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Abstract. We present a systematic approach to modelling the responses of

the immune system to virus infections. Two continuous-discrete stochastic

models arising in mathematical immunology are developed and computationally

implemented. The variables of the models are integer random variables that denote

the quantity of individuals (cells and viral particles), and sets of unique types of

individuals that take into account the current state and history of stay of individuals

in some stages of their development. The distribution laws of the durations of

the mentioned stages are different from exponential or geometric. A probabilistic

description of a one-stage stochastic model of population dynamics is presented.

A stochastic model of the development of HIV-1 infection in the lymph node in

the initial period after infection of a healthy person is formulated. A computational

algorithm based on the Monte Carlo method is given. Each of the stochastic models

is complemented by a deterministic analogue in the form of integral and delay

differential equations. The results of numerical simulation are presented.

Key words: stage-dependent model, non-Markov constraints for individuals, Monte Carlo

method, computational experiment, immunology, HIV-1 infection.

INTRODUCTION

One of the actively developing areas of mathematical modeling in immunology is

associated with the use of deterministic and stochastic stage-dependent models. Deterministic

stage-dependent models in immunology are usually based on delay differential equations (see,

for example, [1]–[8] and references to articles by other authors given in the listed papers).

The penetration of a small number of viral particles into the human body can lead to

infection of several target cells, the appearance of new viral particles due to reproduction in

target cells and activation of cell production of a specific immune response. Modeling the

dynamics of the infectious process in the initial period requires the use of integer variables

reflecting the current numbers of viral particles and cells. In addition, within the framework

of the stochastic stage-dependent model, it is necessary to use additional variables that take

into account the prehistory of the formation of several populations – viral particles, infected,

productively infected and immunocompetent cells. The distribution of the residence time of

viral particles and cells in populations may differ from exponential or geometric. Therefore,

a stochastic model must take into account non-Markov constraints for individuals to describe
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the dynamics of the studied populations. One of the approaches to constructing stochastic

stage-dependent models of population dynamics with non-Markov constraints for individuals,

including models in immunology, is proposed in [9]–[11] (see also related articles [12]–[17]).

The paper presents two stochastic stage-dependent models that arise in the problems of

immunology. Each of themodels contains non-Markov restrictions reflecting the duration of stay

of individuals at one or another stage of their development. Section 2 presents a probabilistic

formalization of a one-stage stochastic model of population dynamics. The one-stage model

illustrates the use of an integer variable to describe the current population size and the use

of an additional variable in the form of a family of unique types of individuals. The family

of unique types of individuals reflects the successive moments of time when individuals enter

the population, contains the duration of stay of individuals in the population, set by a random

variable distributed over a finite period of time, and indicators of the transition of individuals

to other populations. The numerical simulation algorithm based on the Monte Carlo method is

given. Themodel can describe the initial period of the cell production process of a heterogeneous

population, regulated by feedback. Section 3 describes a stochastic stage-dependent model of

the development of HIV-1 infection in the lymph node during the first few days after infection

of an individual. Sections 2, 3 are accompanied by the results of numerical simulation of the

dynamics of the studied populations at finite time intervals. To plan computational experiments

withmodels, their deterministic analogues in the form of integral and delay differential equations

are used.

2. ONE-STAGE STOCHASTIC MODEL

2.1. Notation and postulates of the model

We will study the dynamics of some population A. We assume that the population A can be

replenished with new individuals from some source S. Denote byD and B the populations into

which individuals enter after the end of their stay in the population A. PopulationD may reflect

the dead individuals, population B – the next stage of development of individuals in population

A. An explicit description of the «fate» of individuals of populationsD and B is not considered

in the model below. The scheme of the model is shown in Figure 1.

