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Abstract. Aortic dissection is an extremely severe pathology. From the viewpoint 

of mechanics, the aorta is a multilayered anisotropic reinforced shell, which is 

subjected to periodic loading under the action of pulsed blood pressure. Various 

issues of mathematical modeling of dissection of the aorta and large arteries are 

considered in the present study. Modern mathematical models of the aortic and 

arterial wall structures obtained by processing experimental data on biaxial 

stretching of samples are reviewed. These mathematical models can be 

conventionally divided into two classes: 1) effective models, where the internal 

structure of the walls is ignored, but mechanical parameters of the material 

“averaged” over the wall thickness are introduced; 2) structured models, which 

take into account the multilayered (up to three layers) structure of the artery with 

addition of one to four families of reinforcing fibers. One of the most popular 

models (Holzapfel-Gasser-Ogden model) is considered in detail. This model 

describes a two- or three-layered artery with two families of reinforcing fibers. For 

this model, tables of design parameters are provided, and numerical simulations of 

arterial rupture and dissection are performed. The blood vessel is subjected to pulse 

pressure of blood flowing through it. It is shown that rupture of the inner layer of 

the vessel leads to an increase in the stress at the outer wall of the vessel. As the 

rupture thickness and length increase, the stress at the outer wall of the vessel is 

also increased. If there is an aneurism of the vessel, the stress is twice that in the 

vessel without the aneurism. Dissection of the inner wall of the vessel leads to an 

increase in the stress at the wall: the stress decreases with increasing rupture width 

for a straight vessel and increases for a vessel with an aneurism. The stress 

calculations on the “tip” of delamination show that the maximum stress is reached 

at the outer wall of the rupture.  

 

Key words: aorta dissection, aortic aneurism, mathematical modeling, hemodynamics, 

wall stress, biomechanics. 

 

INTRODUCTION 

Aorta dissection is an extremely severe pathology [1]. This is a sufficiently rare, but 

potentially dangerous disease, which is encountered in 1 out of 10000 hospitalized patients. 

Many patients die before hospitalization: 3–4 % of all sudden deaths due to cardiovascular 

diseases [2]. Without medical treatment, premature mortality for patients with dissection is 

1 % per hour (one patient out of 100 dies each hour) at the first day, 75 % during two weeks, 

and 90 % during the first year. However, survivability of patients can be appreciably 

increased owing to early diagnosis and medical treatment of this severe disease.  

http://www.matbio.org/journal.php?lang=eng
https://doi.org/10.17537/2023.18.464
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From the mechanical viewpoint, the aorta is a multilayered thick-walled shell (Fig. 1). 

There three basic layers: intima, media, and adventitia. The intima produces a minor effect on 

the mechanical properties of the aorta wall [1]. Therefore, mathematical models often deal 

with a two-layer aorta consisting of the inner (media) and outer (adventitia) layers.  

We are interested in physical aspects of the behavior of the aorta walls with an aneurism 

and/or dissection under the action of a pulse blood flow in the vessel. Such studies were 

performed earlier. Zorrilla et al. [3] applied a CFD method to study a fluid flow in a model 

configuration simulating aorta dissection. It was shown that the flow structure agrees well 

with available in vitro experiments.  

For mathematical modeling of aorta dissection, one has to design a geometrical model of 

the aorta. Medvedev [4] in earlier studies developed a method for aorta model construction 

(including the aortic root, thoracic aorta, aortic arch with branches, and abdominal aorta with 

vessel bifurcations) by analytical formulas. The parameters of these formulas allow one to 

“fit” the constructed aorta shape to specific features of the aorta of an individual patient. The 

resultant three-dimensional (3D) aorta model is completely ready for 3D simulations and for 

printing on a 3D printer. Another approach to aorta model construction was proposed by 

Mistelbauer et al. [5]. They used a method of retrieval of the aorta cross section with 

dissection from computer tomography results. The data retrieval was performed on the basis 

of elliptical Fourier descriptors. In contrast to the traditional method based on splines, the use 

of the Fourier descriptors makes it possible to control the accuracy of aorta dissection and is a 

step forward to automated generation of surface models of aorta dissection.  
 

  

Fig. 1. Structure of aorta walls in accordance with the 3D model [20]. Here l  is the length of the aorta 

segment, 
iR  and 

oR  are the inner and outer radii of the aorta, 
AH  is the adventitia layer thickness, 

MH  

is the media layer thickness, 
IH  is the intima layer thickness, and 

A , 
M , and 

I  are the angles of 

inclination of the reinforcing fibers of the adventitia, media, and intima, respectively.  

