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Abstract. Statistical modeling allows considering the structure under study as an element of an 

ensemble of structures and assigning common properties of the ensemble structures to a 

particular structure. Such common properties may be derived sometimes more easily for the 

whole ensemble than for the particular structure separately. The utility of the properties derived 

depends on how adequately the ensemble is introduced. The statistical likelihood may be used as 

the basis to choose the most reasonable statistical model. Several examples of the use of this 

approach in studies of structures of biological macromolecules by X-ray diffraction methods are 

discussed. 
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1 Introduction 

1.1 Crystallographic background 

 The scattering of X-rays is defined by the electrons in the sample. The electron 

composition of the sample is described by electron density distribution function (r) so that 

(r)dVr is the average over the time of experiment electron charge in a primary volume Vr . 

The determination of this distribution is the final goal of high precision X-ray study. If one 

studies a crystal sample this distribution is considered as periodic one in three dimensions 

with the periods a,b,c: 

 ( ) ( ) ( ) ( )crbrarr +=+=+=   .       (1) 

The parallelepiped V built on these three vectors is called 'unit cell' of the crystal. Being 

periodic the function (r) may be presented by a 3-D Fourier series 
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where the sum (2) is expanded on all vectors s=ha*+kb*+lc*, with integer h,k,l and 

{a*,b*,c*} is the basis conjugate to the {a,b,c} one. The complex Fourier coefficient 

F(s)exp[i(s)] is called 'structure factor' and its magnitude F(s) and argument (s) are called 

'structure factor magnitude' and 'structure factor phase' , respectively. For short we call 

them simply as the magnitude and phase below. We call the vector s as 'reflection', and the 
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integers h,k,l as 'reflection indexes'. Conventional X-ray experiment allows obtaining 

structure factors magnitudes for a set of reflections S, while the phase values are lost in the 

experiment. The restoring the phase values composes the central problem of X-ray structure 

analysis, namely the phase problem. It is worthy of noting that beside the phases lost, a 

number of structure factor magnitudes (mostly for high frequency Fourier harmonics) are also 

lost in the experiment. So that even with the phases {(s)},sS restored one cannot calculate 

the exact electron density distribution by (2), but an image of the electron density distribution 

S(r) only. This image is called 'Fourier synthesis of the electron density distribution'. It 

contains distortions caused both by the series truncation effects and by errors in the restored 

phase values.  

 The 'atomicity' hypothesis suggests that the electron density distribution is not an 

arbitrary function, but a sum of 'localized' atomic contributions 

 ( ) ( )
=
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N
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1

rrr   ,         (4) 

where N is the number of atoms composing the studied object and {rj} are their coordinates. 

In this paper for simplicity of presentation we suppose that all atoms are similar. The 

distribution of electron density in the atom  aomt(r) is supposed to be known and be 

spherically symmetric, so that  atom(r)= 0(r). A gaussian three-dimensional function gives 

an approximate image of an electron density distribution in a single atom. If the atomic 

coordinates are known the summary electron density distribution may be calculated by (4). 

The inverse problem, i.e. the decomposition of electron density distribution into a sum of 

atomic contributions, may be much more difficult, especially when an erroneous image S(r) 

of electron density is used as the input. This decomposition is called the 'interpretation' of the 

Fourier synthesis or 'model building'. 

The atomicity allows expressing the structure factors in the form 
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where f 0(s) is sinus-Fourier transform of the single atom density distribution 0(r), i.e. it is 

supposed to be known. The problem of defining atomic coordinates {rj} may now be 

formulated as a minimization problem in 3N-dimensional space: 

  ( ) ( )( ) min;
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where Fobs(s) stands for experimentally derived magnitude values. Nevertheless high 

dimensionality (N is about 104 for macromolecular structures) and highly oscillating nature of 

the right-hand expression in (5) do not leave a room for such straightforward approach. At the 

same time a local minimization procedure may be performed with contemporary algorithms 

and computer facilities, provided some reasonable preliminary atomic coordinates were 

defined. 

 A conventional X-ray determination of macromolecules structure passes through three 

main stages: 

• estimating of the values of structure factors phases and calculating of corresponding 

Fourier synthesis S(r); 

• model building, i.e. the decomposition of the Fourier synthesis into the sum of atomic 

contributions (4) with a reasonably accuracy; 

• refining of atomic coordinates (and other parameters in general case) by means of 

minimisation (6). 

 

1.2 Statistical modelling 

 The goal of X-ray macromolecular study is to define a quite deterministic object, i.e. 

the atomic coordinates for a particular molecule. At the same time some statistical approaches 
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were found to be very useful to solve this problem. In this paper we do not discuss the 

'traditional' use of statistical methods in the processing of experimental errors, where they are 

natural. The scope of this paper is to discuss some approaches to the use of the theory of 

probabilities in situations 'non-probabilistic' at the first glance. 

