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Abstract. 'We present a systematic approach to modelling the responses of
the immune system to virus infections. Two continuous-discrete stochastic
models arising in mathematical immunology are developed and computationally
implemented. The variables of the models are integer random variables that denote
the quantity of individuals (cells and viral particles), and sets of unique types of
individuals that take into account the current state and history of stay of individuals
in some stages of their development. The distribution laws of the durations of
the mentioned stages are different from exponential or geometric. A probabilistic
description of a one-stage stochastic model of population dynamics is presented.
A stochastic model of the development of HIV-1 infection in the lymph node in
the initial period after infection of a healthy person is formulated. A computational
algorithm based on the Monte Carlo method is given. Each of the stochastic models
is complemented by a deterministic analogue in the form of integral and delay
differential equations. The results of numerical simulation are presented.

Key words: stage-dependent model, non-Markov constraints for individuals, Monte Carlo
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INTRODUCTION

One of the actively developing areas of mathematical modeling in immunology is
associated with the use of deterministic and stochastic stage-dependent models. Deterministic
stage-dependent models in immunology are usually based on delay differential equations (see,
for example, [1]—-[8] and references to articles by other authors given in the listed papers).

The penetration of a small number of viral particles into the human body can lead to
infection of several target cells, the appearance of new viral particles due to reproduction in
target cells and activation of cell production of a specific immune response. Modeling the
dynamics of the infectious process in the initial period requires the use of integer variables
reflecting the current numbers of viral particles and cells. In addition, within the framework
of the stochastic stage-dependent model, it is necessary to use additional variables that take
into account the prehistory of the formation of several populations — viral particles, infected,
productively infected and immunocompetent cells. The distribution of the residence time of
viral particles and cells in populations may differ from exponential or geometric. Therefore,
a stochastic model must take into account non-Markov constraints for individuals to describe
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the dynamics of the studied populations. One of the approaches to constructing stochastic
stage-dependent models of population dynamics with non-Markov constraints for individuals,
including models in immunology, is proposed in [9]-[1L1] (see also related articles [12]-[17]).

The paper presents two stochastic stage-dependent models that arise in the problems of
immunology. Each of the models contains non-Markov restrictions reflecting the duration of stay
of individuals at one or another stage of their development. Section 2 presents a probabilistic
formalization of a one-stage stochastic model of population dynamics. The one-stage model
illustrates the use of an integer variable to describe the current population size and the use
of an additional variable in the form of a family of unique types of individuals. The family
of unique types of individuals reflects the successive moments of time when individuals enter
the population, contains the duration of stay of individuals in the population, set by a random
variable distributed over a finite period of time, and indicators of the transition of individuals
to other populations. The numerical simulation algorithm based on the Monte Carlo method is
given. The model can describe the initial period of the cell production process of a heterogeneous
population, regulated by feedback. Section 3 describes a stochastic stage-dependent model of
the development of HIV-1 infection in the lymph node during the first few days after infection
of an individual. Sections 2, 3 are accompanied by the results of numerical simulation of the
dynamics of the studied populations at finite time intervals. To plan computational experiments
with models, their deterministic analogues in the form of integral and delay differential equations
are used.

2. ONE-STAGE STOCHASTIC MODEL

2.1. Notation and postulates of the model

We will study the dynamics of some population A. We assume that the population A can be
replenished with new individuals from some source S. Denote by D and B the populations into
which individuals enter after the end of their stay in the population A. Population D may reflect
the dead individuals, population B — the next stage of development of individuals in population
A. An explicit description of the «fate» of individuals of populations D and B is not considered
in the model below. The scheme of the model is shown in Figure 1.

S|— —>| B

A

D

Fig. 1. Scheme of a one-stage model, symbols in the text.

Let ¢ be a real variable denoting time, [0; T’,,04] is a simulation interval, (¢; ¢4 h) C [0; T5,04]
is an infinitesimal time interval, . — +0. By p4(z) we will understand a function from an
integer non-negative variable z € 7 satisfying the condition: 0 < pa(z) < p* forall z € Z,,
where p* > 0 is some constant. Let the expressions &4 ~ Faxp(pa), wa ~ F,, mean that
the random variable € 4 has an exponential distribution with the parameter 1 > 0, the random
variable w 4 has a distribution function F, , (u). We assume that w 4 is distributed over a finite
interval [0; w%], w¥ > 0, and Fy,, (+0) = 0.
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Now we formulate the postulates of the model. Denote by A(t) the population size of A at
time ¢, ¢ € [0; T},,0a)- For each fixed ¢ > 0, A(t) is a non-negative integer random variable. At
the initial time ¢ = 0, the population A either does not contain or contains a certain number of
initially existing individuals, A(0) = Ay = const > 0. Denote by .4 some or arbitrarily chosen
individual of the population A. Let us fix ¢ and assume that A(¢) = z is a non-negative integer
constant. The postulates of the model are as follows.

H1. Regardless of the events preceding ¢, during the interval (¢;¢ + h) with probability
pa(z)h + o(h) the population of A is replenished by one individual coming from S; the
probability that more than one individual of A enters population from S is o(h); the population
A is not replenished from S for (¢;¢ 4 h) with probability 1 — p4(z)h + o(h).

H2. Let the individual A appear in the population A at some point in time ¢4 < . Denote
by &4 ~ Exp(pa) the duration of time until the transition A to the population D. By w4 ~
F,,, we denote the duration of time of stay .4 in the population A before the transition to the
population B. Random variables & 4, w 4 are independent of each other, do not depend on ¢ 4 and
do not depend on the behavior of other individuals in the population. The individual A leaves
the population A at time ¢ 4 + min{& 4, w4 }.

2.2. The family of the unique types of individuals

To take into account for the population A the prehistory of its formation, in addition to the
variable A(t) we introduce for A a family of unique types 24 (¢) of individuals, ¢ € [0; T},,.q4)- Let
us assume that the variable N4(¢) means a non-negative integer constant or a random variable
that specifies the number of individuals who entered the population A over a period of time
(—w?;t]. If t = 0, then N4(0) takes into account initially existing individuals whose number
is equal to Ag. If t > 0, then N,4(t) reflects both the initially existing individuals of population
A and the new individuals who entered this population during the time interval (0; ¢].

Denote by j = 1,2,..., Na(t) the ordinal number of the next individual A entering the
population A, and by .A(j) — an individual A with the number ;. Let us assume that the set

— Wy <tauytae - tagy - taNae) ST (2.1)

means the moments when individuals enter the population A up to the moment of time ¢
(inclusive), taking into account the initially existing individuals of this population. For t = 0, the
clements of the set (2.1) are considered as initial data, reflecting the initially existing individuals
of the population, and are constants satisfying the relations

— Wi <tan) <tae) < - <tag) <o <tawao) <0 (2.2)

For t = T},,4, the elements of the set (2.1) take into account the initially existing individuals of
the population A and the individuals who entered to the population A over the period (0; T},04)-

Based on postulate H1, using the inequality 0 < p4(z) < p%, 2 € Z,, and the results of [9]
(Lemma 4.1, Theorem 5.1), we arrive at the following statements:

1) the unlimited growth of the population size A(t) on the interval [0; 7},.4] is impossible,
and for the time interval [0; 7,,,4] the population A is replenished with a finite random number
of individuals Na(T}n04);

2) for each fixed t > 0, the upper estimate of the population size A(t) is given as the sum of
the number of initially existing individuals and the random variable Y (), which has a Poisson
distribution with parameter

At) = pjﬁ,/o (1 —Fy,(u))e *"du.
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It follows from the postulate H1 that each moment ¢ 4.;) > 0 specified in (2.1) is due to a
random variable with exponential distribution whose parameter depends on the current size of
the population A. Taking into account that the exponential distribution refers to distributions of
absolutely continuous type and using (2.2), we conclude that for each fixed ¢ € (0; T}n04] the
probability of matching any pair, triple, etc. from the set of elements, specified in (2.1) is equal
to zero. As a consequence, for every fixed ¢ € [0; T},04]

—wy < tan) <tap) < - <tay) < <taws)- (2.3)

Relations (2.3) mean that the individuals of the population A are distinguishable from each
other by the moments ¢ 4 of entering the population. In addition, it follows from postulate H2 that
the individuals of the population A are distinguishable from each other by ¢ 4 + min{& 4, w4}
at which they leave the population.

