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Abstract. We present some results of the application of M-matrices to the study
the stability problem of the equilibriums of differential equations used in models of
living systems. The models of living systems are described by differential equations
with several delays, including distributed delay, and by high-dimensional systems
of differential equations. To study the stability of the equilibriums the linearization
method is used. Emerging systems of linear differential equations have a specific
structure of the right-hand parts, which allows to effectively use the properties of
M-matrices. As examples, the results of studies of models arising in immunology,
epidemiology and ecology are presented.
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INTRODUCTION

Differential equations-based models of living systems can be nominally distributed into two
families.

The first family includes low-dimensional models with small numbers of parameters. The
models of this type are applied, usually, in simple analytical or numerical studies and in
estimations of their parameters according to real data.

The second family includes high-dimensional models and those containing many
parameters, delays or essential non-linearity. Any of these parameters is a challenge for
analytical and numerical studies. In some cases differential equations of the second family have
specific structures giving them a possibility to account for positive and negative feedbacks at
descriptions of inflows, reproduction and death of a living system elements. Besides, a number
of models have a distinctive feature: living systems described by the models include specific
development stages. Duration of a stage is a fixed constant or a value described in terms of
some distribution functions. This feature of a model, the same as big numbers of its variables,
call for rather complex mathematical tools to examine behavior of its solutions. One of the
possible tools is application of a monotone operators theory and properties of special matrices,
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for example, М-matrices.
The article concentrates on researches applying M-matrices to study stability of equilibria

of living models systems belonging to the second family. It contains two main parts. The
first one provides necessary backgrounds from theories of matrix and of stability for linear
systems of delay differential equations, and estimates of the Cauchy problem solutions for
linear heterogeneous systems of differential equations. The second part presents the analyses of
several models that can be applied to solve some problems arising in immunology, epidemiology
and ecology with the use of M-matrices. Some results contained in the second part, namely in
sections 4, 7, 8 were already published in previous papers of the authors and their coauthors,
while sections 5, 6 contain only fresh materials.

Any model considered in sections 4–8 has one of distinctive features: it can either contain
several delays, including a distributed delay, or have high dimensions. Study of stability of the
mentionedmodels equilibria by the linearization methodmeets with challenges at the analysis of
a characteristic equation roots and at application of Lyapunov functions or Lyapunov-Krasovskii
functional. At the same time, the system of linear approximation of these models allow a
researcher to apply effectively the M-matrices theory and to obtain necessary and sufficient
conditions of the asymptotical stability.

The Conclusion contains a list of some routine tasks arising at examination of the living
system models and requiring application of various mathematical methods.

NECESSARY BACKGROUNDS FROMMATRIX
AND STABILITY THEORIES

1. Backgrounds from the matrix theory

Let v ∈ Rm be a certain vector and S = (sij) be a certain realm×mmatrix. Then, according
to the [1, 2, 3, 4, 5, 6], we assume that

• vT is a transposed vector;

• expressions v > 0, v ≥ 0, v < 0, v ≤ 0 have meanings of inequalities realized for all
components of the vector v;

• ||v||1 =
∑m

i=1 |vi| is the L1 norm of the vector v in the space Rm;

• ST is a transposed matrix;

• ||S||1 = max
j

∑
i

|sij| is the matrix norm agreed with the vector || · ||1 norm;

• S+ = (|sij|);

• S is a nonnegative matrix, if sij ≥ 0 for all i, j;

• S is a quasinonnegative (Metzler) matrix, if sij ≥ 0 for all i ̸= j;

• S is a stable (Hurwitz) matrix, if any of its eigenvalues has a negative real part;

• S is a nonsingular M-matrix, if sij ≤ 0 for all i ̸= j, S is nonsingular and matrix S−1 is
nonnegative.

The article will use the following statements [1, 6].
Th e o r em 1 (Sevast’anov-Kotelyanski’i criterion). Let matrix S be quasinonnegative.

Then in order to S be stable it is necessary and sufficient that for each angular minorMk with
k × k dimensions of the matrix S an inequality (−1)kMk > 0 is realized.
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Th e o r em 2. Let a real quadratic matrix S be such that sij ≤ 0 for all i ̸= j. Then the
following statements are equivalent:

• S is a nonsingular M-matrix;

• all angular minors S are positive;

• the matrix (−S) satisfies Sevast’anov-Kotelyanski’i criterion;

• there exists a vector ξ ∈ Rm such that ξ > 0 and Sξ > 0;

• there exists a vector ψ ∈ Rm such that ψ > 0 and STψ > 0.

Let us consider the following example

S =

 1.5 −1 0
−0.8 1.2 −0.1
0 −0.2 2

 .

The matrix S is a nonsingular M-matrix, because all its angular minors are positive:M1 = 1.5,
M2 = 1, M3 = 1.97. A vector ξ = (ξ1, ξ2, ξ3)

T , satisfying the condition ξ > 0, Sξ > 0, is
sought as a solution of the inequality system

ξ1 > 0, ξ2 > 0, ξ3 > 0,

1.5 ξ1 − ξ2 > 0, −0.8 ξ1 + 1.2 ξ2 − 0.1 ξ3 > 0, −0.2 ξ2 + 2 ξ3 > 0.

One can see that a vector ξ = (1, 1, 1)T satisfies this system. In turn, the vector ψ = (2, 2, 1)T

is one of the solutions of the inequality system ψ > 0, STψ > 0.

2. M-matrices in the system of delay differential equations

Let x(t) : R 7→ Rm be a vector-function of a real argument t. We shall consider a system
of delay differential equations

dx(t)

dt
=

n∑
k=0

Akx(t−ωk) +

∫ 0

−τ
An+1(θ)x(t+ θ)dθ−Bx(t), t ∈ [0;∞), (1)

supplemented with an initial condition

x(t) = φ(t), t ∈ [−ω; 0], ω = max{ω1, . . . ,ωn, τ}, (2)

where Ak = (a
(k)
ij ) are real m×m matrices; An+1(θ) = (a

(n+1)
ij (θ)) – m×m is a matrix with

Riemann integrable elements; ω0 = 0, ωk ∈ (0;∞), k ≥ 1, are durations of point delays; τ ∈
[0;∞) is duration of a distributed delay;ω is a total duration of a delay;B = diag(b11, . . . , bmm)
is a diagonal matrix with elements bii > 0; φ(t) ∈ Rm is a defined continuous on the [−ω; 0]

function. At t = 0 dx(t)
dt

means the right-hand derivative:

dx(0)

dt
=

n∑
k=0

Akφ(−ωk) +

∫ 0

−τ
An+1(θ)φ(θ)dθ−Bφ(0).

Following [7, 8], refer as a solution of the Cauchy problem (1), (2) on the interval [0;∞)
to a continuous function x(t), on the interval [−ω;∞), which is continuously differentiable on
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the interval [0;∞), and satisfies the initial conditions (2) and equations (1) for all t ∈ [0;∞).
At φ ≡ 0 system (1) has the trivial solution x(t) ≡ 0.

De f i n i t i o n 1. A trivial solution of system (1) is called stable (according to Lyapunov), if
for any ϵ > 0 we can find a number δ > 0, such that from the inequality

max
t∈[−ω;0]

||φ(t)||1 < δ

it follows the inequality ||x(t)||1 < ϵ for all t ∈ [0;∞).
De f i n i t i o n 2. A stable trivial solution of system (1) is called asymptotically stable

(according to Lyapunov), if for any φ it exists the

lim
t→+∞

x(t) = 0.

We shall give two theorems setting necessary and sufficient conditions of the asymptotical
stability for the trivial solution of system (1) [9, 10, 11].

Th e o r em 3. Let matricesA0, A1, . . . , An,An+1(θ), contained in (1), be nonnegative. We
define:

AΣ =
n∑

k=0

Ak +

∫ 0

−τ
An+1(θ)dθ.

A trivial solution of the system (1) is asymptotically stable Iff the matrix AΣ − B satisfies
Sevast’yanov – Kotelyanski’i criterion or, equally, B − AΣ is a nonsingular M-matrix.

Th e o r em 4. Let one or more from the matrices A0, A1, . . . , An, An+1(θ), contained in
(1), be not nonnegative. Assume that

A+
Σ =

n∑
k=0

A+
k +

∫ 0

−τ
A+

n+1(θ)dθ.

For the asymptotical stability of a trivial solution of the system (1) it is sufficient that the matrix
A+

Σ − B satisfies Sevast’yanov – Kotelyanski’i criterion or, equally, B − A+
Σ is a nonsingular

M-matrix.

We can consider an example: the system (1) of the following form

dx1(t)

dt
=

∫ 0

−2

x2(t+ θ)dθ− 1.5x1(t), (3)

dx2(t)

dt
= 0.5x1(t) + 0.3x1(t− 1)− 1.2x2(t). (4)

The matrices B, AΣ and B − AΣ are:

B =

(
1.5 0
0 1.2

)
, AΣ =

(
0 2
0.8 0

)
, B − AΣ =

(
1.5 −2
−0.8 1.2

)
.