The main idea of the approach may be formulated as follows: 

• the studied particular structure is considered as a member of some ensemble of 

possible structures; 

• the study of common properties of this ensemble is sometimes more simple problem 

then the study of the particular structure and it allows some 'typical' properties of the 

structures to be established; 

• it is supposed that the particular studied structure obeys these common properties, so 

that these may be used to reduce an uncertainty in structure parameters. 

The following example illustrates this general idea [1,4-6,21,23,24]. 

 Let N be the number of atoms in the studied structure and let us consider all the 

structures as equally possible. To be more precise, let us consider the atomic coordinates as 

independent random variables uniformly distributed in the unit cell. In such the case the 

structure factor calculated as (5) becomes a random variable and a mathematical task to derive 

the joint probability distribution P(F,) of its magnitude and phase may be posed and solved. 

The found probability distribution may be used to derive marginal distributions P(F) and P() 

that reflect how frequently different values of the magnitude and phase may occur. The found 

distribution P(F) is used in practice to scale the experimental data. For example, the proper 

scale might produce the magnitudes values as close as possible to the expected ones. At the 

same time the marginal distribution P() is the uniform one and produces no information. The 

situation changes if we modify the mathematical task and include some knowledge on the 

structure studied.  

 Let us consider three reflections s1,s2,s3 such that s1+s2+s3=0, and the corresponding 

magnitudes are known from an X-ray experiment. Let us introduce so called 'phase invariant' 

T=1+2+3. The mathematical task is now formulated as to derive the conditional probability 

distribution P(T|F(s1),F(s2),F(s3)) for the value of the invariant provided that the three 

magnitudes corresponding to the random models are fixed by the results of the experiment. In 

this case the conditional distribution (in some approximation) has the form of the Von Mises 

(normal circular, etc.) distribution 
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This distribution tends to the uniform distribution when  tends to zero, but produces a strong 

restriction for phase values 

 ( ) ( ) ( ) 0321 ++ sss          (8) 

when  is large, i.e. when the corresponding experimental structure factors magnitudes are 

large. This suggests a practical approach to the solution of the phase problem: 

• triplets of reflections satisfying s1+s2+s3=0 and possessing of strong experimental 

magnitudes F(s1),F(s2),F(s3) are selected; 

• approximate restrictions (8) are postulated for corresponding structure factor phases; 

these are used to estimate individual phase values. 

It must be emphasised that this procedure contains a principal methodological break. The 

condition (8) is satisfied 'as usual' for randomly generated structures and there is no guaranty 

that it is satisfied for a particular structure. Nevertheless, we impose this restriction to the 

unique structure under study. Obviously, the mathematics is not 'responsible' for consequences 

of such a decision.  

 In spite of this methodological break such approaches (in their numerous variations) 

are widely used in crystallographic practice and produce quite reasonable results when the 

ensemble of structures is chosen adequately. The choice of the ensemble may be considered as 
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a way to transform our additional information on the structure studied into mathematical form, 

and the results obviously depend on the information involved. In what follows we consider the 

simplest way to define the ensemble. It is supposed that atomic coordinates of different atoms 

are independent and probability distribution pj(r) is defined for each atom (in general, these 

distributions are different for different atom). 

 

1.3 Likelihood ranking 

 In this paper we discuss likelihood-based approaches to the choice of the ensemble of 

structures [10]. Statistical likelihood is a widely used tool of mathematical statistics and 

theory of probabilities and discussion of its mathematical aspects is beyond the scope of this 

paper. We remind only the main ideas how the likelihood is used to choose a hypothesis. The 

standard situation when we may apply the likelihood may be described in short as follows: 

• there exist a set of 'experimental' measurements obs
M

obsobs xxx ,...,, 21 ; 

• there exist a hypothesis H that these values were obtained as a result of an independent 

generation of random numbers x1,x2,...,xM with probability distributions 

p1(x),p2(x),...,pM(x) , respectively. 

A possible way to estimate a consistency of this hypothesis is to calculate how large is the 

probability to reproduce the result obs
M

obsobs xxx ,...,, 21  when generating independent random 

values with probabilities p1(x),p2(x),...,pM(x), i.e. to calculate 

 ( ) ( ) ( )obs
MM

obsobs xpxpxpL = 2211  .        (9) 

The value L=L(H) is called the likelihood of the hypothesis H. If several alternative 

hypotheses H1,H2,...,HK are suggested to explain the results obs
M

obsobs xxx ,...,, 21  then the likelihood 

performs a ranking of the hypothesis; the one possessing of the maximal likelihood, i.e. the 

one producing maximal chance to reproduce the experimental results may be considering as 

the most reasonable explanation of the experimental results. Obviously, likelihood-based 

ranking is one of many methods used in mathematical statistics. If the set of alternative 

hypotheses Ht is infinite, e.g. it is parameterised by continuous parameter t, the likelihood 

becomes a function L(t) of a continuous variable (or variables). 