Denote by

©ai) = min{&4(), Wag) } (2.4)

the duration of the stay .A(7) in the population A before the transition .A(j) to the population D
or BB. Let 1 4(;) denote the «fate» indicator of the individual A(j):

Nag) =0, FEag) < wag), Nag = 1, iFéag) > wag). (2.5)

In (2.5) it is assumed that 14(;) = 0 means the transition A(7) to the population D, while
Na(j) = 1 — transition A() to the population 5. Using (2.4), (2.5), we introduce the triple

(tai), @aG)MAG)) (2.6)

which we call the unique type of an individual A(5), 1 < j < Na(Tr0a)-
For a fixed ¢t € [0;Ty0a] by Q4(t) we mean the family of unique types of individuals
population A containing N4 (t) > 1 triples (2.6):

Qa(t) = {(tA(j)a ©AG)NAG)) Ftag) <t 1<) < NA(t)}- (2.7)
If for some ¢ € [0; T0q] 18 true Na(t) = 0, then we assume that
Qa(t) = 0. (2.8)

We write A(t) in terms of N4 () and Q4(t) for fixed ¢ € [0; 7,
is true, and A(t) = 0. If Na(t) > 1, then (2.7) is true, and A(t) =
the family

d). If No(t) = 0, then (2.8)
4(t)| is the cardinality of

mod

-~

Qa(t) = {(tA(j)a ©AG)NAG)) € Qalt) - tagy + @agy >t 1<) < NA(t)}- (2.9)

In accordance with postulate H2, the family 0 A(t) given in (2.9) takes into account all
individuals of the population A that exist at time #, namely: individuals appearing in the
population up to the moment ¢ (inclusive), and left the population at the time moments
following .

2.3. Recurrent relations for model variables

Let us introduce auxiliary variables D(t), B(t), meaning by them the number of individuals
of the population A, who arrived respectively in the populations D and B during the time interval
[0;t],0 < t < T)noa, and assuming that D(0) = 0, B(0) = 0. We will describe the dynamics of
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the population A using a random process
H(t) - (A(t)v NA(t)v D(t)’ B(t)a QA(t))’ le [07 Tmod]' (210)

Following [18], we construct sample functions of the process H (¢) on the time interval [0; 7},04]
using a sequence of pairs

(tms H(tm)), m=0,1,2,..., tg =0, tm < Thod. (2.11)

Based on (2.1)—(2.10), we assume that the components of H (t,) are such that

A(to) = Ao, Nalte) = Ao, D(to) =0, B(ty) =0, (2.12)
Qulto) = AV if Nato) = 1, Qa(to) =0, if Na(to) = 0. (2.13)

The family Qf) has the form

Q) = {(Mm? PAG)NAG)) *aG) S to < tag) + @ap), 1< T < NA(tO)}7 (2.14)

and contains given (nonrandom) triples (2.6) whose elements satisfy relations (2.2).

Let us construct recurrent relations for the sequence (2.11).

Put m = 0. Using (2.12)—(2.14), we introduce the quantities Ty and . Let us assume that
the quantity T, has an exponential distribution with the parameter p 4(A). The value of 1V is
given by the relations

Wo = _min {tag) + @ag} i Alto) > 1, (2.15)

Based on (2.15), denote by (t Ax) @A) N A(*)) aunique triple of elements from (2.14) such that
Yo = t4x) + @4+ Let us define

t1 = min {T},04, Po, to + To }, (2.17)
and write that
H(t) = H(to), t € [to, 1) (2.18)

Ifin (2.17) t1 = T,,04, then
H(ty) = H(tp). (2.19)

Relations (2.18), (2.19) complete the description of the process H (t).
Letin (2.17) t; = . Then
A(tr) = Alto) -

D(t;) = D(ty) +1 =1, B(t1) = (to) =0, ifnau =0, (2.20)
D(t1) = D(to) =0, B(t1) = B(to) + 1 =1, ifnau =1,
Na(t1) = Na(to), Qa(t1) = Qalto).
Letin (2.17) t; = 1y + To. Then

A(ty) = A(to) + 1, Na(t1) = Na(to) + 1,
D(t1) = D(to) =0, B(t1) = B(tg) =0,
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j=Na(tr), Qa(t1) = Qalto) U (tag)> ©aG)MAG)) (2.21)
tagy = t1, @ag) = min{&ag), Wag}s Eag) ~ Exp(a), wag) ~ Fu,,
Nag) = 0, i &ag) < Wag), Nag) = 1, 1 &ag) > wag):
We fix m = 1,2,3,. .., and the components of the process H (t,,):

H(t) = (Alt), Nalt). D(t). Blt), Qa(t). (2.22)
Qatm) =

0,
Qu(tm) = {(tA(j), OAG)NAG)) tag) Stmy 1 <J < NA(tm)}, ifNg(tm) > 1. (224

Formula (2.22) includes non-negative integer constants A(t,,), Na(tm), D(tm), B(ty).
If Nao(tn,) = 1, then (2.22) includes the family Q4(t,,) given by (2.24). Each triple
(t AG)s @A) A(j)) in (2.24) contains two real and one integer non-negative constant.

Using (2.22)—(2.24), we introduce the quantities T,, and \{,,,. Let us assume that the quantity
T,, has an exponential distribution with the parameter p 4(A(¢,,)). The value of {,, is given by
the relations

if Na(tn) =0, (2.23)

V,, = min ){tA(j) + @a) tag) + Qag) > tm), i A(t,) > 1, (2.25)

1<j<NA(tm

Yy = +00, if A(ty,) = 0. (2.26)

Based on (2.25), denote by (t A(x)s @A) M A(*)) aunique triple of elements from (2.24) such that
Uy, = tas) + @A) Let us define

tnsr = Min { Toods Oy by + T}, (2.27)

and write that
H(t) = H(tw), t € [t tus1). (2.28)

Ifin (2.27) t,;n1 1 = Thnoa» then
H<tm+1) = H(tm> (2.29)

Relations (2.28), (2.29) complete the description of the process H (¢).
Letin (2.27) t;,4+1 = P, Then

A(tm-H) = A(tm) -1,
D(tm—H) = D<tm) + 1, B(tm—i—l) = B(tm)v lfﬂA(*) =0, (230)
D(tmy1) = D(tm), B(tmy1) = B(tm) + 1, ifT]A(*) =1,
NA<tm+1) = NA<tm)> QA<tm+1) = QA(tm)
Letin (2.27) t,,+1 = t;, + T Then

Altms1) = Alt) + 1, Nalbmsr) = Na(t) + 1,

D(tmy1) = D(tm), B(tms1) = B(tm),
§=Naltms1), Qaltms1) = Qatn) U (tag)y, 9a0):NAG)), (2.31)
taG) = tmg1, @A) = min{&ag), Wag) s Eag) ~ Exp(ua), wag) ~ Fo,,
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Nag) = 0, i &ag) < wag), Nag) = 1, i &ay) > wag)-
We replace m with m + 1 and return to relations (2.22)—(2.31).