All angular minors of the matrixB−AΣ are positive, so it is a nonsingular M-matrix. Therefore,
the trivial solution of the system (3), (4) is asymptotically stable.
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3. Estimates of the Cauchy problem solutions for linear inhomogeneous systems of
differential equations

Let us consider the Cauchy problem

dx(t)

dt
= Ax(t) + f(t), t ∈ [0;∞), (5)

x(0) = x0 ∈ Rm, (6)

where x(t) : R 7→ Rm is a sought vector-function;A is a set realm×mmatrix; f(t) : R 7→ Rm

is a set vector-function continuous on the interval [0;∞); at t = 0 dx(t)
dt

means a right-hand
derivative:

dx(0)

dt
= Ax0 + f(0).

A solution of the Cauchy problem (5), (6) on the interval [0,∞)will have a form of function
x(t) continuously differentiable on [0;∞), satisfying equations of the system (5) and the initial
condition (6).

The Cauchy problem (5), (6) has a unique solution x(t), that can be written in form

x(t) = eAtx0 +

∫ t

0

eA(t−s)f(s)ds, t ∈ [0;∞). (7)

The expressions of the form eAt, eA(t−s) contained in (7), mean the matrix exponents [3, 12].
If a matrix A is stable (Hurwitz), then at t ≥ 0, t− s ≥ 0, we have estimates

||eAt||1 ≤ b e−αt, ||eA(t−s)||1 ≤ b e−α(t−s), (8)

where b > 0, α > 0 are some constants [12]. If, at that, f(t) → 0 at t → +∞, then from (7),
(8) it follows the estimate

||x(t)||1 ≤ b max
{
||x0||1,

f ∗

α

}
, t ∈ [0;∞), f ∗ = max

[0;∞)
||f(t)||1, (9)

and exists
lim

t→+∞
x(t) = 0. (10)

If a matrix A is quasinonnegative (Metzler), a matrix eAt is nonnegative at t ≥ 0 [3]. In this
case, from (7) it follows that the solution x(t) is nonnegative, if x0 ≥ 0 and f(t) ≥ 0 for all
t ∈ [0;∞).

STUDY OF EQUILIBRIA STABILITY OF MATHEMATICAL MODELS FOR
LIVING SYSTEMS

4. Model of an antiviral immune response

The monographs [13, 14] present one of the fundamental mathematical models in
immunology, a model of an antiviral immune response. Analysis of this model, its instances and
various modifications is of special interest for researchers: it helps to look for applied problems
in immunology and their solutions.

4.1. Equations of the model

Basing the [13, 14], we shall define the following variables of an antiviral immune response
model:
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• Vf (t) – number of viruses freely circulating in a body;

• MV (t) – number of stimulated (antigen-presenting) macrophages;

• HE(t) – number of T-lymphocytes, helpers of cellular immunity;

• HB(t) – number of T-lymphocytes, helpers of humoral immunity;

• E(t) – number of T-cells effectors (killers);

• B(t) – number of B-lymphocytes;

• P (t) – number of plasmatic cells;

• F (t) – number of antibodies;

• CV (t) – number of virus-affected cells of a target organ;

• m(t) – a nonfunctioning (virus-affected) part of a target organ.

Let M∗ > 0 be a marrow cell-maintained constant macrophage level in a body. Similarly, H∗
E ,

H∗
B, E∗, B∗ and P ∗ are numbers of the appropriate cells in the conditions of a virus absence

from a body. Assume C∗ > 0 is a number of a target organ cells in a healthy (virus-free) body.
The equation system of the model is as follows:

dVf (t)

dt
= νCV (t) + nbCECV (t)E(t)− γV FF (t)Vf (t)−

− γVMM∗Vf (t)− γV C(C
∗ − CV (t)−m(t))Vf (t), (11)

dMV (t)

dt
= γMVM

∗Vf (t)− αMMV (t), (12)

dHE(t)

dt
= b

(E)
H

(
ξ(m(t))ρ

(E)
H MV (t−ω(E)

H )HE(t−ω(E)
H )−MV (t)HE(t)

)
−

− b(HE)
p MV (t)HE(t)E(t) + α

(E)
H (H∗

E −HE(t)), (13)
dHB(t)

dt
= b

(B)
H

(
ξ(m(t))ρ

(B)
H MV (t−ω(B)

H )HB(t−ω(B)
H )−MV (t)HB(t)

)
−

− b(HB)
p MV (t)HB(t)B(t) + α

(B)
H (H∗

B −HB(t)), (14)
dE(t)

dt
= b(E)

p

(
ξ(m(t))ρEMV (t−ωE)HE(t−ωE)E(t−ωE)−MV (t)HE(t)E(t)

)
−

− bECCV (t)E(t) + αE(E
∗ − E(t)), (15)

dB(t)

dt
= b(B)

p

(
ξ(m(t))ρBMV (t−ωB)HB(t−ωB)B(t−ωB)−MV (t)HB(t)B(t)

)
+

+ αB(B
∗ −B(t)), (16)

dP (t)

dt
= b(P )

p ξ(m(t))ρPMV (t−ωP )HB(t−ωP )B(t−ωP ) + αP (P
∗ − P (t)), (17)

dF (t)

dt
= ρFP (t)− γFV Vf (t)F (t)− αFF (t), (18)

dCV (t)

dt
= σVf (t)(C

∗ − CV (t)−m(t))− bCECV (t)E(t)− bmCV (t), (19)

dm(t)

dt
= bCECV (t)E(t) + bmCV (t)− αmm(t), t ∈ [0;∞). (20)

All parameters of the equations system (11)–(20) are defined as positive.
t109
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The function ξ(m) accounts for decrease in effectiveness of immune system activity, when
a target organ is affected by viruses. We assume that ξ(0) = 1, ξ(m) = 0 at m ≥ C∗, ξ(m)
is a continuous nonincreasing function on the interval [0;C∗] and it has a continuous derivative
on this interval (in the point m = C∗ the derivative means the left-hand derivative). A typical
example of such function has the form ξ(m) = max{1−m/C∗, 0}.

The system (11)–(20) is supplemented with the initial data

Vf (0) = V 0
f ≥ 0, MV (0) = M0

V ≥ 0, (21)

HE(0) = H0
E ≥ 0, HB(0) = H0

B ≥ 0, E(0) = E0 ≥ 0, (22)

B(0) = B0 ≥ 0, P (0) = P 0 ≥ 0, F (0) = F 0 ≥ 0, (23)

CV (0) = C0
V ≥ 0, m(0) = m0 ≥ 0, (24)

MV (t)HE(t) = η1(t), t ∈ [−ω(E)
H ; 0], (25)

MV (t)HB(t) = η2(t), t ∈ [−ω(B)
H ; 0], (26)

MV (t)HE(t)E(t) = η3(t), t ∈ [−ωE; 0], (27)

MV (t)HB(t)B(t) = η4(t), t ∈ [−max{ωB,ωP}; 0]. (28)

The functions ηi(t), contained in (25)–(28) are defined as nonnegative and continuous in
their definition ranges 1 ≤ i ≤ 4 and, besides,

η1(0) = M0
VH

0
E, η2(0) = M0

VH
0
B, η3(0) = M0

VH
0
EE

0, η4(0) = M0
VH

0
BB

0.

The monograph [14] states that the Cauchy problem (11)–(28) has the unique solution

W (t) = (Vf (t),MV (t), HE(t), HB(t), E(t), B(t), P (t), F (t), CV (t),m(t))T ,

on the interval t ∈ [0;∞) and the components of this solution are nonnegative.

4.2. Equilibria of the model and their stability

Let us analyze stability of the system (11)–(20) equilibria. Search for all equilibria is a
challenge due to essential nonlinearity and high dimensions of the system (11)–(20). One of
the nonnegative equilibria can easily be found at Vf = 0 and has a form

U0 = (0, 0, H∗
E, H

∗
B, E

∗, B∗, P ∗, F ∗, 0, 0)T ,

where F ∗ = ρFP
∗/αF .

The system (11)–(20) can contain nonnegative equilibria

U = (Vf ,MV , HE, HB, E,B, P, F, CV ,m)T ∈ R10
+ ,

for which the following conditions are realized

Vf > 0, CV > 0, m > 0, CV +m < C∗. (29)

Existence of such equilibria was demonstrated in the numerical form by models of chronic viral
hepatitis [13].

The equilibrium U0 is interpreted as a healthy body (an organism is virus-free). The
nonnegative equilibria satisfying (29) are interpreted as the chronic course of the disease, when
counts of viruses and virus-affected cells of a target organ are maintained at a certain non-zero
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level.
A condition of the asymptotical stability U0 can easily be found by examination of the

characteristic polynomial roots of the linear approximation equations system. This condition
is an inequality [14]:

(γVMM∗ + γV FF
∗ + γV CC

∗)(bCEE
∗ + bm) > σC

∗(ν+ nbCEE
∗).