 If there exists some preliminary information that gives different preference to different 

hypotheses, and if this information is presented in the form of 'prior probability distribution 

for the hypotheses' (e.g. in the form of a prior probability distribution Pprior(t) for the 

parameter t), then likelihood function may be used to calculate a 'posterior' distribution by 

means of the Bayesian formula 

 ( ) ( ) ( )tPtLtP priorpost   .         (10) 

This posterior distribution produces a ranking of hypothesis taking into account both the 

preliminary information and experimental results.  

 The definition of the likelihood as the probability to reproduce the experimental results 

hints at a Monte-Carlo type computer procedure to estimate the likelihood value [9,17,18]. 

This probability may be calculated through a computer simulation when a large number of 

generations of random variables are performed to estimate the chance to reproduce with a 

reasonable accuracy the experimental results. On the other hand, such a procedure is time-

consuming and an analytical expression of the likelihood function may be very useful when it 

exists. 

 

2 Likelihood based choice of an envelope and ab initio phasing 

 At first stages of X-ray study of macromolecular structures the knowledge of a 

molecular envelope may be very important for a further progress. Molecular envelope is a 

region of the unit cell that contains the most of molecular atoms. Mathematically the envelope 

may be defined by a binary (characteristic) function (r). The knowledge of envelope allows 

defining the position of the molecule in the unit cell and its shape. Sometimes several 
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alternative envelopes may be suggested as a solution. Likelihood ranking present a possible 

way to make a choice [9,11,17]. 

Let us suppose that observed structure factor magnitudes {Fobs(s)},sS are known and two 

alternative envelopes 1 and 2 are suggested. The envelope i may be linked to the 

statistical hypothesis Hi: the values {Fobs(s)},sS were calculated by formula (5) where the 

atomic coordinates {rj} were chosen randomly (independently and uniformly) in the region 

i. The likelihood-based choice of the envelope in this case means the choice of the envelope 

that has the maximal probability to reproduce the observed magnitudes when placing atoms 

randomly inside it. 

 The likelihood ranking of envelopes may be applied to the solution of the phase 

problem [2,18]. Let the full set of reflections with known magnitudes be divided into two 

subsets: S1 (work reflections) and S2 (test reflections) and the problem considered is to define 

phases for reflections from the work set. For any trial phase set we can define the trial 

envelope as the region of highest values in the Fourier synthesis (2) calculated with the 

observed magnitudes {Fobs(s)},sS1 and trial phase values 

 ( ) ( ) ( ) critS  == rrs :  .        (11) 

The probability to reproduce the magnitudes from S2 through (5) when placing atoms 

randomly into this envelope becomes in this way an estimate of reliability of the trial phases 

and may be used as a criterion to choose the best phase set.  

 

3 Phase errors estimates 

3.1 Statistical modelling of phase errors 

Coordinates of an atomic model built at intermediate stages of X-ray structure investigation 

usually contain some errors. Furthermore this model is often incomplete, i.e. it may miss a 

part of atoms of the studied object. The phases calculated by (5) from such a model contain 

errors. The statistical modelling may be used to estimate the quality of the calculated phases 

[7,19]. Let the ensemble of the structures be introduced as follows:  

• let   Mjmod
j ,...,1, =r  be the coordinates of atoms of the preliminary model and N be 

the full number of atoms in the molecule studied; 

• we consider all structures composed from N atoms; 

• for j=1,...,M the probability to find j-th atom in the position r is defined by 

( )mod
jp rr −0  where the distribution p0(r) is supposed to be known; for j=M+1,...,N the 

coordinates rj are supposed to be distributed uniformly in the unit cell. 

The distribution of errors in the model coordinates p0(r) (that is supposed here to be isotropic 

at similar for all atoms) brings some additional knowledge of the quality of the model. 

Statistical model allows transforming this information on coordinate errors into the estimates 

of phases and errors of these estimates. To be more precise, the ensemble introduced allows 

deriving for every reflection the probability distribution for the corresponding structure factor 

phase: 

 ( ) ( ) ( ) ( )







− ssss

modobsmod

s

s
FFP 




 cos(2exp  .      (12) 

This suggests the phase value mod(s) as the more probable (that is not surprising) and allows 

the expected deviation of the phase values from the mean value to be estimated.  