2.4. Algorithm for numerical simulation

The Monte Carlo method is used to calculate the realizations of the random process H (t). At
the beginning of the calculations, the model parameters, initial data and the modeling interval
[0; T)noa) are specified. In addition, the constant Vo, > T4 is specified, which is used for the
quantities g, \,,, in formulas (2.16), (2.26) instead of the symbol «+-oo».

Next, the sequence (2.11) is modeled based on relations (2.15)—~(2.31). Simulation of a
particular realization stops when ¢, 1 > T,,,4. The simulation of the H () process is completed
when the specified number of realizations is received. To generate random variables, we use the
formulas and generators of pseudo-random numbers described in [19]—[21].

The simulation algorithm is implemented as a console simulation program written in the
C++ programming language in the Visual Studio 2008 integrated development environment.
The input parameters are read from a special configuration file. Simulation results (realizations
of model variables) are stored in a separate text file.

2.5. An example of numerical simulation

Let [0; Trnoa) = [0;30] days, A(0) = Ag=0,71 > 0,75 >0, 3 > 0and
pa(z) =riexp{—Pz} +re z€ Z,.

The dimension of the parameters r;, 5 day~!, § is a dimensionless parameter. The function
pa(z) specifies a negative feedback that reflects the rate of influx of new individuals of
population A depending on its current size A(t). The function F,,(u) sets the uniform
distribution of the random variable w 4 over the interval [0; w? | of the day, the parameter 4 of
the exponential distribution &4 ~ Exp(i4) has the dimension day .

For a preliminary analysis of the possible behavior of A(t), consider a deterministic analogue
of the constructed model in the form of the integral equation

xa(t) = /0 (1= Fo,(u)) e pa(zat —u))du, t > 0. (2.32)

Equation (2.32) was proposed and studied in [22]. The solution z4(t) of equation (2.32) is
understood as a continuous non-negative real function describing the size of the population A
at the time ¢ € [0; 00). Denote

o 1
04 = 1-F, HAYy = — (1 —
4 /o ( A(u)) ‘ B HA(

1

HAW}

(1—emen)). (@233

The constant 04 > 0 given by (2.33) is interpreted as the average time spent by individuals in
the population A. Let 2% be the unique root of the equation

r=04pa(z), z € [0;00). (2.34)
It follows from (2.32)—(2.34) that if the solution x 4(¢) has a finite

lim z4(t) = z4(+00), (2.35)

t—+o00
then x4 (+00) = x%. One of the conditions necessary for the existence of the limit (2.35) is
satisfied, since at the point © = x% the inequality dp4(x)/dx < 0 is true. Sufficient conditions
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for the existence of the limit (2.35) are given in [22].
Let us turn to the stochastic model. Consider the dynamics of A(t) for two sets of model
parameters (the dimension of the parameters is indicated above):

ry =150, 7o = 25, B = 0.01, s = 0.1, w’, = 5, (2.36)

ry =250, ry = 5, B = 0.05, py = 0.05, w% = 10. (2.37)

For the parameter sets (2.36), (2.37), the roots of equation (2.34) with an accuracy of two decimal
places are as follows: 2% = 136.62 and 2%, = 64.24.
Figures 2, 3 show ten typical realizations of the population size A(t) for the parameter sets

(2.36), (2.37), respectively.

150 | /o Qh@;\(«/@l&@
- A o) ‘ A‘\:',l/:‘@'\‘ ) ‘
[P RIS
100 |
<
50
0 I I I I I
0 5 10 15 20 25 30

t, days

Fig. 2. Typical realizations of the population size A(¢) for a set of parameters (2.36); the dotted
line denotes the value 2% = 136.62.

Table 1 presents interval estimates of the expectation EA(t) for fixed ¢ € [0;7},,,4) at the
confidence level P = 0.99 [23]. Interval estimates are calculated on a sample of N = 1000
realizations of the random process H ().

From Figures 2, 3 and Table 1 it can be seen that the results of stochastic simulation are in
good agreement with the analytical study of the deterministic model (2.32). First, the realizations
of A(t) after the completion of the transitional process on the time interval ¢ € [0;5] days
reach a level close to x7%, and then oscillate in a limited range relative to x7%. Secondly, the
expectation A(t) takes values close enough to z*%, despite the nonlinearity of the model. The
differences in the behavior of A(t) for the set of parameters (2.36), (2.37) are mainly due to the
values of the parameters of the function p4(z). Additionally, we note that the deviations of A(t)
and EA(t) from z7; are more pronounced for the set of parameters (2.36) due to the fact that
% = 136.62 > 2% = 64.24.
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Fig. 3. Typical realizations of the population size A(¢) for a set of parameters (2.37); the dotted
line denotes the value 2% = 64.24.

Table 1. Interval estimates of the expectation EA(t) at the confidence level P = 0.99 for

parameter sets (2.36), (2.37)

t, day | Parameter set 2.36 | Parameter set 2.37

0 0 0

137.040 £ 0.699 68.277 £ 0.378
10 135.952 £0.714 62.860 £ 0.379
15 136.249 £ 0.689 64.993 £+ 0.365
20 135.766 £ 0.699 64.495 £ 0.371
25 135.871 £ 0.682 64.427 £ 0.369
30 135.990 £ 0.685 64.589 £ 0.376

3. STOCHASTIC STAGE-DEPENDENT MODEL OF THE DEVELOPMENT OF
HIV-1 INFECTION IN THE LYMPH NODE

3.1. Notation and postulates of the model

We will study the initial stage of the development of HIV-1 infection in the lymph node,
which has penetrated a small number of viral particles V' after infection of the individual at time
t = 0. To build the model, we used publications listed in the references of [11] (articles No. 7,
8, 11, 12, 26, 28, 29, 30), monograph [24] and articles [25], [26].

Denote the simulation interval by [0; 7,,,,4] and assume that the duration of the interval is
[0; Thnoa) 1s several days. Let us assume that the abbreviation LN means a lymph node. When
building the model, we will take into account only a few factors and events that reflect the
development of HIV-1 infection in the LN. We assume that the target cells for viral particles
are 1 cells — CD4+ T-lymphocytes at rest. 7 cells can come into contact with virus particles
V' and become infected I cells. Cell I is susceptible to contact with antigen-presenting cells
A. Cell I after contact with cell A enters the phase Gy of the cell cycle and turns into cell 1.
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After completion of the (G; phase, the cell I; enters the S — G5 — M phases of the cell cycle and
turns into one of the cells I, I5, I,. The I, cell is capable of a single division, after which its
descendants turn into two productively infected cells 7, (cells that produce viral particles V). Cell
15 stops at the GG phase of the cell cycle and after a certain period of time turns into cell 7. Cell
I, is capable of further reproduction, but it and its descendants are not capable of producing virus
particles V. The dynamics of the population of cells I, and their descendants is not considered
in the model. Additionally, we note that cells [, can arise from cells 7} due to contacts of cells
1, with cells T5.