Let us consider a nonnegative equilibrium U , for which the conditions (29) are realized.
Following the study [11] and applying the method of linearization, we obtain the sufficient
conditions of the asymptotic stability U . Assume

x(t) = W (t)− U, t ∈ [0;∞).

The system of linear approximation equations in the neighborhood of the equilibrium U can be
written as (1):

dx(t)

dt
= A0x(t) + A1x(t−ω(E)

H ) + A2x(t−ω(B)
H )+

+ A3x(t−ωE) + A4x(t−ωB) + A5x(t−ωP )−Bx(t). (30)

The matrices B, Ak have dimension 10 × 10. Their elements can be found by the standard
linearization procedure for the right hands of the system (11)–(20). The explicit form of these
matrices is not given because the resulting expressions are too awkward. The vector of the terms
rejected at linearization satisfies the necessary smallness condition [15]. Therefore, the system
(30) can be used for the analysis of the equilibrium U asymptotical stability.

We assume A+
Σ =

∑5
k=0 A

+
k , G = B − A+

Σ and apply theorem 4. After calculating the
diagonal minors of the matrix G we come to the inequality system

(γVMM∗ + γV FF )m+ 2γV C(C
∗ −m)m

γVMM∗ + γV FF + 2γV C m
< CV , (31)

(ρEξ(m) + 1)(b(E)
p MVHEE)2 < α

(E)
H αEH

∗
EE

∗, (32)

(ρBξ(m) + 1)(b(B)
p MVHBB)2 < α

(B)
H αBH

∗
BB

∗, (33)

det(G6) > 0, det(G) > 0, (34)

where det(G6), det(G) is the sixth order diagonal minor and determinant of the matrix G.
The inequalities (31)–(34) are separated out all possible equilibria by the asymptotically

equilibria with the following property: numbers of cells HE , HB, E, B and P slightly exceed
their numbers in U0, while the number of CV virus infected cells is close to C∗. Analysis of the
equations (11)–(20) with specific numerical values of the parameters tells on the existence of
nonnegative equilibria satisfying the inequalities (29), (31)–(34).

Therefore, the model under consideration allows for such a body state, at which a
considerable portion of a target organ cells are virus-infected, while the parameters of their
immune systems are almost «normal», in other words, the immune system «ignores» these
cells the same as viruses circulating in blood. The appropriate solutions of the model can be
interpreted as alternates of immune deficient states of the organism.

5. Two models of HIV-1-infection

One of the rapidly developing branches of mathematical modeling in immunology is
establishment of models for HIV-1 infection dynamics in a human body. One of the keymoments
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in creation of HIV-1 infection models is accounting for the development stages of viral particles
and infected cells, and for separate stages in immune response formation. Durations of the
mentioned stages and steps can take from several hours to several days, therefore, we include
delay variables into the differential equations. The current approaches to modeling of HIV-1
infection dynamics and typical models are presented, for example, in the [16, 17, 18, 19, 20].

5.1. First model

We assume that dynamics of HIV-1 infection is described in terms of the following
components:

• T – T-lymphocytes (virion target cells);

• C – infected cells (cells at the stage of preparing for viral particles production);

• I – product-infected cells (cells producing viral particles);

• U – immature viral particles;

• V – mature viral particles (virions);

• E – cytotoxic T-lymphocytes (effectors);

• K – cells – precursors of the lymphocytes-effectors.

We shall call counts of the mentioned components at a moment t as T (t), C(t), I(t), U(t),
V (t), E(t) and K(t), respectively. Using the description of the main regularities of the HIV-1
infection dynamics [17], we shall consider the system of differential and integral equations as
follows:

dT (t)

dt
= rT − µTT (t)− (γT,V V (t) + γT,II(t))T (t), (35)

dI(t)

dt
= − (µI + σUνU)I(t)− γI,EI(t)E(t) +

+ e−µCωC
(
γT,V V (t−ωC) + γT,II(t−ωC)

)
T (t−ωC), (36)

dV (t)

dt
= − µV V (t)− γT,V T (t)V (t) + e−µUωU νUI(t−ωU), (37)

dE(t)

dt
= − µEE(t) + nE νKI(t−ωK), (38)

C(t) =

∫ t

t−ωC

e−µC(t−s)
(
γT,V V (s) + γT,II(s)

)
T (s) ds, (39)

U(t) =

∫ t

t−ωU

e−µU (t−s) νUI(s) ds, (40)

K(t) =

∫ t

t−ωK

νKI(s) ds, t ∈ [0;∞), (41)

T (t) = T0(t), I(t) = I0(t), V (t) = V0(t), E(0) = E0, t ∈ [−ω; 0], (42)

ω = max{ωC ,ωU ,ωK}.

All parameters of the equation system (35)–(41) are defined as positive. The parameter rT sets
a rate of a T -cells inflow from marrow cells. The parameters µT , µI , µC , µV , µU and µE are
a component death intensities per a cell or a viral particle. The parameter νU defines intensity
of particles U production per a cell I . The parameter σUνU means intensity of cells I death
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(per a cell) due to the deleterious process of the particles U budding from the membranes of
the mentioned cells. The parameter νK sets intensity of stimulation of K cells production by
mediated effects of the cells I on immune competent cells (per a cell). The parameter nE is a
mean number of descendants of a reproduction-stimulated cell K. The parameters γT,V , γT,I

and γI,E mean intensities of interactions between cells per a pair (T, V ), (T, I) and (I, E),
respectively. The delaysωU andωC present aging durations for the particles U and cells C; the
delayωK is duration of reproduction process of the stimulated cellsK.

The functions contained in (42) are assumed as nonnegative and continuous, the constantE0

is nonnegative. The addends in form of

γT,V V (t)T (t), e−µCωCγT,II(t−ωC)T (t−ωC), σUνUI(t),

contained in equations (35), (36) and the integral relations (39)–(41) are new elements in the
models of the HIV-1 infection dynamics as compared to the models from the [18, 19, 20]. Note
that equations (39)–(41) can be considered as subsidiary and used to account for balance of cell
and viral particle counts.

Applying the results of [21], we get that the system (35)–(38) supplemented with the initial
conditions (42) has a unique solution on the interval [0;∞) and, besides, the solution components
are nonnegative. As a consequence, the functions C(t), U(t) and K(t), set by the formulas
(39)–(41), are defined, continuous and nonnegative on the interval [0;∞).

The equations (35)–(38) of the model have a trivial equilibrium

S∗ = (T ∗, I∗, V ∗, E∗),

where T ∗ = rT/µT , I∗ = V ∗ = E∗ = 0. Let us examine stability of this equilibrium. For
this purpose, we shall construct a system of the linear approximation differential equations in
the neighborhood of S∗. The variables of the system are designated the same as the initial ones.
The rejected nonlinear terms are productions of the variables, including the delay variables. The
vector of terms rejected at linearization satisfies the necessary condition of smallness [15]. We
shall write the resulting equation system in the block form, putting a block containing only two
variables to the first place:

dI(t)

dt
= − (µI + σUνU)I(t) + e−µCωC

(
γT,V V (t−ωC) + γT,II(t−ωC)

)
T ∗, (43)

dV (t)

dt
= − (µV + γT,V T

∗)V (t) + e−µUωU νUI(t−ωU), (44)

dT (t)

dt
= − µTT (t)− (γT,V V (t) + γT,II(t))T

∗, (45)

dE(t)

dt
= − µEE(t) + nE νKI(t−ωK). (46)

A block structure of the system (43)–(46) and inequalities µT > 0 and µE > 0 make
it possible to explore a problem of stability of the system (43)–(46) trivial equilibrium by
examination of the equation system of its first block. Indeed, if the trivial equilibrium of the
system (43), (44) is asymptotically stable, relations (9) and (10) are true for the variables T (t)
andE(t), satisfying (45) and (46) (refer to 3). Therefore, the asymptotic stability of the (43) and
(44) trivial equilibrium provides asymptotic stability of the (43)–(46) trivial equilibrium. It is
clear that the instability of the system (43) and (44) trivial equilibrium leads to instability of the
system (43)–(46) trivial equilibrium.

