms by the method used. Third, the 

performance of amplification of gene marker sequences could differ as a result of PCR 

settings, primer efficiency, differences in GC-content and secondary structure of target 

sequences belonging to specific taxon, etc. Finally, biases could be introduced by data 

analysis pipeline. 

One of the possible reasons for the latter type of the artifact is as follows: marker 

sequences from different taxons may have different lengths resulting from accumulation of 

indels in the course of evolution; due to Illumina MiSeq properties, long sequences tend to be 

sequenced poorly and have higher chances to be dropped during filtration and trimming than 

the short ones. Thereby, during the pre-clustering stage, there could be non-equal elimination 

of sequences representing different taxons. To date, consequences of such bias were not 

studied. 

In the present work we suggest a simple algorithm of filtration and trimming developed 

for raw paired-end NGS amplicon metagenomic data. This trimming procedure optimizes the 

number of sequences to drop off and the length of analyzed fragment. It helps to avoid 

significant data loss in terms of both number of fragments per amplicon and the length of 

analyzed fragment, assists in finding an acceptable trade-off between these two parameters, 

and increases the accuracy of metagenomic studies. 
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DESCRIPTION OF ALGORITHM 

The key idea implemented by this algorithm lies in elimination of several positions from 

the sequence alignment under analysis, rather than deletion of whole sequences containing 

low quality regions. In this filtering strategy, slight alignment length reduction is 

accompanied by a significant increase in the number of sequences retained for further 

analysis. Additionally, elimination of alignment positions with poor quality reduces errors in 

genetic distance measurement. 

 

 

Fig. 1. Scheme of the trimming algorithm. 

 

The proposed algorithm includes the following stages:  

1. Generation of the consensus sequences from paired-end reads. Optionally, filtering 

paired-end reads can be performed to remove too short or too long sequences, not suitable for 

analysis. We generated consensus sequences using FLASH program (Magoč T., Salzberg 

S.L., 2011), which is widely used in amplicon metagenomic studies (Fosso B., et al, 2015; 
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Tennant R.K., et al, 2017). Prior the next stage, fastq-file with consensus sequences should be 

converted into fasta format. 

2. Sequence alignment. We generated 16S rRNA sequence alignment using Mothur 

package (Schloss P.D., et al, 2009) and SILVA reference database v.123 (Quast C., et al, 

2013). To generate alignment of neutrally-evolved sequences such as ITS of rRNA and 

sequences of protein-coding genes, multiple sequence alignment programs, for instance 

MAFT (Katoh K., Toh H., 2010), can be used. 

3. Matching of information about the quality of nucleotides to their positions in the 

alignment. 

2. Setting threshold quality for nuclenotides (quality threshold – defined by user). 

4. Setting the maximum portion of nucleotides in the column that have quality less than 

threshold (portion threshold – defined by user). 

5. Collection of quality statistics for consensus sequences for alignment positions. 

6. Identification of position numbers of bad-quality nucleotides with more than set 

maximum portion threshold. 

7. Defining and target positions and their removal from alignment; generating the final 

alignment. 

The general scheme of the trimming algorithm is shown in Figure 1. 

Stages 3–6 were implemented as an R script using ShortRead package (Morgan, M., et al 

2009). This script includes three functions: 1) to visualize portion of alignment positions 

having quality below threshold; 2) to remove positions below quality threshold; 3) to remove 

sequences having low-quality positions in start- and end-regions of consensus sequence 

similarly to standard trimming procedure. 

The default quality threshold for the procedure is set to 20 (1 % sequencing error 

probability in consensus sequence) and maximum portion of nucleotides per position below 

this quality is 0.1 or 10 % (portion threshold = 0.1). 

Algorithm in R is available at: https://github.com/barnsys/metagenomic_analysis. 

TESTING THE ALGORITHM 

For testing we used data obtained by sequencing of 16S rRNA fragments with Illumina 

MiSeq instrument and v.3 sequencing reagents to generate paired-end reads of 250 bp. 