 

Aorta pathology alters the strength properties of the vessel walls. Jadaun and Nitin [6] 

used the mathematical apparatus of the Lie transformation group to analyze the nonlinear 

wave dynamics of wave propagation in the aorta walls. It was found that aorta dissection 

serves as a trigger of disease progressing at the early stage due to the formation of soliton-like 

pulses and their interaction. Emerel et al. [7] performed computer angiography with 

simultaneous estimation of the arterial pressure for two groups of patients. As a result, it 

became possible to measure: 1) aorta motion during the cardiac cycle; 2) peripheral arterial 

pressure (moreover, the pressure was measured by a noninvasive method). For the first group, 
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aorta dissection was diagnosed later on; the second (control) group was composed of patients 

with a presumably normal aorta with no dissection. Based on these data superimposed onto 

the aorta geometry obtained by computer angiography, local stresses in the aorta wall were 

calculated, both axial (longitudinal) stresses and circumferential (radial) stresses, which are 

usually significantly lower than axial stresses. The results were compared to data obtained in 

the control group. It was found that 1) elasticity of the ascending thoracic aorta was lower, 

while the stiffness was higher in those aortas that finally experienced dissection; 2) calculated 

axial normal stresses (not circumferential stresses) were higher in aortas that experienced 

dissection; 3) input ruptures appeared in zones with high calculated axial normal stresses. The 

main conclusion made in [7] can be formulated as follows: local axial (longitudinal) normal 

stresses can be more important for thoracic aorta pathogenesis that circumferential (radial) 

normal stresses. This conclusion differs from that drawn in available publications.  

Lipovka et al. [8] studied the strength characteristics of the human aorta tissues and 

aneurism, as well as iliac arteries. It was experimentally proved that the difference in the 

limiting relative strains in the axial and tangential directions in healthy aorta tissue samples is 

statistically significant, which is not the case for the aorta aneurism. The results can be also 

treated as the fact of remodeling of the aorta aneurism wall as compared to a healthy aorta. 

These data can be used in problems of personalized hydroelastic modeling for constructing 

predictive models of rupture of aneurisms of this kind.  

MECHANICAL PROPERTIES OF THE AORTA 

Arteries (in particular, aorta) are blood vessels that transport fresh blood saturated with 

oxygen from the heart over the entire body. The arterial wall consists of four basic 

components: muscles, elastin, collagen, and fibroblasts. Muscles are active components of the 

artery wall, which also affect the geometry and elastic properties of the artery. Elastin is a 

rubber-type material made of protein in a polymerized form, which is elastic and can endure 

high stresses and strains. Collagen fibers ensure necessary strength of the arterial wall and are 

responsible for the nonlinear elastic behavior of the wall at high strains. At lower strains, the 

fibers roll up and do not make any significant contribution to elastic properties of the vessel. 

Fibroblasts exhibit a gel-like viscous behavior, and their contribution to wall elasticity is 

usually ignored. A histological analysis of an artery segment makes it possible to identify 

three individual layers called tunics: intima, media, and adventitia, as shown in Fig. 1. If there 

is a vascular disease, e.g., atherosclerosis, the mechanical properties of the damaged layers of 

the arterial wall are appreciably different from the mechanical properties of the healthy artery 

[6–8]. 

The aorta walls are characterized by the following mechanical properties.  

Incompressibility. The experimental measurements show that the arterial wall is almost 

incompressible. The results of [9, 10] showed that the change in the volume was only 0.165 % 

for the arterial segment stretched in vivo by a pressure of 181 mmHg. 

Anisotropy. The mechanical behavior of the arterial wall is anisotropic [11, 12]. 

High nonlinear deformations. The aorta walls experience high deformations under the 

action of the blood pressure. The deformation induced by pressure changes during the cardiac 

cycle can reach 10–15 % of the initial volume of the aorta [11, 12]. The wall is easily 

deformed at low pressures, while it becomes stiff at higher pressures.  

Viscoelasticity. The stressed state of the wall is determined not only by the corresponding 

deformation, but also by previous deformations. The wall components cannot be considered 

as elastic anymore; therefore, they have to be considered as a viscoelastic material [13].  

To describe the behavior of arteries under loading, it is necessary to develop mathematical 

models of the blood vessel. Sevel models that deserve attention are described in available 

publications.  
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Model without reinforcement of the artery walls [14]. A three-dimensional stress-strain 

dependence derived on the basis of the strain energy function was proposed for the arterial 

wall. The model constants were determined from experimental data on rabbit arteries 

subjected to blowing and longitudinal stretching in the physiological range.  