The equations (43) and (44) are an example of the differential system (1) with the
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nonnegative matrices Ak. Let us introduce the matrices

B =

(
µI + σUνU 0

0 µV + γT,V T
∗

)
, AΣ =

(
e−µCωCγT,IT

∗ e−µCωCγT,V T
∗

e−µUωU νU 0

)
,

G = B − AΣ =

(
µI + σUνU − e−µCωCγT,IT

∗ −e−µCωCγT,V T
∗

−e−µUωU νU µV + γT,V T
∗

)
.

and apply theorem 3. We shall test realization of the inequalities M1 > 0 and M2 > 0, where
M1 andM2 are the angular minors G. ThenM1 = µI + σUνU − e−µCωCγT,IT

∗,M2 = det(G).
Conditions for the realization of the inequalitiesM1 > 0 andM2 > 0 can be expressed in terms
of the index

R0,1 =
γT,IT

∗e−µCωC

µI + σUνU
+

νUγT,V T
∗e−(µCωC+µUωU )

(µI + σUνU)(µV + γT,V T ∗)
, (47)

called a basic reproductive number. As a result, we come to the conclusion: 1) if R0,1 < 1, the
equilibrium S∗ is asymptotically stable; 2) at R0,1 > 1 the equilibrium S∗ is unstable. A case
R0,1 = 1 calls for a separate study.

Within the frames of the model under examination, we have the following result: 1) ifR0,1 <
1, the infection does not develop, when an individual is infected with a small amount of HIV-1
virions; 2) if R0,1 > 1, the HIV-1 infection cannot be eliminated from an infected individual.

5.2. Second model

Let us consider a modification of themodel (35)–(42) related to themore detailed description
of death process caused by production of immature viral particles in the product-infected cells.
We assume that the cells I form a heterogeneous population consisting of the cells I0, I1, …, Im.
A cell I0 originates directly from a cell C, a cell I1 – from a cell I0, …, a cell Im – from a cell
Im−1. The cells I0, I1, …, Im produce the immature viral particles U with the intensity νU > 0
per a cell. After production of viral particles U , a part pj,j+1 of the cells Ij transforms into the
cells Ij+1, while a part 1−pj,j+1 0 < pj,j+1 < 1, 0 ≤ j ≤ m−1 dies. All Im cells produce viral
particles U and die.

We assume that the precursors K of the cytotoxic Т-lymphocytes E originate from the
specific marrow cells due to mediate impacts of the cells I0, I1, …, Im with the intensity νK > 0
per a cell Ij , 0 ≤ j ≤ m. The cells I0, I1,…, Im die at contacts with the cytotoxic Т-lymphocytes
E with the intensity γI,E > 0 per a pair (Ij, E), 0 ≤ j ≤ m. The cells C appear due to
interactions between the target cells T with virions V , and/or with the product-infected cells I0,
I1,…, Im with intensities γT,V > 0, γT,I > 0 per a pair (T, V ), (T, Ij), 0 ≤ j ≤ m, respectively.

Let T (t), C(t), I0(t), I1(t), . . . , Im(t), U(t), V (t), E(t) and K(t) be the amounts of
components at a moment t. We consider the following system instead of (35)–(42)

dT (t)

dt
= rT − µTT (t)−

(
γT,V V (t) +

m∑
j=0

γT,IIj(t)
)
T (t), (48)

dI0(t)

dt
= − (µI + νU)I0(t)− γI,EI0(t)E(t) + (49)

+ e−µCωC
(
γT,V V (t−ωC) +

m∑
j=0

γT,IIj(t−ωC)
)
T (t−ωC), (50)

dIj(t)

dt
= − (µI + νU)Ij(t)− γI,EIj(t)E(t) + νUpj−1,jIj−1(t), 1 ≤ j ≤ m, (51)
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dV (t)

dt
= − µV V (t)− γT,V T (t)V (t) + e−µUωU

m∑
j=0

νUIj(t−ωU), (52)

dE(t)

dt
= − µEE(t) + nE

m∑
j=0

νKIj(t−ωK), (53)

C(t) =

∫ t

t−ωC

e−µC(t−s)
(
γT,V V (s) +

m∑
j=0

γT,IIj(s)
)
T (s) ds, (54)

U(t) =

∫ t

t−ωU

e−µU (t−s)

m∑
j=0

νUIj(s) ds, (55)

K(t) =

∫ t

t−ωK

m∑
j=0

νKIj(s) ds, t ∈ [0;∞), (56)

T (t) = T 0(t), Ij(t) = I0j (t), V (t) = V 0(t), E(0) = E0, t ∈ [−ω; 0], (57)

ω = max{ωC ,ωU ,ωK}.

All functions contained in the (57) are defined as nonnegative and continuous, the constant
E0 ≥ 0.

It is easy to show that the system (35)–(56) supplemented with the initial conditions (57) has
the unique solution on the interval [0;∞) and, besides, the solution components are nonnegative.

The differential system (48)–(53) of the model has a trivial equilibrium

X∗ = (T ∗, I∗0 , I
∗
1 , . . . , I

∗
m, V

∗, E∗)

with the components T ∗ = rT/µT , I∗0 = I∗1 = · · · = I∗m = V ∗ = E∗ = 0. Let us explore the
equilibrium X∗, relying upon the linear approximation differential system in the neighborhood
of X∗. The variables of the linearized system are designated the same as the initial ones. The
rejected nonlinear terms are products of the variables, including the delay variables. The vector
of the terms rejected at linearization satisfies the necessary condition of smallness [15].

Let us write the system of linear approximation equations:

dT (t)

dt
= − µTT (t)− γT,V T

∗V (t)− γT,IT
∗

m∑
j=0

Ij(t), (58)

dI0(t)

dt
= − (µI + νU)I0(t) + e−µCωCT ∗(γT,V V (t−ωC) + γT,I

m∑
j=0

Ij(t−ωC)
)
, (59)

dIj(t)

dt
= − (µI + νU)Ij(t) + νUpj−1,jIj−1(t), 1 ≤ j ≤ m, (60)

dV (t)

dt
= − (µV + γT,V T

∗)V (t) + e−µUωU νU

m∑
j=0

Ij(t−ωU), (61)

dE(t)

dt
= − µEE(t) + nE νK

m∑
j=0

Ij(t−ωK). (62)

One can see that the variables T (t) and E(t) are not the members of equations (59), (60) and
(61). Moreover, the parameters µT > 0, µE > 0. By analogy with the first model analysis (refer
to the analysis of the system structure (43)–(46)), it is sufficient to consider a problem of stability
of the system (59), (60), (61) trivial equilibrium, rejecting the equalities (58) and (62).
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To simplify a record, we shall introduce the designations:

a = µI + νU , bj = νUpj,j+1, 0 ≤ j ≤ m− 1, c = e−µCωCγT,V T
∗,

d = e−µCωCγT,IT
∗, e = µV + γT,V T

∗, f = e−µUωU νU ,

g0 = 1, g1 = p0,1, g2 = p0,1 p1,2, . . . , gm = p0,1 p1,2 · · · pm−1,m.

Let us analyse stability of the system (59), (60), (61) trivial equilibrium, presented in the explicit
form:

dI1(t)

dt
= − aI1(t) + b0I0(t), (63)

dI2(t)

dt
= − aI2(t) + b1I1(t), (64)

dI3(t)

dt
= − aI3(t) + b2I2(t), (65)

. . . . . . . . . . . . . . . ,

dIm(t)

dt
= − aIm(t) + bm−1Im−1(t), (66)

dI0(t)

dt
= − aI0(t) + d

m∑
j=0

Ij(t−ωC) + cV (t−ωC), (67)

dV (t)

dt
= − eV (t) + f

m∑
j=0

Ij(t−ωU). (68)

The equation system (63)–(68) has a dimension m + 2 and its form corresponds to the
differential system (1) with nonnegative matrices Ak and matrix B = diag(a, a, a, . . . , a, a, e).
Using presentation of the variables of the system (63)–(68) in form

x(t) = (I1(t), I2(t), I3(t), . . . , Im−1(t), Im(t), I0(t), V (t))T ,

it is not hard to write out the matrix AΣ and pass to the (m+ 2)× (m+ 2) matrix

G = B − AΣ =



a 0 0 ... 0 0 −b0 0
−b1 a 0 ... 0 0 0 0
0 −b2 a ... 0 0 0 0
... ... ... ... ... ... ... ...
0 0 0 ... −bm−1 a 0 0
−d −d −d ... −d −d a− d −c
−f −f −f ... −f −f −f e


.

Let us apply theorem 3 and test realization of the inequalities Mk > 0 relatively angular
minors of the matrix G, 1 ≤ k ≤ m + 2. It is clear that Mk = ak > 0 for all 1 ≤ k ≤ m.
To find Mm+1 and Mm+2 = det(G) we shall use elementary manipulations (expansion of the
last column in elements, step-by-step summation of the first, second etc. columns, multiplied
by combinations of several parameters, with the last column of the minor under consideration).
Performing all intermediate calculations, we get

Mm+1 = am
(
a− d

m∑
j=0

(
νU/a

)j
gj

)
,
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Mm+2 = am
(
e a−

(
e d+ c f

) m∑
j=0

(
νU/a

)j
gj

)
.