Amplicons were generated with PCR primers 9F and 541R (Chun, J., et al, 2010) targeting 

V1-V3 region of 16S rRNA. Total DNA isolated from bacterial community of water sample 

of Round Bay (Japan Sea) in August 2015.Sampling took place from the surface water (10–

15 cm depth). It was used as a template (data is available at: 

https://github.com/barnsys/metagenomic_analysis). Generation of consensus sequences was 

performed with FLASH. Trimmomatic program (Bolger A.M., et al. 2014) was used for 

standard trimming of consensus sequences. Trimmed and non-trimmed datasets were aligned 

to SILVA database v.123 using Mothur package. Mothur was then used to remove chimeric 

sequences, non-bacterial sequences and sequences aligned outside of V-V3 region of 16S 

rRNA from both datasets. The developed algorithm was finally applied for a set of non-

trimmed sequences. Hereinafter, dataset trimmed by Trimmomatic is referred to as “STD” 

and the one obtained with the suggested algorithm – as “ALIOPT”. 

Next, for both datasets, clusters of OTUs at distance 0.03 and their representative 

sequences were generated in Mothur package. Taxonomic classification was performed using 

SILVA database v.123. OTUs were sorted in the order of decreased sequence count. We have 

examined both all OTUs of dataset and major OTUs contributing 95 % of total dataset 

fragments. Using Mothur package we also computed pairwise distances for representative 

sequences of STD and ALIOPT datasets to find identical and different OTUs. 

Convergence of sequencing data was assessed with rarefaction analysis and bootstrap 

index (Smith E.P., van Belle G, 1984), which evaluates the number of underestimated taxons 

https://github.com/barnsys/metagenomic_analysis
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in analyzed dataset. Computations were performed in R using vegan package (Dixon P., 

2003). 

RESULTS AND CONCLUSIONS 

NGS dataset contained 26987 paired-end 2 × 250 bp reads. Typically for MiSeq data, the 

quality of sequencing gradually falls to the 3'-end of reads (Fig. 2,A), with the portion of 

reads that have base call quality below 20 after 200 sequencing cycles reaching 5 % and 15 % 

in the forward and reverse reads, respectively. 

FLASH program was used to generate consensus sequences with the following settings: 

minimal overlap – 50 bp, maximal portion of unmatched positions within overlap – 25 %. 

Consensus sequences outside the length range 440–475 bp were removed. This resulted in 

dataset of 18870 consensus sequences in ALIOPT dataset. The quality of consensus 

sequences is decreased in the middle part, corresponding to overlap of the forward and reverse 

reads (Fig. 2,B). In several positions, the share of bases, which have the consensus quality 

value below 20, reaches 28 %. 

 

 

Fig. 2. Quality of raw paired-end reads and consensus sequences. 
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For STD dataset, Trimmomatic settings were as follows: size of sliding window – 10 bp, 

average base call quality – 23. After generation of consensus sequences and length filtering, 

this resulted in 4435 sequences. The portion of sequences having consensus quality above 20 

for certain position does not exceeded 10 % (Fig. 2,C). 

Distribution of lengths of consensus sequences in STD dataset is changed after trimming 

procedure (Fig. 3,A) mainly by decrease of the portion of long sequences. This can be 

explained by the non-uniform elimination of consensus sequences during filtration: longer 

fragments have shorted overlap with lower overall consensus quality (Fig. 2). 

 

 

Fig. 3. Sequence length distribution on different stages of filtering pipelines. 

 

Consensus sequences of trimmed and non-trimmed datasets were aligned with sequences 

of 16S rRNAs from SILVA database. Sequences aligned outside V1-V3 region of 16S rRNA 

and classified as non-bacterial were removed. After this stage, trimmed and non-trimmed 

datasets contained 3840 and 17160 sequences, respectively. For non-trimmed data, the 

developed procedure of filtration was applied, generating ALIOPT dataset. 

Clustering results for STD and ALIOPT datasets are presented in Table 1. The portion of 

orphan OTUs is relatively small in both datasets. This suggests reasonable error rate in raw 

NGS data, as well as acceptable quality of sequencing and preliminary data filtration. Slight 

decrease of average length of consensus sequences in ALIOPT dataset seems to have no 

influence to the number of orphan OTUs. On the other hand, clustering results for STD and 

ALIOPT datasets differ significantly in terms of major (184 vs 319) and underestimated (291 

vs 499) OTUs. Due to the fact that both datasets characterize the same sampled bacterial 

community, the difference of these estimates is unexpected. Indeed, the portion of 

underestimated OTUs should be higher for STD dataset since it contains only 3840 consensus 

sequences, whereas ALIOPT dataset has 17160. Yet, the proportion of underestimated OTUs 

is similar in both datasets (63 %). In summary, these estimates of α-diversity suggest that the 
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diversity of STD dataset is lower than that of ALIOPT dataset. In other words, non-uniform 

elimination of sequences representing specific taxons (OTUs) occurs during standard 

trimming procedure. 
 