Let us assume that the number of cell populations 7 and antigen-presenting cells A in the
LN are constant and equal, respectively 7} > 0, A* > 0. Based on the short duration of the
simulation interval [0; T},,,4], we will not take into account the decrease in the number of cell
populations [y, I, I, I35 due to natural aging and death due to virus infection. The decrease in
the population of /; cells is due to their migration outflow from the LN and contacts with A cells,
leading to the transformation of /; cells into /; cells. Decrease in cell population I, is caused by
the influence of the V' virus particle production process that is destructive for these cells. The
decrease in the population of viral particles V' is due to their natural mortality, migratory outflow
from the LN and absorption as a result of contacts with 7} cells.

The scheme of the model is shown in Figure 4, where the following notation is used:

* D —cells I and virus particles V' that left the LN due to migration outflow, as well as
virus particles that died due to natural mortality;

» K — I, cells that died under the influence of the viral particle production process;

» W — viral particles absorbed by infected 7} cells.

D D
I Bry s 0413 | o
W
A IO IBIl 12
a12
'YT )
VTS’ I By, A wz4 YT,V

To I, K 1%

<

Fig. 4. Scheme of a stochastic model for the development of HIV-1 infection in a lymph node,
symbols in the text.

The number of populations indicated above at time ¢ € [0; T},,,4] denoted by

X(t) = (I(t), L (1), L), (1), L4(), V(1)). (3.1)

For each fixed ¢ > 0, the components Io(t), I1(t), Io(t), I3(t), I4(t), V(t) in (3.1) are
non-negative integer random variables. Let us assume that at the initial time (¢ = 0) there are
virus particles in the LN and no cells of the [, populations: V' (0) = V; = const > 0, I,(0) = 0,
0< k<4

Now we formulate the postulates of the model. Fix ¢ and assume that 2, = I;.(t),0 < k < 4,
x5 = V (t) are non-negative integer constants. We accept that the events listed in the postulates
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H1-H7 occur independently of each other and independently of the events preceding the time
t. Moreover, without loss of generality let us assume that vy > 0, x1 > 0, x4 > 0, z5 > 0. The
postulates H1-H7 are as follows.

H1. During the interval (¢;¢ + h) some T cell contacts with some virus particle V' with
probability v, vI§xsh + o(h); the probability of contacts between two or more Ty cells and
viral particles V' during (¢;t+ h) is equal to o(h); contact of T} cells and viral particles V' during
(t;t + h) does not occur with probability 1 — vz, vTz5h + o(h); Y1, v = const > 0. Contact
of Ty cell with virus particle V' results in to the appearance of the [, cell and the absorption of
the viral particle V.

H2. During the interval (¢;¢ + h) some Tj cell contacts with some I, cell with probability
Y1u,1. 15 x4h + o(h); the probability of contacts of two or more cells 7} and I, during (¢;t+ h) is
equal to o(h); cells Tj and 1, do not contact during (¢; ¢ + h) with probability 1 — vy, 1,75 z4h +
o(h); Y1,.1, = const > 0. Contact of Tj cell with I, cell results in to the appearance of / cell.

H3. During the interval (¢;¢ + h) some I, cell leaves the LN (migration outflow) with
probability w;,zoh + o(h); the probability that the LN will leave more than one [, cell for
(t;t + h) is equal to o(h); with probability 1 — w;,xoh + o(h) no I, cell leaves the LN for
(t;t+ h); uy, = const > 0.

H4. During the interval (¢;¢ + h) some A cell contacts with some I cell with probability
Ya.1,A*xoh + o(h); the probability of contacts of two or more cells A and I, during (¢;¢ + h) is
equal to o(h); cells A and I, do not contact during (¢; ¢ + h) with probability 1 —y 4 ;, A*xoh +
o(h);Ya.r, = const > 0. Contact of A cell with [, cell leads to the transition of I, cell from the
G phase to the (G; phase of the cell cycle and transformation of I cell into /; cell.

HS5. During the interval (¢;¢ + h) some I cell leaves the phase GG; of the cell cycle with
probability 37, x1h + o(h); the probability that more than one /; cell leaves the phase GG; of the
cell cycle in (¢;¢ + h) is equal to o(h); with probability 1 — 3;,21h + o(h) no I; cell leaves the
phase (G; of the cell cycle in (¢;t + h); B, = const > 0. A cell I; that has completed its stay
in the (; phase of the cell cycle, turns into one of the cells I, I3, I, respectively with fixed
probabilities

o, =0, ar, =0, X, = 0, o, + g, + xr, = 1.

H6. During the interval (¢; ¢+ h) some I, cell produces one virus particle V' with probability
Ny z4h + o(h); the probability of producing more than one virus particle V' for (¢;¢ + h) is
equal to o(h); with probability 1 — nyx4h + o(h) for (¢;¢ + h) no virus particles are produced;
Ny = const > 0.

H7. During the interval (¢;¢ + h) some virus particle V' leaves the LN with probability
wyxsh + o(h) (migration outflow with probability py or natural mortality with probability 1 —
pv); the probability that more than one viral particle V' leaves the LN in (¢;¢ + h) is equal
to o(h); with probability 1 — pyz5h + o(h) no virus particle V' leaves the LN for (¢;¢ + h);
wy = const > 0,0 < py = const < 1.

For further description of the model we assume that the symbols 75, 73, 7, mean some or
arbitrarily chosen cell respectively of the population /5, I3, I4. The postulates H8—H10 are as
follows.

HS. Let the cell Z, appear in the population I, at some point in time ¢z, < ¢. We assume
that the cell Z, leaves the population I, at time ¢z, + wj, and, as a result of division, forms two
cells of the population I,. The parameter w;, = const > (0 means the duration of the phases
S — G5 — M of the cell cycle for the cells of the population /.

H9. Let the cell Z; appear in the population /3 at some point in time ¢z, < ¢. We assume that
the cell Z3 leaves the population I3 at time ¢z, + wy, and becomes a cell of the population I,.
The parameter w;, = const > 0 means the duration of stay of the cells of the population /5 in
the stopped phase G5 of the cell cycle.
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H10. Let the cell Z, appear in the population /, at some point in time ¢z, < ¢. We assume that
the cell Z, dies at the moment of time {7, + w7, due to the process of producing viral particles
that is destructive for the cells of the I, population. The random variable w7, is distributed
over a finite time interval [a; b], 0 < a < b, with an absolutely continuous distribution function
Fu,, (), Fu,,(a) = 0, Fy, (b) = 1, and wz, does not depend on ¢z, and on the behavior of
other individuals of the studied populations.

3.2. Families of unique cell types

Let us introduce families Q, (t), Qr, (t), 27, (¢) of unique cell types of populations I, I3, 14,
t € [0; Thnoq)- In the following expressions, by A we mean a fixed population of cells from the
set I, I3, I,. Taking into account the zero numbers of cell populations /5, I3, I, att = 0, we
assume that the variable N4 (¢) means a random variable that specifies the number of cells that
entered the population A during the time interval [0; ¢] C [0; T},,04), and N4(0) = 0.