 

3.2 The choice of the statistical model  

 The estimates of the reliability of phases are derived from the values of parameters s 

and s that in turn are derived from the primary information p0(r) on the model quality and 

model completeness. In the considered case they are calculated as 
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The determination of these parameters is the key step when estimating the phase quality. 

Being formally different for different reflection these parameters may be considered as 

constant inside thin spherical shells s ≈ const, so that it would be necessary to define two 

parameters  and  for every shell. This determination may be based on the likelihood 

ranking. 

 The same statistical model as before allows obtaining probability distributions for 

magnitudes F(s) as well: 
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Together with the experimentally observed magnitudes these distributions allow one to 

calculate the likelihood 

 ( )( )


=
S

obsFPL
s

s s           (15) 

that reflects the probability to reproduce the experimental magnitude values after the random 

corrections were introduced into model coordinates and the necessary number of lost atoms 

was added randomly. The maximization of the likelihood (15) provides reasonable estimates 

of model parameters. 

 

4 Likelihood-based model refinement 

In the conventional least-squares (LS) refinement every set of the model parameters (for 

example, atomic coordinates) is associated with a set of calculated structure factors. This 

refinement is aimed to choose the set of atomic parameters such that the corresponding 

calculated magnitudes are the most consistent with the experimental data. Traditionally, this 

consistency is expressed through the residual  
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while other measures may be introduced, for example, those based on the comparison of 

intensities. It is supposed that the criterion (16) reaches its minimum, in the idealized situation 

equal to zero, for the exact parameter values.  

 A need in a statistical modelling appears when the atomic model contains irremovable 

errors so that the structure factor magnitudes calculated from the conventional model are 

different from the experimentally obtained magnitudes even for the exact values of parameters 

[13]. The simplest example is refinement of an incomplete atomic model. In this case the 

structure factors magnitudes calculated from the exact coordinates of the partial model are still 

different from the ‘true’ values since the addition of the missed atoms is necessary to make 

these quantities equal to each other.  

 Statistical refinement uses simultaneously two quite different objects: a conventional 

atomic model and a statistical model for corrections of the residual irremovable errors. For 

example, one may expect that the calculated magnitudes would be equal to the observed ones 

if the partial model with the exact atomic coordinates is completed by the necessary number of 

the lost atoms placed also exactly. This equality cannot be obtained without an explicit 

determination of these lost atoms. On the other hand, it is possible to estimate the probability 

to obtain this equality, precisely or at least approximately, after the lost atoms have been 

added randomly to the current partial model. One can expect that this probability is the highest 

one if we try to complete the exact partial model and has lower values if the partial model 

contains positional errors. Therefore, this probability, i.e. the likelihood in statistics, may be 
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used as a score function to estimate the quality of a partial model, making the fundamentals of 

the statistical refinement.  

 To be more formal, in this statistical consideration every current set of atomic 

parameters is associated with a joint probability distribution of the magnitudes of corrected 

structure factors rather than with a single set of calculated magnitudes. The corrected structure 

factors are random variables as they correspond to the current atomic model transformed by 

random corrections. These distributions are different for different sets of atomic parameters 

and obviously depend on the given law (probabilistic model) for the necessary corrections. 

The goal of statistical refinement of the atomic parameters may be formulated as the choice of 

the set of parameters, for which the corresponding joint probability distribution of corrected 

magnitudes is the most consistent with the experimental data. The statistical model for the 

correction of the residual errors is supposed to be defined in advance and fixed in the course 

of the refinement. The likelihood value (i.e. the probability to reproduce the set of observed 

magnitude values in the framework of this probability distribution) is an example of this 

measure of consistency.  

 In the procedure referred as ML-refinement [3,12,13,15,16] the criterion to be 

minimized is the negative logarithm of a simple type of the likelihood function [7,19], the 

model-dependent part of which may be formally presented as 
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Here Fobs(s) is the observed calculated structure factor magnitude for the reflection s and 

Fmod(s) is the corresponding value calculated from the available atomic model. This type of a 

likelihood function was derived first for the error correction statistical model, which supposes 

that the lost atoms are added independently and uniformly in the unit cell, and the atomic 

position corrections are independent and have the same radial distribution for all model atoms. 

Some more complicated statistical models may be considered [8,14,20,22] that result in the 

same type of the likelihood function.  

 Parameters s and s are the same as in (12, 14). They reflect the scale and nature of 

the residual irremovable errors, as they are expected to be in the refined model. It must be 

emphasized that different suggestions about the nature of the residual irremovable errors in the 

refined atomic model result in different likelihood functions, while presented in the same form 

(17). The quality of the atomic model obtained by minimization of (17) may strongly depend 

on the values of s  and s  parameters used, and an inappropriate choice of the hypothesis 

about the residual model error may essentially spoil the refinement. The likelihood-based 

procedure described above may be used to derive these parameters. 
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