Table 1. Diversity of bacterial community calculated for STD and ALIOPT datasets 

Index STD dataset ALIOPT dataset 

Observed number of OTUs 405 1199 

Number of non-orphan OTUs 268 567 

Number of orphan OTUs 137 632 

Portion of consensus sequences in orphan OTUs 0.036 0.037 

Number of major OTUs (top 95 % of consensus sequences) 184 319 

Bootstrap index (expected number of major OTUs) 291 499 

Ratio of number of observed major OTUs to number of expected 

major OTUs 
0.63 0.63 

Shannon index calculated for major OTUs 4.23 4.93 

 

Rarefaction analysis performed for both datasets confirms α-diversity estimates (Fig. 4). 

Asymptotes of rarefaction curves for STD dataset (major OTUs – 184, all OTUs – 268) have 

lower values than those for ALIOPT dataset (major OTUs – 319, all OTUs – 567). Again, 

because of the lower number of sequences in STD dataset, one could expect STD curve to 

have no asymptote and converge with ALIOPT curve, as this dataset is, roughly speaking, a 

superset of STD dataset. The opposite behavior of STD curve argues for the depletion of 

taxonomic spectrum in STD dataset during filtration of raw data. 

 

 

Fig. 4. Rarefaction curves. 

 

To test whether taxonomic composition of bacterial community differs between STD and 

ALIOPT datasets, we performed taxonomic classification of sequences representing major 
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OTUs up to family rank (Fig. 5). Fractions of top 5 major OTUs are significantly different in 

two datasets. For instance, there is almost fourfold difference of the fraction of the 

Alteromonadaceae family in STD and ALIOPT datasets (1.8 % vs. 6.7 %.). This suggests that 

the observed taxonomic composition of communities differs with respect to filtration 

procedure applied to raw data. 

 

 

Fig. 5. Taxonomic composition of bacterial community by family rank for major OTUs. 

 

We tested in two ways whether non-uniform elimination of consensus sequences of 

different length occurs during standard filtration procedure. First, we compared distributions 

of length of representative sequences of major OTUs from STD and ALIOPT datasets. 

Representative sequences of major OTUs from both datasets were merged and aligned. OTUs 

shared between datasets were found using the pairwise distance matrix. OTU was marked as 

shared if the genetic distance between the representative sequences was less than 0.03. 174 

out of 184 major OTUs of STD dataset were shared with OTUs of ALIOPT dataset. Thus, 
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only 5 % of major OTUs obtained by standard trimming procedure were absent in ALIOPT 

dataset. On the other hand, 145 out of 319 major OTUs of ALIOPT dataset were not shared 

with STD dataset. Importantly, a portion of representative sequences falling into length range 

445–455 bp is higher within a set of OTUs shared between STD and ALIOPT (Fig. 3,B), 

whereas a set of representative sequences unique to one of the datasets is enriched by longer 

sequences (465–475 bp). Finally, we analyzed 16S rRNA sequences from reference SILVA 

database to test, whether the template sequences belonging to different taxons have lengths 

variability. We extracted the SILVA database sequences that served as templates for reference 

alignment of OTU representative sequences. The region of SILVA-templates that corresponds 

to analyzed 16S rRNA fragment was extracted by applying the “hard-mask” in Mothur. 

Overall, spectrum of template lengths for STD dataset is shifted to the left, whereas templates 

for ALIOPT dataset are enriched by longer sequences (Fig. 3,C). These two results 

complement each other and argue for non-uniform elimination of sequences of different 

length during standard filtration procedure. 

CONCLUSIONS 

Standard procedures of NGS metagenomic amplicon data filtration and trimming were 

revealed to be prone to introduce bias in genetic diversity of analyzed community and 

therefore to alter its taxonomic composition. We explored the reasons of this bias and 

suggested a new method of data filtration which avoids such type of errors. This method can 

be efficiently applied to Illumina MiSeq paired-end amplicon data generated for arbitrary 

gene marker to improve results of metagenomic analysis. 
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