Single-fiber model [15, 16]. It was shown that the existing slope of the smooth muscle 

fibers is optimal from the viewpoint of the vessel strength.  

Four-fiber model [17, 18]. A single-layer model with four families of collagen fibers was 

proposed. It was noted that a family of four fivers reflects the two-ax mechanical behavior of 

the human abdominal aorta with or without aneurism for patients from 30 to 60 years old.  

Three-layer orthotropic model [19]. Bending stability of a rectilinear segment of the aorta 

with a blood flow was studied. It was noted that the systole-diastole cycle or intense physical 

exercise, which lead to permanent oscillations of the aorta, combined with cardiovascular 

diseases or other pathological problems, can provoke the aneurism emergence and growth or 

aorta dissection.  

Two-fiber two- or three-layer Holzapfel-Gasser-Ogden (HGO) model [20–23]. The 

reinforced three-layer aorta described by the HGO model is schematically shown in Figure 1. 

The constitutive HGO model reflects the anisotropic nonlinear mechanical response observed 

in experiments on cutout arteries. This model is widely used to describe the behavior of 

biological tissues [24, 25]. 

Three-layer model [25]. The model takes into account three layers of the artery: intima, 

media, and adventitia. Based on the HGO model, a new computational approach was 

proposed, where the mechanical properties of each of the three layers of the aorta determined 

experimentally in simple and available one-axis tests, are use to formulate a three-layer model 

of the arterial wall.  

Effective model of the blood vessel [26]. Based on a procedure of dimension reduction for 

a three-dimensional system of elasticity equations, a two-dimensional model of an elastic 

layered wall of the blood vessel was developed. Explicit formulas for the effective tensor of 

wall stiffness in two natural cases were derived.  

MATHEMATICAL MODELING OF AORTA WALLS  

The anisotropic properties of the aorta structure were modeled with the use of the two-

layer HGO model of an incompressible anisotropic material [20]. This model implies that the 

media and adventitia are hyperelastic materials reinforced with two families of fibers.  

A hyperelastic material is determined by the elastic strain energy density SW , which is a 

function of the elastic strain state. It is often called the energy density. The hyperelastic 

formulation usually yields a nonlinear stress-strain dependence, in contrast to Hooke’s law in 

linear elasticity.  

In most cases, the current strain state is described with the use of the right Cauchy-Green 

strain tensor С  (though it is also possible to use the left Cauchy-Green tensor B , strain 

gradient tensor F , etc.); therefore, the strain energy density is written as  SW C . 

For isotropic hyperelastic materials, any strain state can be described in terms of three 

independent variables: the most frequently chosen variables are the invariants of the right 

Cauchy-Green tensor С , the invariants of the Green-Lagrange strain tensor, or the principal 

directions. After determining the strain energy density, the Piola-Kirchhoff stress tensor of the 

second kind is calculated as  

 2 SW
S

C





.  (1) 

The following assumptions are used in the HGO model [20] to describe the deformation 

of the blood vessels. Hyperelasticity is considered within the framework of the neo-Hookean 
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model (nonlinear elasticity). The isochoric (constant-volume) strain energy density is 

determined by the function  

 ,1 ,2HGO nH fib fibW W W W   .  (2) 

The elastic strain energy density of the neo-Hookean material is  

  1 3
2

nHW I


  ,  (3) 

where   is the shear modulus, and 1I  is the first invariant of the strain tensor C . 

The second and third terms in the right-hand side of Eq. (2) describe the mechanical 

contribution of the collagen fiber network. In accordance to the model [20], these expressions 

are written as  

        ,

2
1 41

, , 2 3 , 3 ,

2

1 , 3 1 3 1
2

fib mQ

fib m fib m fib m fib m

k
W e Q k k I k I

k
        

   
.  (4) 

Here the fiber network is reduced to two  1,2m  families of fibers with the material 

properties 1k , 2k , and 3k . The deformation of each family of fibers is measured by the first 

(1)

,fib mI  and fourth (4)

,fib mI  invariants of the right strain tensor ,fib mC  of the collagen fiber family 

with the orientation  ,  . The invariants of the strain tensor of the fibers are  

      1 4 2

, , , ,trace , , 1,2fib m fib m fib m fib mI C I m    ,  (5) 

The first invariants of Eq. (5) are the traces of the matrix ,fib mC . The fourth invariant of Eq. 