Relying on the postulates H8—H10 and using the constructions from section 2, we introduce
the family 24 (¢) of unique types of cells in the population A:

QA(t) = {(tA(j)7(pA(j)) 0 < tA(j) <t,1<5< NA(t)}, lfNA(t) > 1, (32)

Qat) =0, if Na(t) = 0. (3.3)
In formula (3.2), the unique types of cells in the population A are represented by pairs

(tag)> PaG))s (3.4)

where j = 1,2,..., N4(t) means the serial number of the next cell A entering the population
A, A(j) — cell A with sequence number of j. Set

0 <ta@)y,ta@ys---stag) -« tawaw) <t (3.5)

specifies the moments of arrival of cells in the population A up to the time ¢ (inclusive). The
@ 4(;j) component used in (3.4) is as follows. If A = I, then @ 4(j) = wy,,if A = I3then @ 4(;) =
wy, (the constants indicated in postulates H8, H9). For A = I, we assume that @ 4(;) = wz, is
a random variable introduced in postulate H10.

Note that, in accordance with postulates H1, H2, H4, HS, H8—H10, the moments (3.5) of the
appearance of cells in the populations /5, I3, I, are due to random variables with an exponential
distribution containing various parameters. The residence times of cells in the populations /o,
I3 are given by constants, and the residence time of cells in the population /, is given by the
distribution Fy,, . These distributions refer to distributions of absolutely continuous type. Based
on the structure of family elements (3.2), we have that all cells located in the populations /5, I3,
I, at the current moment of time are distinguishable from each other in time ¢ 4(;) + @ 4(5)-

By analogy with (2.9), we note that the family

~

Qa(t) = {(tA(j)a ©aG)) € Qalt) s tag) + @ag) >t 1 <j < NA(t)} (3.6)

takes into account all cells of the population A existing at time ¢, and its size A(t) = |Q4(t)] is
the cardinality of family (3.6).
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3.3. Recurrent relations for model variables

The dynamics of the populations Iy, I, I, I3, 14, V will be described using a random process
H(t) = (X (1), Y (), Q(t)). t € [0; Todl, (3.7)

where
Y(t) = (Nfz(t)a NI3 (t)v NI4(t)7 ]-‘r(t)? [out(t)> V;)ut(t))a

Q(t) = (QIQ (t)7 le (t)v QI4 (t)) (3.8)

The components X (), Y(t), Q(t) used in (3.7), (3.8) are indicated in (3.1), (3.2), (3.3). In
addition, I, (¢) is understood as an auxiliary variable reflecting the number of cells that entered
the population 7, during the time interval [0;¢], 0 < t < Ty04, and I, (0) = 0. Auxiliary
variables I,,(t), V.. reflect, respectively, the number of cells Iy and virus particles V' that left
the LN during the time interval [0;¢], 0 < ¢ < Ty,0a, and 1,4 (0) = V,,:(0) = 0.

We construct sample functions of the process H (t) on the time interval [0;7},,4] using a
sequence of pairs

(tr, Ht)), m=0,1,2,..., to =0, tm < Thod- (3.9)

Based on the description of the model (sections 3.1, 3.2), we assume that the components of
H(ty) are as follows:

Io(to) = Li(to) = Ix(to) = I3(to) = Lu(to) = 0, V(to) = Vo, (3.10)
Ny, (to) = Np,(to) = N, (to) =0, I.(tg) =0, (3.11)
Qp,(to) = 0, Qup(te) =0, Q,(to) = 0. (3.12)

Let us construct recurrent relations for the sequence (3.9).
Put m = 0. Using (3.10)—(3.12), we introduce a random variable T(®) with exponential
distribution, whose parameter

p(to) = YTO,VT(TV(tO) —+ HVV(to) > 0. (313)

Let us define
ty = min { Tyoa,to + T }. (3.14)

We will preliminarily assume that
H(t) = H(to), t € [to, ta]. (3.15)

If in (3.14) t; = T,504, then (3.15) completes the description of the process H ().
Letin (3.14) t; = to + 1. Then some of the components H () are subject to change at the
point ¢t = t;, namely:

with probability Y2 10V (fo)
p(to)
Io(t) = Io(to) + 1 =1; V(t1) =V(to) =1 =Vo — 1; (3.16)
with probability M/ (o).
p(to)
V(t1) = V(to) — 1 = Vi — 1, and additionally,
Vout(t1) = Voue(to) + 1 = 1 with probability py . (3.17)
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We fix m = 1,2, 3, ... and the components of the process H (t,,):
H(ty) = (X(tm), Y (tm), Qtm))- (3.18)

Formula (3.18) includes X (¢,,), Y (¢,,) whose components are non-negative integer constants.

Components
Q(tm) = (QIQ (me), Qfs (tm)a QI4 (tm))a

used in (3.18) have the following structure. Let A € {I5, I3, I}. If N4(t,,) > 1, then (3.18)
includes the family 24 (¢,,,) given by (3.2). Each pair (tac), @ag;)) in Qa(ty,) contains two real
positive constants. If N4(¢,,,) = 0, then (3.18) includes family Qa(tm) = 0.

Using (3.18), we introduce the quantities (m) I s i I > ' IT) Denote:
P(tm) = Y vIoV (tm) + Y110 La(tm) + i lo(tm)

+ YA A To(tm) + B Li(tm) +Mvia(tn) + wvV(tn). (3.19)

Let us assume that for p(,,,) > 0 the quantity 7™ has an exponential distribution with parameter
o(ty). If p(t,,) = 0, then we assume that 7™ = 4-o0.
Let us define the quantities tbg"), 1])5’:), 11)32”) using the following relations:

ll)gn) _ 1gjgl]\[i]?(tm){t12(j) + ©1,0)  tng) + Pny) > tm}, if L(tm) = 1, (3.20)
Y = too, if I(t,) =0, (3.21)
W= min  fing) + 0no) )+ 0ne > ek iTh() 21, (3.22)
Y = too, if Ii(t,) = 0, (3.23)
Py = o min {tzg) + €50 ) + €n6) > a1 Ltn) > 1, (3.24)
Y = to0, if [i(tm) = 0. (3.25)

Let us define
byt = min { Toa, Wi W W5t + 1™ (3.26)

We will preliminarily assume that
H(t) = H(ty), t € [tm, tmi1]- (3.27)

Suppose that in (3.26) t,,+1 = Tyn0q. Then (3.27) completes the description of the process
H(t). If, on the contrary, t,,41 < Tinoq in (3.26), then some of the H (¢) components change at
the point ¢ = ¢,,,,1. Changes in the components of H (t) are reflected in the relations below.

Letin (3.26) t,, 41 = (I;n) Then

L(tmi1) = L(tm) — 1, Ii(tmi1) = Li(tm) + 2, Ni,(tmi1) = N, (tn) + 2,

7= N[4<tm+1) -1, k = N[4(tm+1)7 tI4(j) = tI4(k:) = tm+1, (328)
Qp, (tinr1) = U, (tn) U (tz, ) 9720)) YU (tzaiys @7a))

where ©z,(j), ©z,(x) are independent random variables distributed over a finite interval [a; b]
with distribution function £y, .
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Let in (3.26) t,n41 = $ ™. Then
I3(tmi1) = Is(tm) — 1, La(tmi1) = Lu(tn) + 1, Ny (tmar) = Np,(tn) + 1,

J = Ni,(tms1)s t2,6) = tms1, QL (t1) = Qp (E) U (tI4(j)a (PI4(j))7 (3.29)

where @z,(;) is a random variable distributed over a finite interval [a;b] with distribution
function F, .