Define

SU =
m∑
j=0

( νU

µI + νU

)j+1

gj. (69)

Conditions of realization for the inequalities Mm+1 > 0, Mm+2 > 0 can be expressed in
terms of the index

R0,2 =
γT,IT

∗e−µCωC SU

νU
+
γT,V T

∗e−(µCωC+µUωU ) SU

µV + γT,V T ∗ , (70)

which, the same as earlier, we shall call a basic reproductive number. The constant SU ∈ [0;m+
1], set by formula (69) and included into (70), can be interpreted as a mean number of viral
particles U , produced by a cell I0 and its descendants I1, …, Im. As a result, we come to a
conclusion: 1) if R0,2 < 1, equilibrium X∗ is asymptotically stable; 2) at R0,2 > 1 equilibrium
X∗ is unstable. A case R0,2 = 1 calls for a separate investigation.

Within the frames of the high-dimensional model under examination, we have the following
result: 1) ifR0,2 < 1, the infection does not develop, when an individual is infected with a small
amount of HIV-1 virions, 2) if R0,2 > 1, infection cannot be eliminated from an individual
infected with the HIV-1.

6. Two models of tuberculosis spread in an isolated region

The section presents two models for dynamics of tuberculosis spread in an isolated region. A
region’s isolation means lack of people inflows from other regions. The region’s population size
is maintained due to the birth of new individuals.We assume that rate of birth for new individuals
and their surviving to a fixed age are defined by some functions taken, for simplification of the
models study, in form of fixed constants. Belowmentioned versions of themodels differ between
each other by structure of population groups considering specifics of an epidemic process under
examination. The models are based on [22, 23].

6.1. First model

Let all adult population of a region be distributed in three groups: S is susceptible to
infecting, I is latent infected without clinical manifestations of the disease, and C is patients
with sputum smear-positive tuberculosis. Let S(t), I(t) and C(t) denote sizes of the mentioned
groups at the moment t. An equation system for the model is:

dS(t)

dt
= − βS(t)C(t)− λS(t) + ρ exp

(
−
∫ τ

0

g(a)C(t− τ+ a)da

)
, (71)

dI(t)

dt
= (1− p)βS(t)C(t)− λI(t)− (γ+ αC(t))I(t) + ηC(t)+

+ ρ

(
1− exp

(
−
∫ τ

0

g(a)C(t− τ+ a)da

))
, (72)

dC(t)

dt
= pβS(t)C(t)− (η+ µ)C(t) + (γ+ αC(t))I(t), t ∈ [0;∞), (73)

S(0) = S0, I(0) = I0, C(t) = C0(t), t ∈ [−τ; 0]. (74)

Let us describe parameters of the model. The parameter τ > 0 sets age, when a young individual
gets mature. The constant ρ > 0 is a fixed rate of the groups S and I recruitment due to aging
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of young individuals survived to age τ. The function g(a), nonnegative and continuous on the
interval [0; τ], describes intensity of young individuals infecting by sick individuals, when a
young individual reaches the age a ∈ [0; τ]. The parameters β > 0, α > 0 define intensities of
contacts between individuals fromS and I groups and individuals fromC group. The parameters
λ > 0 and µ > 0 present natural mortality intensities in members of the S, I and C groups with
account for emigration of individuals from these groups to regions beyond the model under
consideration. Besides, the parameter µ includes intensities of death caused by tuberculosis in
the groupC individuals. The constant p ∈ (0; 1) accounts for a share of the group S members, in
whom disease develops immediately after infecting. The parameter γ > 0 means intensities of
spontaneous disease development in the group I members. The parameter η > 0 sets intensities
of self-recoveries and recoveries due to treatment in medical institutions for the individuals from
the group C.

In (74) it is assumed that the constants S0 ≥ 0, I0 ≥ 0, the initial function C0(t) is
nonnegative and continuous on the interval t ∈ [−τ; 0].

6.2. Second model

We supplement the groups S, I and C, used in the first version of the model with a fourth
group of adult individuals: T – containing self-cured patients or patients recovered form active
tuberculosis. Let S(t), I(t), C(t) and T (t) denote sizes of the mentioned groups at a moment t.
An equations system of the model is:

dS(t)

dt
= − βS(t)C(t)− λS(t) + ρ exp

(
−
∫ τ

0

g(a)C(t− τ+ a)da

)
, (75)

dI(t)

dt
= (1− p)βS(t)C(t)− λI(t)− (γ+ αC(t))I(t)+

+ ρ

(
1− exp

(
−
∫ τ

0

g(a)C(t− τ+ a)da

))
, (76)

dC(t)

dt
= pβS(t)C(t)− (η+ µ)C(t) + (γ+ αC(t))I(t)+

+

∫ ω

0

e−λa ηC(t− a)dF (a), (77)

T (t) =

∫ ω

0

e−λa (1− F (a))ηC(t− a)da, t ∈ [0;∞), (78)

S(0) = S0, I(0) = I0, C(t) = C0(t), t ∈ [−max(τ,ω); 0]. (79)

The system (75)–(79) contains functions and constants described for the first model. The initial
function C0(t) is defined, nonnegative and continuous on the interval t ∈ [−max(τ,ω); 0]. The
function F , used in the (77) and (78), sets distribution of durations of an individual presence
in the group T until he/she passes to the group C, due to the disease exacerbation (before its
transition into the active form). We assume that duration of an individual presence in the group
T before he/she passes to the group C does not exceed some constant ω > 0, and density of
distribution F is f :

F (a) =

∫ a

0

f(s) ds, a ∈ [0;∞).

Frequency curve f(s) is assumed as nonnegative, continuous on [0,∞) function, such that
f(s) = 0 at s ≥ ω and

∫∞
0

f(s) ds = 1. Note that in (77) and in the following formulas
(80), (89) dF (a) means f(a)da.

In the formula (78) an expression ηC(t − a) sets rates, at which individuals pass from the
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group C to the group T at t− a, and an expression e−λa (1−F (a)) is a share of individuals that
passed to the group T at the moment t− a and did not leave it for the interval (t− a; t). In the
formula (77) the integral term describes rate, at which individuals from the group T pass to the
group C because of the disease exacerbation. In the presented version of the model, the group
T and equation (78) are subsidiary.

Note that the structure of the model (75)–(79), equations, for example, the term∫ ω

0

e−λa ηC(t− a)dF (a),

contained in (77), and integral relation (78), are the new elements of the tuberculosis spread
model developing the approach described in [22, 23].

6.3. Results of the first and second models analysis

We shall consider each of two models as a Cauchy problem for a system of delay differential
equations. Applying the results of [21], we can prove the existence, uniquiness and nonnegativity
of the solution on [0;∞).

Each of the equation systems (71)–(73) and (75)–(77) has a trivial equilibrium

X∗ = (S∗, I∗, C∗) =
(
ρ/λ, 0, 0

)
.

We shall denote
Jg =

∫ τ

0

g(a)da, Jλ,F =

∫ ω

0

e−λadF (a), (80)

R0,1 =
(λ p+ γ)βS∗ + γη+ γρJg

(λ+ γ)(η+ µ)
, (81)

R0,2 =
(λ p+ γ)βS∗ + (λ+ γ)ηJλ,F + γρJg

(λ+ γ)(η+ µ)
. (82)

We shall examine stability conditions for a trivial equilibrium X∗ with the linearization
method. Let us use a known relation 1− exp(−y) ∼ y, y → 0, making it possible to transform
expressions

exp
(
−
∫ τ

0

g(a)C(t− τ+ a)da
)
, 1− exp

(
−
∫ τ

0

g(a)C(t− τ+ a)da
)
,

contained in the equations of the models under examination.
The variables of each linearized system are designated the same as the initial ones. Totality

of terms rejected at linearization satisfies the necessary condition of smallness [7, 8].
For the first model, we get the following equation system of linear approximation:

dS(t)

dt
= − λS(t)− βS∗C(t)− ρ

∫ τ

0

g(a)C(t− τ+ a)da, (83)

dI(t)

dt
= − (λ+ γ)I(t) + ((1− p)βS∗ + η)C(t) + ρ

∫ τ

0

g(a)C(t− τ+ a)da, (84)

dC(t)

dt
= − (η+ µ)C(t) + γI(t) + pβS∗C(t). (85)

From (83)–(85) it is clear that the variable S(t) is not a member of the equations for the
variables I(t) and C(t). Besides, the constant λ > 0. Therefore ((refer to section 5.1 and system
(43)–(46)), is sufficient to consider the problem of a trivial equilibrium stability for the equation
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system (84), (85). According to its form, the system (84), (85) corresponds to the differential
system (1) with nonnegative matrices Ak and matrix B = diag(λ+ γ,η+ µ). Let us introduce
the matrix

G = B − AΣ =

(
λ+ γ −((1− p)βS∗ + η)− ρJg
−γ η+ µ− pβS∗

)
, (86)

where the constant Jg is set by the formula (80). Applying theorem 3, we get the following
result: 1) if R0,1 < 1, the equilibrium X∗ of the system (71)–(73) is asymptotically stable; 2) if
R0,1 > 1, the equilibrium X∗ of the system (71)–(73) is instable. A case R0,1 = 1 calls for a
separate examination.