(5) is a quadratic value of the isochoric elastic tension in the fiber direction  ,  . For 

biological tissues, it is assumed that the fibers can endure compression; therefore, the fiber 

stiffness is added only in the case of stretching, i.e., ,1 1fib   and ,2 1fib  .  

Based on the strain energy density (2), it is possible to calculate the Piola-Kirchhoff stress 

tensor of the second kind by the formula 

 ,1 ,2HGO nH fib fibS S S S   , (6) 

where the Piola-Kirchhoff tensor of the second kind for the binder is calculated by formula 

(1) as 

 тР
тР

W
S

C





,  (7) 

and the stress contribution from each family of fibers is determined as  

 
,

, 2 , 1,2
fib m

fib m

W
S m

C


 


.  (8) 

Tables 1–4 show the parameters for calculating arteries (aortas) by the two-layer (Tables 1 

and 3) and three-layer (Tables 2 and 4) HGO models. The contributions of the collagen fiber 

network to energy in Tables 1, 2, and 3 are calculated by formula (4). The calculations based 

on the data from Table 4 are performed by a modified formula of the contribution of the 

collagen fibers [22]: 

        ,
2 2
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.  (9) 
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Table 1. Parameters of the HGO model [20] for rabbit’s carotid artery with the inner radius 

0.71iR   mm and outer radius 1.1oR   mm 

Material properties Media Adventitia 

 , kPa 3 0.3 

1k , kPa 2.3632 0.5620 

2k  0.8393 0.7112 

3k  0 0 

 , deg 29 62 

H , mm  0.26 0.13 

 
Table 2. Parameters of the HGO model [25] for pig’s upper thoracic aorta. The layers occupy 

14, 59, and 27% of the aorta wall thickness, respectively. The inner radius is 8.66iR   mm, and 

the outer radius is 10.95oR   mm 

Material properties Intima Media Adventitia 

 , kPa 47 44.6 42.4 

1k , kPa 249.4 269.6 51.4 

2k  11 9.5 67.3 

3k  0.24 0.24 0.18 

 , deg 39.5 33.4 42.9 

H , mm 0.33 1.35 0.61 

 

Table 3. Parameters of the HGO model [21] for the left human frontal coronary artery with the 

inner radius 3.302iR   mm and outer radius 3.729oR   mm 

Material properties Media Adventitia 

 , kPa 27.0 2.7 

1k , kPa 0.64 5.1 

2k  3.54 15.4 

3k  0 0 

 , deg 10 40 

H , mm 0.493 0.247 

 
Table 4. Parameters of the HGO model [22] for the left human frontal coronary artery with the 

inner radius 3.47iR   mm and outer radius 4.5oR   mm 

Material properties Intima Media Adventitia 

 , kPa 55.8 2.54 13.12 

1k , kPa 527.32 43.2 77.14 

2k  170.88 8.21 85.03 

3k  0.51 0.25 0.55 

 , deg 60.3 20.61 67.0 

H , mm 0.27 0.36 0.40 

 

The mechanical properties of arteries depend on many factors (age, pathologies, etc.) [7]; 

this fact is responsible for the large differences in the arterial parameters listed in Tables 1–4.  
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In addition to the functions ,fib mW  of the elastic strain energy of collagen fibers (formulas 

(4) and (9)) considered here, there are also some other functions [17, 18, 27, 28]. Ngwangwa 

et al. [29] experimentally verified six different forms of the functions ,fib mW  of the elastic 

strain energy of collagen fibers, though these functions were verified for soft tissues of sheep 

esophagus. Significant differences were observed between experimental and numerical data 

for different models of the elastic strain energy. Ngwangwa et al. [29] concluded that the best 

description of experimental data (for soft tissues of sheep esophagus) is provided by the four-

fiber model [18]. 

RESPONSE OF THE AORTA WALLS WITH RUPTURE AND ANEURISM TO 

PULSE PRESSURE OF THE BLOOD FLOW  

The pulse pressure of the blood flow generates a load onto the aorta. If there are some 

defects of the aorta (dissection or aneurism), this load leads to high stresses at the aorta wall at 

those places where these defects are located. Roy et al. [30] presented a review of 

mathematical methods used to study the loads onto the aorta walls in the case with an 

aneurism. It was noted that one of the basic currently used methods is computer simulation. 

The limiting loads onto the aorta were studied in [31], where it was experimentally found that 

the limiting and yield (irreversible inelastic damage) stresses in the axial direction for a 

healthy aorta are 0.75 and 1 MPa, respectively; the corresponding stresses in the 

circumferential direction are 1 and 1.2 MPa, respectively. The yield stress is understood here 

as the stress of the beginning of irreversible fracture of the aorta.  