Let in (3.26) ty1 = 1", Then
Ly(tms1) = Litm) — 1. (3.30)

Let, finally, in (3.26) t,,41 = t,, + T™. Changes in the H(t) components at the point
t = t,,+1 are caused by the occurrence of one of the events whose intensities are presented in
formula (3.19). The changes are:

T*
with probability YoV 20 Y \m) Vitm) .
P(tm)
Io(tms1) = Lo(tm) + 13 V(tmt) = V(tm) — 1; (3.31)
Tl (t
with probability Y70 a(bm)
P(tm)
Io(tm+1) = Io(tm) + 1; (3.32)
Iy(t,,
with probability *efo(m)
P(tm)
IO<tm+1) = IO(tm> - 17 [out<tm+1) = out(tm) + 17 (333)
A*Iy(t,,
with probability YA’IO—O() :
P(tm)
To(tms1) = Lo(ty) = 1, Ii(tmsr) = Li(ty) + 15 (3.34)
: - Brli(tm)
th probabilit _
with probability o, o)
Li(tms) = Li(tw) — 1, Li(tmsr) = L(tn) + 1, N (tme1) = N, (t) + 1, j = N, (tmt1),
tIz(j) = tm+17 P1,(5) = Wiy, QIQ (thrl) = Qb(tm) U (tZQ(j), @12(7)); (335)
: - Brli(tm)
th probabilit _
with probability o, o)
I (tmy1) = Li(tm) = 1, I3(tms1) = I3(tm) + 1, Niy(tg1) = Niy(tm) + 1, j = Npy(tms1),
t1,) = tmt1s PT,() = W3y, Qp(tmg1) = Qp(tn) U (tz,0), 9120 (3.36)
with probability o/, Prhi(tm) ol 1l » m) :
L(tmyr) = Li(tn) = 1, I (tng1) = I (tm) + 15 (3.37)
with probability 1 (4( 3”) :
Vitmer) = V(tn) +1; (3.38)
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V(tm
with probability M (m)
p(tm)
V(tmi1) = V(t,n) — 1, and additionally,
Vout(tm+1) = Vour(tm) + 1 with probability py . (3.39)

We replace m with m + 1 and return to relations (3.18)—(3.39).

3.4. Algorithm for numerical simulation

The modeling algorithm is similar to the algorithm given in Section 2.4. However, there are

also some differences. In particular, we use the constants x|)§§°) , II)SEO), tb(l_j") in relations (3.21),
(3.23), (3.25) instead of the symbol «+-oo», accepting that

Tyd < 0 < 45 < 41
Similarly, if in formula (3.19) it turns out that p(t,,) = 0, then we assume that
) = 1) = const > ll)gjo).

Note that for a fixed ¢,, the elements of each family Qy,(¢,,) # 0, Qp(tn) # 0 sorted in
ascending order iz, (jy + ©z,(j), t7,(j) + ©1,(;)» indicated in relations (3.20), (3.22). This property
significantly reduces the computational costs associated with finding the quantities 11)?2“), 11)271)

introduced in (3.20), (3.22).

3.5. An example of numerical simulation

The stochastic model contains a large number of parameters that affect the dynamics of
the X (t) components given by formula (3.1). For an analytical study of X (¢), some methods
of the theory of branching random processes can be used [27], [28], but a detailed study is a
very difficult task. By analogy with Section 2.5, to plan computational experiments with the
model, we use a deterministic analogue of the stochastic stage-dependent model. To construct
the equations of a deterministic model and study its solutions, we will rely on the results of [10],
[11], [22].

In contrast to (3.1), we assume that continuous non-negative real functions

[0(t>7 [1(t)7 IZ(t)a IS(t)a [4(t)> V(t) (340)

describe the number of populations Iy, Iy, I, I3, I4, V at time ¢ € [0; 00). The equations of the
deterministic model have the form:

%Y) =Yrv To V() + vz To Ta(t) — (s +Van A ) Do(D), (3.41)

dlcliiw =YanADo(t) = BrLi(?), (3.42)

dl;it) =apnBrli(t) — anBrli(t —wp) ~ L(t) = /t t o, B Ii(s)ds,  (3.43)
Wi,

dféit) =onBrnh(t) — anBrnli(t—wr) ~ I3(t) = /t o, Br, 11 (s)ds, (3.44)

tfwjg

[4(t> = /0 (1 — qu (8)) (2 OCIQlell(t —wr — S) + 0613[3[1[1(t — W — 8))d8, (345)
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%it) =nvii(t) — (W +ynvTy)V(t), t =0, (3.46)
1p(0) =0, I1i(t) = 0, t € [-max{wp,, wy,}; 0], (3.47)
L,(0) = 0, L(0) = 0, L,(0) = 0, V(0) = Vi > 0. (3.48)

The symbol «~» in equations (3.43), (3.44) means the equivalence of differential and
integral equations, taking into account the initial data (3.47), (3.48). In equations (3.41)—(3.46)
the derivatives of variables at the point ¢ = 0 are their right-hand derivatives. For the
subsequent study, it is important that the stochastic model and system (3.41)—(3.48) have the
same parameters and initial data.

Note that system (3.41)—~(3.46) is linear, the variable I,(t) is expressed in terms of the
variable [;(t), and the variables I5(t), I3(t) are not explicitly included in the equations for the
rest of the model variables. We also take into account that 1 — Fy,, (s) = 0 fors > b > 0.
Therefore, to study the asymptotic behavior of the dynamics of variables (3.40), it suffices to
consider the system of equations

dlo(t r
Cgt( ) = ‘YTO,VTJV(w + ‘YT0J4T(TI4(t) - (ulo + ‘YA,IOA*)]O(t)? (349)
dly(t) .
dt = 'YA,IOA IO(t) - [311]1(t)7 (350)
av(t ~
dE - v la(t) = (v + v v I5)V (L), ¢ 2> b, (3.51)

supplemented by initial data (3.47), (3.48) and recording the variable Zl(t) in integral form:

B b
Ii(t) = /0 (1- Fw14(5)) (20,BrLi(t — wp, — ) + apBrli(t —wp —s))ds.  (3.52)

System (3.49)—(3.51), taking into account (3.52), refers to systems of Wazhevsky equations
(positive systems) with delay. To study the solutions of the system (3.49)—(3.51), the properties
of matrices of a special kind can be used. Denote

b
wj, = / (1- Fw14(s))ds, o, = (20, + ag)Brwj,,
0
and introduce the matrix

Wi, + varnA* —vn.n15en,  —YrvI§
Q= —Ya,A* Br, 0
0 “NMvern W +Ynvily

System (3.49)—(3.51) has a trivial equilibrium

0. (3.53)

Using the results of [29], we establish that the equilibrium (3.53) is asymptotically Lyapunov
stable if det () > 0, which is equivalent to the inequality Ry < 1, where

(h1y +Yar,A%) (v + Y1, vTE) '
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The constant R, given by formula (3.54) is called the base reproduction number. Since the
system (3.49)—(3.51) is autonomous, the asymptotic stability of the trivial equilibrium (3.53)
means also the exponential stability (3.53) [3Q]. Consequently, for Ry < 1, the components of
solution (3.40) after a certain transitional period will decrease exponentially.