For the second model, we have an equation system of the linear approximation as follows:

dS(t)

dt
= − λS(t)− βS∗C(t)− ρ

∫ τ

0

g(a)C(t− τ+ a)da, (87)

dI(t)

dt
= − (λ+ γ)I(t) + (1− p)βS∗C(t) + ρ

∫ τ

0

g(a)C(t− τ+ a)da, (88)

dC(t)

dt
= − (η+ µ)C(t) + γI(t) + pβS∗C(t) +

∫ ω

0

e−λa ηC(t− a)dF (a). (89)

Using the previous reasoning about the first model, we can ignore the equation (87). Basing
(88), (89), we must substitute the matrix (86) with the matrix

G = B − AΣ =

(
λ+ γ −(1− p)βS∗ − ρJg
−γ η+ µ− pβS∗ − ηJλ,F

)
, (90)

where the constant Jλ,F is set by the formula (80). Applying theorem 3 and using matrix (90),
we come to the conclusion: 1) if R0,2 < 1, the equilibrium X∗ of the system (75)–(77) is
asymptotically stable; 2) if R0,2 > 1, the equilibrium X∗ of the system (75)–(77) is instable.
A case R0,2 = 1 calls for a separate examination.

Within the frames of the models under examination, the result can be interpreted as follows.
Inequality R0,1 < 1 (respectively R0,2 < 1) defines the conditions, at which tuberculosis could
be eliminated from an isolated region. But if R0,1 > 1 (respectively R0,2 > 1), the mentioned
elimination is impossible.

7. High-dimensional model for dynamics of the HIV infection dissemination in the
population of a certain region

The section explores a high-dimensional model for dynamics of the HIV infection spread
in the population of a certain region. High dimensionality of the model is conditioned by the
description of a population structure by means of various groups presenting socio-economic,
demographic and other aspects of life of individuals. The model is based on the studies [24, 25]
and their generalization in case of high dimensionality [26].

7.1. Equations of the model

Following [26], we shall consider some region, presenting its adult population in form of
groups of individuals

S1, . . . , Sn, I1, . . . , In.

The groups S1, . . . , Sn include individuals susceptible to HIV infection, the groups I1, . . . ,
In include HIV-infected individuals, the index 1 ≤ j ≤ n means level of social adaptation
(desaptation) of the individuals from the groups Sj and Ij .

Let xi(t), yj(t)mean counts of individuals in the groups Si and Ij at a moment t, 1 ≤ i, j ≤
t120
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n. We shall write the equation system of the model in the following form:

dxi(t)

dt
=

n∑
k=1,k ̸=i

γkixk(t)−
n∑

k=1

γikxi(t)−
n∑

j=1

βijyj(t)xi(t) + fSi
(t), (91)

dyi(t)

dt
=

n∑
k=1,k ̸=i

αkiyk(t)−
n∑

k=1

αikyi(t) +
n∑

j=1

βijyj(t)xi(t) + fIi(t), t ∈ [0;∞), (92)

xi(0) = x
(0)
i ≥ 0, yi(0) = y

(0)
i ≥ 0, 1 ≤ i ≤ n. (93)

Here the functions fSj
(t) and fIj(t) set rates of inflows of individuals into the groups Sj and

Ij , respectively, due to demographic processes (oncoming generation of a region, migration of
individuals from other regions) with accounts for society stratification into various social groups,
including risk groups (heavy drinkers, drug addicts, etc.). Assume that the functions fSj

(t) and
fIj(t) are nonnegative, continuous and limited on [0;∞). The parameters γjk ≥ 0, k ̸= j are
intensities of transitions of the group Sj members to the group Sk, and parameters γjj > 0 set
intensity of natural mortality and emigration for the group Sj members. The parameters αjk ≥ 0
have the similar sense (for the individuals from the groups Ij , and Ik), at that, αjj > 0 includes
intensities of deaths caused by the HIV infection for the group Ij members. The parameters
βij ≥ 0mean contact intensities of the groups Si and Ij members leading to appearance of new
HIV-infected individuals. We assume that for each 1 ≤ i ≤ n, βi1 + · · ·+ βin > 0 is true.

Let us introduce the following designations:

x(t) = (x1(t), . . . , xn(t))
T , y(t) = (y1(t), . . . , yn(t))

T ,

fS(t) = (fS1(t), . . . , fSn(t))
T , fI(t) = (fI1(t), . . . , fIn(t))

T ,

A = (aij), aii = −
n∑

k=1

γik < 0, aik = γki ≥ 0, 1 ≤ i, k ≤ n, k ̸= i,

L = (ℓij), ℓii = −
n∑

k=1

αik < 0, ℓik = αki ≥ 0, 1 ≤ i, k ≤ n, k ̸= i,

C = (βij), D(x(t)) = diag(x1(t), . . . , xn(t)).

Then the model (91)–(93) can be written in the vector form

dx(t)

dt
= Ax(t)−D(x(t))Cy(t) + fS(t), (94)

dy(t)

dt
= Ly(t) +D(x(t))Cy(t) + fI(t), t ∈ [0;∞), (95)

x(0) = x(0), y(0) = y(0). (96)

The matrices A and L contained in (94), (95) are quasinonnegative. The inequalities

(−A)T (1, . . . , 1)T > 0, (−L)T (1, . . . , 1)T > 0.

are realized; this can easily be noted. From here it follows that A and L have nonnegative real
parts.

Using standard methods, we may show that the Cauchy problem (94)–(96) has a unique,
nonnegative, limited from above solution defined on the interval [0;∞).

Let fIj(t) ≡ 0 and y
(0)
j = 0, 1 ≤ j ≤ n. Then the problem (94)–(96) admits a solution, in
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which y(t) ≡ 0, and x(t) is sought as a solution of a subsidiary Cauchy problem

x(0) = x(0),
dx(t)

dt
= Ax(t) + fS(t), t ∈ [0;∞). (97)

The problem (97) has a unique solution

x(t) = eAtx(0) +

∫ t

0

eA(t−a)fS(a)da, t ∈ [0;∞). (98)

From the results of section 3 it follows that the solution x(t), set by the formula (98), is
nonnegative for all t ≥ 0.

Solution of the problem (94)–(96) of the form x(t) ≥ 0, y(t) ≡ 0 can be interpreted as the
absence of the HIV-infection in the region under consideration.

7.2. Special case of the model and its equilibrium

Let us pass to a special case, in which

fS(t) ≡ f ∗ = (f ∗
1 , . . . , f

∗
n)

T = const ̸= 0, fI(t) ≡ 0, t ∈ [0;∞).

Therefore, equations of the model are written in form

dx(t)

dt
= Ax(t)−D(x(t))Cy(t) + f ∗, (99)

dy(t)

dt
= Ly(t) +D(x(t))Cy(t), t ∈ [0;∞), (100)

and supplemented with the initial data (96). Differential system (99), (100) can have solutions
in form of

x(t) ≡ x = const ≥ 0, y(t) ≡ y = const ≥ 0,

presenting nonnegative equilibria of the system. The mentioned equilibria can be found from
the equations system

0 = Ax−D(x)Cy + f ∗, (101)
0 = Ly +D(x)Cy, x ≥ 0, y ≥ 0. (102)

The system (101)–(102) has a solution

x∗ = (−A)−1f ∗ ≥ 0, y∗ = 0. (103)

Note that x∗ ̸= 0. Really, according to the condition f ∗ ≥ 0, f ∗ ̸= 0, (−A) is a nonsingular
M-matrix. All elements of the matrix (−A)−1 are nonnegative, each its line and each its column
are non-zero.

We shall call equilibrium (103) the trivial equilibrium of the system (99), (100).
For the further analysis we shall introduce the matrices

Q∗ = D(x∗)C, H∗ = −(L+Q∗). (104)

It is easy to note that Q∗ is a nonnegative matrix, while off-diagonal elements of the matrix H∗

are nonpositive.
Appealing to the structure of the system (101), (102), we can prove the following important
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result [26].
S t a t em e n t А. If H∗, set by the formula (104), is a nonsingular M-matrix, (103) is the

unique solution for the system (101), (102).

7.3. Asymptotic stability of the trivial equilibrium.

Let us examine asymptotic stability of the equilibrium (103).We shall apply the linearization
method and examine stability of linear differential system for variables in the deviations

φ(t) = x(t)− x∗, η(t) = y(t)− y∗.