The blood flow in a pathological aorta with the wall deformation being ignored was 

investigated by many researchers: a review of such studies can be found in [32]. Shi et al. [33] 

performed a numerical study of the load on the aorta wall with dissection, where the wall 

deformation was ignored (the aorta walls were assumed to be rigid and nondeformable).  

A segment of the rabbit’s carotid artery was calculated (Table 1). The following technique 

was used to calculate the deformation and the load on the aorta in the case with pulsed motion 

of blood (Fig. 2).  

 

   
a)    b)    c) 

Fig. 2. Three stages of the method of calculating the load on the artery: a) construction of the reinforced 

structure of the arterial walls; b) calculation of the blood flow in one pressure pulse; c) calculation of the 

strain and stress in the arterial walls under the action of the load generated by the pulse blood flow in the 

vessel.  
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At the first stage, a multilayered (two- or three-layer) reinforced structure of the aorta 

walls was constructed (Fig. 2,a). 

The second stage was calculation of an unsteady blood flow in a nondeformed aorta (Fig. 

2,b). The blood motion was described by the model of a viscous incompressible fluid with a 

density of 1060 kg/m3 and dynamic viscosity coefficient of 0.005 Pas. The use of the model 

of a non-Newtonian fluid does not make much sense: we consider a sufficiently short local 

segment of the artery, where the non-Newtonian properties of blood do not have enough time 

to manifest themselves and affect the pressure at the vessel wall. The flow rate of blood in the 

artery is defined by the formula  
 1 cos 5

2
max

t
Q t Q

 
 , where the maximum flow rate is 

4maxQ   ml/s, and the time of one pulse is 0.4 s. We are interested in the maximum load on 

the artery wall (the maximum load is reached at 0.2t   s); therefore, the pulse shape is not 

very important. This is the reason for the pulse function choice. The calculation time, flow 

rate, and pressure correspond to one cycle of the blood pulse: the maximum difference in the 

pressure at the vessel input and output is 40 mmHg.  

The third stage (Fig. 2,c) is the calculation of the strains and stresses at the vessel walls 

under the action of the load determined at the second stage. The calculations were performed 

on the basis of the two-layer HGO model (the calculation parameters are listed in Table 1. 

The maximum (in terms of time and vessel length) Mises stresses at the outer wall of the 

artery in the case of rupture of the inner layer of the media were calculated (Fig. 3). The 

maximum stress was reached at the time instant of 0.2 s (at the middle of the cardiac cycle of 

the blood pulse) and at a point near the middle of the rupture (point with the coordinate 0z   

in Fig. 2,a). An artery segment 10 mm long was considered. The aneurism height (Fig. 3,b) 

was 2oR . The media rupture length L  was varied from 0 to 0.8 mm, and the rupture 

thickness h  was calculated for the values of 1/3, 1/2, 2/3, 5/6, and 1 of the media thickness 

MH . The calculations were performed for a straight artery (Fig. 3,a) and an artery with an 

aneurism (Fig. 3,b). The results are presented for an artery with rupture (Fig. 3) and for an 

artery with rupture and media dissection (Fig. 4). The inner radius of media dissection is 

0.75d iL R . The maximum stresses for a straight artery (Figs. 3,a and 4,a) and an artery with 

an aneurism (Figs. 3,b and 4,b) are compared. 

 

 
a)      b) 

Fig. 3. Maximum Mises stresses 
vonMisses  at the outer wall of the artery versus the media dissection length 

L  for a straight artery (а) and an artery with an aneurism (b). The rupture thickness h  is 1/3, 1/2, 2/3, 

5/6, and 1 of the media thickness 
MH . 
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a)      b) 

Fig. 4. Maximum Mises stress 
vonMisses  at the outer wall of the artery with dissection versus the media 

rupture length L for a straight artery (a) and an artery with an aneurism (b). The rupture region thickness 

h  is 1/3, 1/2, 2/3, and 5/6 of the media thickness 
MH . 

 

It is seen from Fig. 3 that an increase in the aorta wall rupture length L  leads to an 

increase in pressure at the outer wall. The presence of an aneurism increases the stress at the 

outer wall of the artery almost by a factor of 2 (Figs. 3,a and 3,b). 