If Ry > 1 (det@ < 0), then the behavior of the solution (3.40) on the interval [0; 7},,0q] Will
essentially depend on V4. In addition, some model parameters are not included in the expression
for Ry, for example, 3;,, wy,, wy,. Following the Euler method [30], we will look for a solution
to the system of equations (3.49)—(3.51) in the form

X(t) = (Io(t), [i(t), V(£)) = (c1, ¢2, c3)e™,

where c;, co, c3 are some constants, A is a complex number. It is easy to establish, that for
Ry > 1 among the roots A of the characteristic equation there exists a real root Ay > 0 [29].
This implies that for some initial data (3.47), (3.48) the solution of system (3.49)—(3.51) admits
asymptotically exponential growth.

Let us turn to the stochastic model. Next, in parentheses, the dimension of the model
parameters is indicated. Based on the [Z], [8], [10], [11], we assume that T = 5-10%, A* = 2-10°,
i, = 2.5 (day™"), Br, = 0.8 (day ™), wy, = 0.75 (day), ny = 150 (day ™), py = 3.5 (day ™),
Yrow = 1.2-107% (day ™), 7,7, = 2.5 - 1077 (day ). Additionally, we assume that py = 0.7,
wy, = 1.25 (day), the random variable w;, is given by the expression w;, = 0.75 + 0.6 £,
where & is uniformly distributed over the interval [0; 1], [a; b] = [0.75; 1.35] (day), w}, = 0.921
(day). We will say that the reduced values of the parameters constitute the reference set.

Consider the dynamics of (3.1) on the interval [0; T},,04] = [0; 10] days for model parameters
that include parameters from the reference set and three additional sets:

oy, =045, op, = 0.25, Ya5, = 7.3- 1077 (day ™), (3.55)
o, = 0.25, op, = 0.65, Y45, = 2.1-107° (day ™), (3.56)
o, = 0.25, op, = 0.65, Yaq, = 4.5-107° (day ™). (3.57)

Using (3.54) we find that Ry = 0.9037, Ry = 2.5716, Ry = 5.4084 for the reference set of
parameters supplemented with sets (3.55), (3.56), (3.57), respectively.

The results of numerical simulation are presented in Figures 5, 6, 7 and in Tables 2, 3, 4.
Figures 5, 6, 7 show ten typical realizations of the auxiliary variable log,,(Xs(t) 4+ 1) for the

parameter sets (3.55), (3.56), (3.57), respectively, and V, = 10, 50, 100, where Xg(¢) — total
number of all X (#) components:

Xs(t) = Ip(t) + L (t) + L(t) + L(t) + Li(t) + V(1)

Tables 2, 3, 4 contain interval estimates for the probability of the event P{X () = 0} for fixed
t € [0; Thn0a) at the confidence level P = 0.99 [23]. These interval estimates were calculated
using a sample of N = 10000 realizations of the random process H ().

It can be seen from Figure 5 that for By < 1, most of the n = 10 realizations of the variable
log,,(Xs(t)+1) goto zero in a fairly short period of time, while others, oscillating, are supported
at some level. It follows from Table 2 that the probability P{Xs(¢) = 0} increases as ¢ increases.

Figure 6 shows that for By = 2.5716 only a part of n = 10 realizations of the variable
log,,(Xs(t) + 1) vanishes in a short period of time (which is similar to the behavior of
realizations for parameter set (3.55)), however, the remaining realizations allow significant
growth. It can be seen from Table 3 that, with the set of parameters (3.56), the probability of the
event P{Xg(10) = 0} is less than with the set (3.55).
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Table 2. Interval estimates of the probability of the event P{Xg(¢) = 0} at the confidence level

P =0.99 and Ry = 0.9037 for the set of parameters (3.55)

t, day Vo=10 Vo=50 V=100
0 0 0 0
0.1 0 0 0
0.4 | 0.0489 =+ 0.0056 0 0
0.7 | 0.3542+0.0123 | 0.0046 & 0.0017 0
1.0 | 0.6595 £ 0.0122 | 0.1237 & 0.0085 | 0.0151 + 0.0031
50 | 0.9942 £0.0019 | 0.9730 £ 0.0042 | 0.9465 =+ 0.0058
10.0 | 0.9972 4 0.0014 | 0.9863 & 0.0031 | 0.9738 & 0.0041

IOglo(XS(t) + 1)
logyo(Xs(t) +1)

log,(Xs(t) +1)

Fig. 5. Typical realizations of log,,(Xgs(t) + 1) with Ry = 0.9037 for a set of parameters (3.55)
and (a) Vp = 10; (b) Vo = 50; (¢) Vo = 100.

Table 4 shows that with an increase in 2 and 1, the probability of eradicating the infection
in the LN on the tenth day P{X¢(10) = 0} significantly decreases compared to the option
(3.56). This is also confirmed by Figure 7, which demonstrates a significant increase in at least
half of the n = 10 realizations of log,,(Xs(t) + 1).

Tables 5, 6 present interval estimates of expectations El,,(t), EV,,(t) at the confidence
level P = 0.99 [23] for ¢ = 10 days in dependencies on V[, and R,. The interval estimates
El,.(t), EV,,(t) are calculated from a sample of N = 10000 realizations of the process H (t).
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P =0.99 and Ry = 2.5716 for the set of parameters (3.56)

t, day Vo=10 Vo=50 Vo=100
0 0 0 0
0.1 0 0 0
04 | 0.0505 4 0.0056 0 0
0.7 | 0.3486+0.0123 | 0.0050 + 0.0018 0
1.0 | 0.6483 4+0.0123 | 0.1121 = 0.0081 | 0.0133 % 0.0029
50 | 0.9772+0.0038 | 0.9015 4 0.0077 | 0.8121 + 0.0101
10.0 | 0.9792 4 0.0037 | 0.9104 = 0.0074 | 0.8290 % 0.0099

IOgIU(XS (t) + 1)

lOgm(XS(t) +1)

log;o(Xs(t) +1)

Fig. 6. Typical realizations of log;,(Xs(t) + 1) with Ry = 2.5716 for a set of parameters (3.56)
and (a) Vp = 10; (b) Vo = 50; (¢) Vo = 100.

The simulation results given in Tables 5, 6 have the following interpretation. An increase in
Ry and Vj, leads to a significant increase in the average number of [ cells and V' virions that
left the LN during the period [0; 10] days. An increase in the average number of /; cells and V/
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Table 4. Interval estimates of the probability of the event P{Xg(¢) = 0} at the confidence level

P =0.99 and Ry = 5.4084 for the set of parameters (3.57)

t, day Vo=10 Vo=50 Vo=100
0 0 0 0
0.1 0 0 0
0.4 0.0482 = 0.0055 0 0
0.7 0.3420 +0.0122 | 0.0042 £+ 0.0017 0
1.0 0.6406 = 0.0124 | 0.1065 £+ 0.0079 | 0.0112 £ 0.0027
5.0 0.9541 4 0.0054 | 0.7964 £ 0.0104 | 0.6302 4+ 0.0124
10.0 0.9548 +0.0054 | 0.7990 £ 0.0103 | 0.6340 4+ 0.0124
40 ()
= 3.0 =
i n
X 20 =
1.0 —%
T by !
0.0 1 | i
0 2 4 6 8 10
t, days
=
\%}/

Fig. 7. Typical realizations of log,,(Xgs(t) + 1) with Ry = 5.4084 for a set of parameters (3.57)
and (a) Vp = 10; (b) Vo = 50; (¢) Vo = 100.

virions that left the LN means an increase in the spread of HIV-1 infection in the body of an
infected individual.