Let us substitute x(t) = φ(t) + x∗, y(t) = η(t) + y∗ into the system (99), (100) and reject its
nonlinear terms ±

∑n
j=1 βijφi(t)ηj(t). We come to the system

dφ(t)

dt
= Aφ(t)−Q∗η(t), (105)

dη(t)

dt
= −H∗η(t), (106)

where matrices Q∗ and H∗ are set with the formulas (104). Passing to the investigation of
stability of the nontrivial solution of the system (105), (106), we can see that the system matrix
has a block form, because φ(t) is not a member of the equation group for η(t). It is shown
above that all eigenvalues λA of the matrix A satisfies the condition Re(λA) < 0, that is,
A is a stable (Hurwitz) matrix. For the matrix (−H∗) the condition Re(λ(−H∗)) < 0 can be
realized IffH∗ is a nonsingular M-matrix. Note that in the consequence of the section 3 results,
asymptotical stability of the trivial solution of the differential system (106) will be followed by
the asymptotical stability of the trivial solution of the differential system (105), (106). Besides,
it is clear that instability of the trivial solution of the differential system (106) will be followed
with instability of the trivial solution of the differential system (105), (106). Finally, we come
to the following result.

S t a t em e n t B. If H∗, set by the formula (104), is a nonsingular M matrix, the trivial
equilibrium (103) of the system (99), (100) is asymptotically stable. If H∗ is not a nonsingular
M-matrix and, in addition, detH∗ ̸= 0, trivial equilibrium (103) of the system (99), (100) is
unstable.

The results of the statements A and B can be interpreted as one of the sufficient conditions
for HIV-infection elimination in a case when no HIV-infected individuals from other regions
resupply the groups. The vector x∗ can be considered as a regulated variable presenting sizes of
the groups S1, . . . , Sn of the HIV-susceptible individuals. Since (−L) is a nonsingularM-matrix,
a certain smallness of the matrix Q∗ = D(x∗)C can lead to the fact that H∗ is a nonsingular
M-matrix. Among other factors, there exists ξ ∈ Rn, ξ > 0, such that (−L)ξ > 0. From here it
follows that the inequality

H∗ξ = −(L+Q∗)ξ = (−L)ξ−Q∗ξ > 0

is true, if all elements of the matrix Q∗ are close to zero. Therefore, any measures decreasing
sizes of some groups from S1, . . . , Sn (decrease in individual components of the vector x∗) can
facilitate elimination of HIV-infection in a separate region. A list of these groups depends on
ratio of matrices (−L) and Q∗.
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8. Dynamics model for a population developing in the conditions of harmful substances
affecting reproduction of individuals

The section presents a mathematical model for dynamics of the population affected by
harmful substances that an individual’s body obtains from the environment with food. To
describe a population dynamics, we use a model of the “resource-consumer” type accounting
for the processes of reproduction, self-limiting, migration and natural mortality of individuals,
along with effects of harmful substances consumption. It is supposed that the individuals
can be affected by any consumables or products of the consumable interactions in various
combinations.

8.1. Equations of the model

Following [27, 28], we shall consider a population of individuals, which dynamics is defined
by the following factors:

• individuals die due to ageing and self-limiting,

• individuals are prone to migrations,

• no exogenous inflows of individuals,

• inflows of harmful substances X1, . . . , Xk, into individuals’ environment, where the
substances are metabolized, accumulated in food resources and consumed by individuals,

• no individuals competition for food resources containing substances X1, . . . , Xk,

• various combinations of consumed substances X1, . . . , Xk can interact between each
other,

• some of the substances X1, . . . , Xk or products of their interaction adversely affect
reproduction rate of the individuals.

Let us introduce the following designations: xi = xi(t) is amount of harmful substances
Xi, y = y(t) is a population size at a moment t. The function d(y(t)) means intensity of
individuals migration and death due to natural ageing and self-limiting. Intensity of individuals
reproduction discounting impacts of harmful substances will be described with the function
b(y(t)). The function β(u(t)) is assumed to present impacts of harmful substances on the
reproductive potential of the individuals. Harmful substances level is set with the function
u(t) = φ(x1(t), . . . , xk(t)), accounting for some or all harmful substances and products of
their interaction. We assume that in the conditions of the harmful substances impact, intensity
of the population size growth is described with an expression β(u(t)) b(y(t)). The constants
ri > 0 and δi > 0 set rates of a harmful substanceXi inflow and degradation, respectively. The
function θi(xi) describes rate, at which an individual consumes the substance Xi with the food
and accounts for the saturation effect.

The model equations have the following form:

dxi(t)

dt
= ri − θi(xi(t)) y(t)− δi xi(t), 1 ≤ i ≤ k, (107)

dy(t)

dt
= β(φ(x1(t), . . . , xk(t))) b(y(t)) y(t)− d(y(t)) y(t), t ∈ [0;∞), (108)

xi(0) = x
(0)
i ≥ 0, 1 ≤ i ≤ k, y(0) = y(0) ≥ 0. (109)
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The functions b(y), d(y) are assumed to have the following properties: b(y) and d(y) are
continuous on the interval [−a;∞), where a > 0 is some constant; b(y) ∈ [0; b̄] for all
y ∈ [0,∞), where b̄ > 0 is some constant; d(y) is positive on the interval [0;∞), and increasing,
and d(y) → +∞ at y → +∞. The function β(u) is continuous on the interval [−p;∞), where
p > 0 is some constant, positive, decreases on the interval [0;∞), β(0) = 1, β(u) → 0 at
u → +∞. Each function θi(xi), 1 ≤ i ≤ k, is continuous on the interval [−q;∞), where
q > 0 is some constant, increases on the interval [0;∞), θi(0) = 0, and θi(xi) → θ̄i ∈ (0;∞)
at xi → +∞. The function φ(x1, . . . , xk) is continuous on [−q;∞)k, does not decrease on
[0;∞)k with respect to each argument, φ(0, . . . , 0) = 0, φ(x1, . . . , xk) > 0 at (0;∞)k.

Note that the constant b̄ > 0 corresponds to the physiological limit of reproduction, that is, to
the maximal number of descendants per an individual. Hypotheses about the function β(u) tell
that a reproductive potential of an individual decreases under impacts of harmful substances. The
properties of the function φ(x1, . . . , xk) present impacts of one or another harmful substance,
individually or combined with other substances, on individuals of the population. Besides,
without a loss of generality we shall exclude from the consideration the simplest case, when
b(y) ≤ d(y) for all y ∈ [0;∞).

In addition to the above mentioned hypotheses, we shall assume that the functions b(y),
d(y), β(u), θ1(x1), …, θk(xk) have continuous derivatives, and the function φ(x1, . . . , xk) has
continuous partial derivatives with respect to all arguments in their definition domains.

In [28] it is shown that the problem (107)–(109) has a unique solution
(x1(t), . . . , xk(t), y(t)), defined on the interval [0;∞), and each component of the solution is a
nonnegative and limited from above function.

8.2. Existence of equilibria

Let us obtain the conditions for the existence of the system (107)–(108) nonnegative
equilibria. Any equilibrium of the system (107)–(108) is a solution of the system

0 = ri − θi(xi) y − δi xi, 1 ≤ i ≤ k, (110)
0 =

(
β(φ(x1, . . . , xk)) b(y)− d(y)

)
y. (111)

At y = 0 the system (110)–(111) has a unique solution U0 = (x∗
1, . . . , x

∗
k, 0), where x∗

i =
ri/δi > 0, 1 ≤ i ≤ k.

Suppose next that the system (110)–(111) has a solution

U1 = (x̄1, . . . , x̄k, ȳ)

such that ȳ > 0. We shall define the constantKy > 0 as an equation root

b̄− d(y) = 0, y ∈ [0;∞).

Then from the equation (111) and inequality β(u) ≤ 1 it follows that 0 < ȳ ≤ Ky.
Let us fix 1 ≤ i ≤ k and rewrite (110) in the form:

ri − δi xi = θi(xi) y. (112)

One can see that for each set y ∈ [0;∞) the equation (112) has exactly one root x̄i = x̄i(y), at
that, 0 < x̄i(y) ≤ x∗

i . It is easy to note that x̄i(y) is a decreasing, continuous and differentiable
function. Using (112), we find that

x̄′
i(y) =

−θi(x̄i(y))

θ′i(x̄i(y)) y + δi
.
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Let us define the function

h(y) = φ(x̄1(y), . . . , x̄k(y)), y ∈ [0;∞), (113)

that is positive, non-increasing and continuous [0;∞). The function’s derivative is:

h′(y) = −
k∑

i=1

φ′
xi
(x̄1(y), . . . , x̄k(y))

θi(x̄i(y))

θ′i(x̄i(y)) y + δi
. (114)

Substituting (113) into (111), we come to the equation for the component ȳ of the solution
U1:

β(h(y)) b(y) = d(y), 0 < y ≤ Ky. (115)

Note thatβ(h(y)) is a function non-decreasing on [0;∞) and, besides,β(h(0)) > 0. The positive
roots of the equation (115) make it possible to find all solutions of the system (110), (111) of the
form U1, that together with the solution U0 set all nonnegative equilibria of the system (107),
(108).

8.3. Stability of equilibria

Let us investigate stability of the system (107), (108) nonnegative equilibria using a
linearization method. Possibility for application of the method is conditioned by the existence
of continuous partial derivatives of the differential system (107), (108)) right hands in the
neighborhood of all equilibria.