For the aorta with dissection (Fig. 4), the stress pattern is different. For a straight aorta, 

and increase in the aorta wall rupture length L  leads to a decrease in the stress at the outer 

wall (Fig. 4,a), while the presence of an aneurism increases the stress at the outer wall of the 

artery with an increase in the rupture length L  (Fig. 4,b). In this case, the stress in the aorta 

with an aneurism (Fig. 4,b) is only slightly higher than that in the straight aorta (Fig. 4,a). 

Aorta dissection is responsible for a significant (almost by a factor of 1.5) increase in the 

stress at the outer wall of the aorta (cf. Figs. 3 and 4). 

Three-dimensional calculations of artery dissection due to calcification were performed 

(Fig. 5). 

 

      
a)    c)     

Fig. 5. Modeling of artery dissection due to calcification of a media wall fragment. a) One quarter of the 

longitudinal section of the vessel with calcification plaques (marked yellow. b) General view of the 

calcification plaque. c) Stresses and strains of the aorta wall with dissection over the calcification plaque 

boundary. d) Magnified pattern of the stress at the dissection crack tip (the red color indicates the 

maximum stress at the outer boundary of the rupture). 

b) 

d) 
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MODELING OF DISSECTION OF AORTA WALLS DUE TO CALCIFICATION 

One of the reasons for aorta dissection is calcification of vessel walls. Li et al. [34] used a 

numerical method to study the relationship between the stress in the aorta wall and the 

calcification volume. It was shown that calcification increases the peak pressure of the aorta 

wall, which testifies to reduction of biomechanical stability of the arterial wall. Kumara and 

Faye [35] performed numerical simulation of the influence of calcification on the strength of 

the aorta aneurism wall. Circular and elliptical calcification particles with various volume 

fractions were used for modeling. The goal of [35] was to predict the calcified aneurism 

rupture under biaxial loading for various tension coefficients. The evolution of aorta 

dissection under the action of internal pressure was considered in [36]. An initial rupture 

affected by internal pressure was set inside the artery. Quasi-static solutions were calculated 

to determine the critical pressure at which dissection propagation begins. The model [36] 

shows that dissection displays a trend of radial outward propagation.  

Aorta dissection in the case of partial calcification of the artery was calculated (Fig. 5). 

Four segments of the arterial wall with an aneurism were subjected to calcification. Figure 5,а 

shows one quarter of the artery, while the form of the calcification region is shown in 

Figure 5,b Elliptical calcification regions were considered in [35]. It was assumed in the 

calculation than artery dissection has already arrived at the boundary of the all calcification 

regions (Figs. 5,c and 5,d). The stress at the tip was also calculated. It is seen from Figures 5,c 

and 5,d that the stress reaches the maximum value (denoted by the red color) at the outer side 

of the rupture; this fact confirms the conclusions of [36] about the trend of radial outward 

propagation of dissection.  

CONCLUSIONS 

Several issues of mathematical modeling of dissection of the aorta and large arteries are 

considered. Available mathematical models of the structure of aorta and arterial walls are 

reviewed. The most complicated models describe a three-layer (intima, media, and adventitia) 

structure of the vessel walls. In some cases, the models deal only with a two-layer (media and 

adventitia) structure of the walls because intima does not produce any significant effect on the 

mechanical properties of the vessel. Nonlinearity and anisotropy of the elastic properties of 

the vessel wall layers require the models to become more comprehensive: the collagen fibers 

of the vessel walls are modeled by two (or even four) families of the neo-Hookean 

(nonlinearly elastic) fibers intersecting at certain angles. The complexity of the mathematical 

models requires many (up to 18, see Tables 1 and 4) mechanical characteristics of the vessel 

wall materials to be determined. A review of available publications on vessel wall parameters 

for two- and three-layer vessel models based on one of the most popular artery models, i.e., 

the Holzapfel-Gasser-Ogden (HGO) model [20–23] is made. 

The artery rupture and dissection are numerically simulated on the basis of the HGO 

model. In this study, the blood vessel is subjected to pulse pressure of the blood flow inside. It 

is shown that the rupture of the inner layer of the vessel leads to an increase in the stress at the 

outer wall of the vessel. An increase in the rupture thickness and length leads to an increase in 

the stress at the outer wall of the vessel. Because of the presence of an aneurism, the stress is 

twice that in the vessel with no aneurism. Dissection of the inner wall of the vessel leads to an 

increase in the stress at the wall: the stress decreases with increasing rupture width for a 

straight vessel and increases for a vessel with an aneurism. The stress calculations at the 

dissection “tip” show that the maximum stress is reached at the outer wall of the vessel.  
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