Concluding the section, we note that for any 1, > 0, the deterministic model (3.41)—(3.48)
does not allow eradication of HIV-1 infection in the LN on finite time intervals both for Ry < 1
and for Ry > 1. The calculations show that, within the framework of the stochastic model, it
is possible to eradicate HIV-1 infection in LN at finite time intervals. For given sets of model
parameters, the probability of eradication of HIV-1 infection in the LN on the time interval
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Table 5. Interval estimates of the expectation E,,;(10) at the confidence level P = 0.99
depending on from Vj and Ry
Ry Vo=10 V=50 V=100
0.9037 5.347 £ 1.648 23.617 £ 3.229 50.015 £ 5.140
2.5716 40.014 £ 8.767 162.799 £ 17.713 320.057 £24.773
5.4084 | 297.835 £ 53.062 | 1437.796 £ 113.064 | 2924.625 £ 161.858
Table 6. Interval estimates of the expectation EV,,;(10) at the confidence level P = 0.99

depending on from Vj and Ry

Ry Vo=10 Vo=50 Vo=100
0.9037 8.418 £1.040 40.140 £ 2.037 81.951 £ 3.234
2.5716 31.465 £ 5.788 132.323 £11.682 261.038 £16.332
5.4084 | 211.903 + 36.877 | 1022.588 £ 78.512 | 2077.983 £ 112.318

[0; 10] days is positive and takes values greater than 0.6 (see Tables 2, 3, 4). Therefore, the
stochastic model provides more meaningful information than the deterministic model regarding
the dynamics of the development of HIV-1 infection in the LN at the initial stage after infection
of the individual.

Let us additionally note one of the computational problems that arise in the stochastic model.
An increase in the size of the population I, to the values I,(t) ~ 10° leads to a significant
increase in the computational cost of finding the value u)ﬁ,’j) specified in (3.24). It requires the
involvement of methods for working with large data sets and parallel computing algorithms.
Another possible way to reduce the cost of calculating 11)32”) is related to the modification of
postulate H10. Let us assume that postulate H10 uses the discrete distribution function Fy, (s)
with a finite set of admissible values of the random variable wjy,. In this case it is possible to
introduce several auxiliary families of unique types of cells in the population /. Each auxiliary
family will be ordered by the time points at which the cells leave the I, population. Setting
a unique type for the cell Z, and including it in one of the auxiliary families is simulated
immediately after the appearance of Z, in the population I,. The current value of 1|)§’4") is either

kept unchanged, or the new value II)(IT) is found after several comparison operations.

4. CONCLUSIONS

The article presents deterministic and stochastic approaches to the construction of
stage-dependent models that arise in immunological problems. An important aspect of
stochastic stage-dependent models is the inclusion of non-Markovian constraints on individuals.
Non-Markovian constraints on individuals are due to the use of rather arbitrary distribution
functions that describe the duration of stay of individuals in populations.

The examples given in the article show that the deterministic and stochastic approaches
complement each other and allow one to study the dynamics of variables in a continuous-discrete
formulation. The results of the analytical study of deterministic models make it possible to plan
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computational experiments with stochastic models based on the Monte Carlo method.

It should be noted that stochastic stage-dependent models are important for studying the
dynamics of small populations. Within the framework of stochastic stage-dependent models, it
is possible to estimate the probabilities of degeneration of populations and study the distribution
laws of the number of populations over finite time intervals depending on the variation of model
parameters. Fluctuations of variables can lead to the appearance of various variants of population
dynamics, which are impossible within the framework of deterministic models.

The approach proposed in the article can be generalized to the construction and study of
stage-dependent models that describe the dynamics of populations in problems of epidemiology,
ecology, and demography.

The article was prepared with the financial support of the Russian Science Foundation, project
23-11-00116.
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Mamemamuueckas ouonoeus u OUOUHGDOPMAMUKA
doi: 10.17537/2023.18.543

MATEMATUYECKOE MOJEJINPOBAHUE
CroxacTuueckoe MoIeJIMPOBAHME B HMMYHOJIOT UM
HA OCHOBE CTAINA-3aBUCUMON CTPYKTYPbI
C HEeMAPKOBCKMMHU OTPAHUYEHUSAMU ISl JUHAMUKHA

OTACJIBbHBIX KIICTOK H IMTAaTOI'CHOB
ITepuen H.B., Jlorunos K.K.

HUnemumym mamemamuxu um. C.JI. Cobonesa Cubupckozo omoenenus
Poccuiickoii akademuu nayx, Hosocubupck, Poccus
HUncemumym svruucaiumensrnou mamemamuru um. 11, Mapuyka
Poccuiickoii akademuu nayx, Mockea, Poccus

Annomayua. B pabore mnpuBEeNEH CHUCTEMHBIH MOAXOA K MOJICIUPOBAHUIO
peaknMu HMMYHHOH cHCTeMbl Ha BHpycHble HHQekuuu. Paspaboransl u
YHCIICHHO PEaJn30BaHbl JBE HEMPEPBIBHO-TUCKPETHBIE CTOXACTUYECKHE MOJIENH,
BO3HHUKAIOIIME B MaTeMaTH4YeCKOH MMMYyHOJIOTHH. llepeMeHHbIMU Mojenen
SIBJISIFOTCSL  LIEJIOYMCIICHHBIE CIIy4ailHble BEIWYUHBIL, OTPAKAIOLIUE KOJIUYECTBO
WHAUBHIYYMOB (KJIETOK M BHPYCHBIX YACTHII), © HAO0OPHl YHUKAIBHBIX THIIOB
WHAWBUAYYMOB, YYHUTBHIBAIOLIME TEKYIIee COCTOSHHE M HMCTOPUIO IMpeObIBaHMS
WHAMBUJIYYMOB B HEKOTOPBIX CTaIHMSIX MX pa3BUTHSA. 3aKOHBI paclpeneleHus
JUIATETBHOCTH  YKa3aHHBIX CTAAUi OTIMYHBI OT OKCHOHEHIMAIBFHOTO WIIN
reomeTpuueckoro. IIpencTaBieHO BEPOSTHOCTHOE OMUCAHUE OJHO-CTaIUMHON
CTOXACTUYECKOM MOJENH JAWHAMHUKH YHCIEHHOCTH HEKOTOPOH MOMYJISILIMH.
CdopmynupoBana croxacTuueckass moxenb pasButuss BHUY-1 undexkunn B
auM(paTHIeCcKOM y3Jie B Ha4aJIbHBIHI MEPHO] ITOCIIE 3apakeHHsI 310POBOTO YEIOBEKA.
[IpuBeneH BBHIYMCIMTENBHBIN aJIrOpUTM, OCHOBaHHBIM Ha Meroge MonTe-Kapro.
Kaxmas w#3 CcTOXaCTMYECKMX MOJAENeH JOMONHAETCS IeTePMHHHPOBAHHBIM
aHajoroM B ¢opMe HHTCTPATBHBIX H IUGGEPEHITHATBHBIX YPaBHEHUH ¢
3anas3apiBaHueM. [IpeacTaBieHsl pe3ybTaTbl YUCIAEHHOTO MOJIEIUPOBAHUSI.

Knwuesvle cnoea: cmaous-3asucumas Mooenb, HEMAPKOGCKUe OpAHUdeHUsr Ol
unouudyymos, memoo Monme-Kapno, eviuuciumenvuvliil 9KCnepuUMeHm, UMMYHOIO2US,
BUY-1 ungexyus.
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