We shall study stability of the trivial solution of the differential system of the orderm = k+1

dz(t)

dt
= Cz(t), (116)

where z : R 7→ Rm, C –m×m is a matrix of linear approximation in the neighborhood of the
set equilibrium. A trivial solution z = 0 of the system (116) is asymptotically stable, if a matrix
C is stable: Re(λC) < 0 for all eigenvalues λC of the matrix C. If among the numbers λC we
find one or more with Re(λC) > 0, solution z = 0 is unstable.

Let us consider an equilibrium U0. The matrix C has a form

C = C0 =


−δ1 0 0 ... 0 −θ1(x∗

1)
0 −δ2 0 ... 0 −θ2(x∗

2)
0 0 −δ3 ... 0 −θ3(x∗

3)
... ... ... ... ... ...
0 0 0 ... −δk −θk(x∗

k)
0 0 0 ... 0 δm

 ,

where δm = β(h(0)) b(0)− d(0). Eigenvalues C0 are:

λi = −δi < 0, 1 ≤ i ≤ k, λm = δm.

From here it follows that U0 is asymptotically stable, if

β(h(0)) b(0)− d(0) < 0, (117)

and unstable, if
β(h(0)) b(0)− d(0) > 0. (118)

A case β(h(0)) b(0)− d(0) = 0 calls for more detailed examination.
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Let us turn to the equilibrium U1, for which ȳ > 0. In such a case

C = C1 =


c11 0 0 ... 0 c1m
0 c22 0 ... 0 c2m
0 0 c33 ... 0 c3m
... ... ... ... ... ...
0 0 0 ... ckk ckm
cm1 cm2 cm3 ... cmk cmm

 ,

cii = −θ′i(x̄i) ȳ − δi < 0, cim = −θi(x̄i) < 0, x̄i = x̄i(ȳ), 1 ≤ i ≤ k,

cmj = β
′(φ(x̄1, . . . , x̄k))φ

′
xj
(x̄1, . . . , x̄k) b(ȳ) ȳ ≤ 0, 1 ≤ j ≤ k,

cmm =
(
β(φ(x̄1, . . . , x̄k)) b

′(ȳ)− d′(ȳ)
)
ȳ.

Eigenvalues of the matrix C1 can be found from the characteristic equation

det(C1 − λE) = (−1)m λm + p1λ
m−1 + p2λ

m−2 + · · ·+ pm = 0, (119)

whereE is an identity matrix. The coefficients p1, . . . , pm of the equation (119) can be calculated
by standard formulas, for example, pm = det(C1).

Assume
f(y) = β(h(y)) b(y), y ∈ [0;∞). (120)

Derivative f(y) with the account of (114) is:

f ′(y) = β′(h(y))h′(y) b(y) + β(h(y)) b′(y) =

= −β′(h(y)) b(y)
k∑

i=1

φ′
xi
(x̄1(y), . . . , x̄k(y))

θi(x̄i(y))

θ′i(x̄i(y)) y + δi
+ β(h(y)) b′(y). (121)

Applying (121),we rewrite the element cmm of the matrix C1 as follows:

cmm = (β(h(ȳ)) b′(ȳ)− d′(ȳ)) ȳ = −(d′(ȳ)− f ′(ȳ) + β′(h(ȳ))h′(ȳ) b(ȳ)) ȳ. (122)

Now we show that for the system

dz(t)

dt
= C1z(t) (123)

asymptotic stability (unstability) of the solution z = 0 is related to the realization of an
appropriate inequality

d′(ȳ)− f ′(ȳ) > 0, (124)

d′(ȳ)− f ′(ȳ) < 0. (125)

Let us use several criteria, application of which is conditioned by the structural properties
of the matrix C1 (signs and locations of its non-zero elements).

Stage 1. From the Routh-Hurwitz criterion [12] it follows that for the asymptotical stability
of the system (123) zero solution it is necessary that all coefficients of the equation (119) have
the same sign. After the elementary transformations (from the last line C1 we subtract serially
the first, second and other lines multiplied by the appropriate coefficients), we find that
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det(C1) =
k∏

i=1

cii
(
cmm −

k∑
j=1

cmj cjm/cjj
)
=

= (−1) k ȳ

k∏
i=1

(
θ′i(x̄i) ȳ + δi

) (
β(h(ȳ)) b′(ȳ)− d′(ȳ) + b(ȳ)β′(h(ȳ))h′(ȳ)

)
=

= (−1)m ȳ

k∏
i=1

(
θ′i(x̄i) ȳ + δi

) (
d′(ȳ)− f ′(ȳ)

)
. (126)

Therefore, if the inequality (125) is realized, the equilibrium U1 is instable, while the inequality
(124) provides, at least, a necessary sign for the coefficient pm, a member of the equation (119).

Stage 2. Let inequation (124) be true. From (122) it follows that cmm < 0, because
β′(h(ȳ)) < 0, h′(ȳ) ≤ 0. We shall write (123) in the form

dz(t)

dt
= A0z(t)−Bz(t), (127)

where B = diag(−c11, . . . ,−cmm), A0 = C1 +B. The system (127) is the system (1) at n = 0
andA1(θ) ≡ 0. According to the theorem 4, ifB−A+

0 is a nonsingularM-matrix, a zero solution
of the system (127) is asymptotically stable.

Let us calculate the main minors of the matrix B − A+
0 :

M1 = (−c11) > 0, M2 = (−c11)(−c22) > 0, . . . , Mk = (−c11) . . . (−ckk) > 0,

Mm = det(B − A+
0 ) = (−1)m det(A+

0 −B) = (−1)m det(C1) =

= ȳ
k∏

i=1

(
θ′i(x̄i) ȳ + δi

) (
d′(ȳ)− f ′(ȳ)

)
.

Equality of the determinants det(A+
0 − B) = det(C1) follows from the formula (126) and

equalities
cmj cjm = |cmj| |cjm|, 1 ≤ j ≤ k.

If the (124) is realized, a minorMm is positive. In this case, under theorem 2 thematrixB−A+
0 is

a nonsingular M-matrix. Therefore, the inequality (124) is not only necessary, but also sufficient
condition of the asymptotical stability for a zero solution of the system (127).

Note, in addition, that a case d′(ȳ)− f ′(ȳ) = 0 calls for a special consideration.
Study of the system (107), (108) equilibria stability shows that a qualitative analysis of the

high-dimensional model (107)–(109) solutions can be traced to the solution of the models in
form

dy(t)

dt
=
(
f(y(t))− d(y(t))

)
y(t), t ∈ [0;∞), (128)

y(0) = y(0) ≥ 0, (129)

where the function f(y) is defined by the formula (120). The equation (128) with the account
for the introduced designation, has the same form as the equation (108). They differ in a
factor β(h(y(t))) at b(y(t)). The factor accounts for impacts of harmfulous substances on the
reproduction process of the individuals.

One can see that the nonnegative equilibria of the equation (128) and conditions of their
asymptotical stability (instability) are equivalent to the nonnegative equilibria and the respective
conditions of the system (107), (108).
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For the equation (128) existence of equilibria and their asymptotical stability (instability)
can easily be tested by the analysis of the equation

f(y)− d(y) = 0, y ∈ [0;∞),

roots and relative position of the functions f(y), d(y) graphs in the neighborhood of these roots.
Finally we get that behavior of the solution y(t) for the model (128), (129) in a small

neighborhood of the equilibrium ys closely presents behavior of the component y(t) of themodel
(107)–(109) solution, if only initial data in this model belong to the small neighborhood of the
equilibrium U = (x̄1(ys), . . . , x̄k(ys), ys).

Note that the mentioned behavior of the model (107)–(109) solution could be obtained under
the familiar theorem on «fast» and «slow» variables [29]. However the model (107)–(109)
structure is such that it can be investigated, using the model (128), (129), without separation
of the variables x1(t), . . . , xk(t), y(t) into «fast» and «slow». Only deviations of the initial data
from the equilibrium play a role here.

CONCLUSION

Results presented in the article show that M-matrices can be effectively applied in analyses
of the solutions for the mathematical models of living systems with certain structural properties.
At the same time, application of the M-matrices provides a possibility to study only some
properties of solutions for this model family. Models of living systems are rather variable.
So, we should apply familiar but rather complex mathematical methods to solve some routine
problems. The problems include: 1) analysis of equilibria stability for differential equations
with several or distributed delays; 2) search for conditions of existence for oscillation solutions
of high-dimensional differential systems; 3) finding of lower and upper bounds for solutions of
differential equations; 4) study of the functional sensitivities from model solutions to variations
of their parameters; 5) numerical study of solutions for differential equations, including the
delay equations. Examples of successful solutions of the listed problems are given in the articles
[23, 30, 31, 32, 33, 34, 35].

The research was funded by the Program of Fundamental Scientific Research, SB RAS № I.1.1.,
Project № 0314-2016-0009.
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