S
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A B
ωA

µA

D

1
Fig. 1. Scheme of a one-stage model, symbols in the text.

Let t be a real variable denoting time, [0;Tmod] is a simulation interval, (t; t+h) ⊂ [0;Tmod]
is an infinitesimal time interval, h → +0. By ρA(z) we will understand a function from an

integer non-negative variable z ∈ Z+ satisfying the condition: 0 < ρA(z) 6 ρ∗A for all z ∈ Z+,

where ρ∗A > 0 is some constant. Let the expressions ξA ∼ Exp(µA), ωA ∼ FωA
mean that

the random variable ξA has an exponential distribution with the parameter µA > 0, the random
variable ωA has a distribution function FωA

(u). We assume that ωA is distributed over a finite

interval [0;ω∗
A],ω

∗
A > 0, and FωA

(+0) = 0.
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Now we formulate the postulates of the model. Denote by A(t) the population size of A at

time t, t ∈ [0;Tmod]. For each fixed t > 0, A(t) is a non-negative integer random variable. At

the initial time t = 0, the population A either does not contain or contains a certain number of

initially existing individuals, A(0) = A0 = const > 0. Denote by A some or arbitrarily chosen

individual of the population A. Let us fix t and assume that A(t) = x is a non-negative integer

constant. The postulates of the model are as follows.

H1. Regardless of the events preceding t, during the interval (t; t + h) with probability

ρA(x)h + o(h) the population of A is replenished by one individual coming from S; the
probability that more than one individual of A enters population from S is o(h); the population
A is not replenished from S for (t; t+ h) with probability 1− ρA(x)h+ o(h).

H2. Let the individual A appear in the population A at some point in time tA 6 t. Denote
by ξA ∼ Exp(µA) the duration of time until the transition A to the population D. By ωA ∼
FωA

we denote the duration of time of stay A in the population A before the transition to the

populationB. Random variables ξA,ωA are independent of each other, do not depend on tA and

do not depend on the behavior of other individuals in the population. The individual A leaves

the population A at time tA +min{ξA,ωA}.

2.2. The family of the unique types of individuals

To take into account for the population A the prehistory of its formation, in addition to the

variableA(t)we introduce forA a family of unique typesΩA(t) of individuals, t ∈ [0;Tmod]. Let
us assume that the variable NA(t) means a non-negative integer constant or a random variable

that specifies the number of individuals who entered the population A over a period of time

(−ω∗
A; t]. If t = 0, then NA(0) takes into account initially existing individuals whose number

is equal to A0. If t > 0, then NA(t) reflects both the initially existing individuals of population
A and the new individuals who entered this population during the time interval (0; t].

Denote by j = 1, 2, . . . , NA(t) the ordinal number of the next individual A entering the

population A, and by A(j) – an individual A with the number j. Let us assume that the set

−ω∗
A < tA(1), tA(2), . . . , tA(j), . . . , tA(NA(t)) 6 t (2.1)

means the moments when individuals enter the population A up to the moment of time t
(inclusive), taking into account the initially existing individuals of this population. For t = 0, the
elements of the set (2.1) are considered as initial data, reflecting the initially existing individuals

of the population, and are constants satisfying the relations

−ω∗
A < tA(1) < tA(2) < · · · < tA(j) < · · · < tA(NA(0)) 6 0. (2.2)

For t = Tmod, the elements of the set (2.1) take into account the initially existing individuals of

the population A and the individuals who entered to the population A over the period (0;Tmod].
Based on postulate H1, using the inequality 0 < ρA(z) 6 ρ∗A, z ∈ Z+, and the results of [9]

(Lemma 4.1, Theorem 5.1), we arrive at the following statements:

1) the unlimited growth of the population size A(t) on the interval [0;Tmod] is impossible,
and for the time interval [0;Tmod] the population A is replenished with a finite random number

of individuals NA(Tmod);
2) for each fixed t > 0, the upper estimate of the population size A(t) is given as the sum of

the number of initially existing individuals and the random variable Y (t), which has a Poisson
distribution with parameter

λ(t) = ρ∗A

∫ t

0

(1− FωA
(u)) e−µAudu.
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It follows from the postulate H1 that each moment tA(j) > 0 specified in (2.1) is due to a

random variable with exponential distribution whose parameter depends on the current size of

the population A. Taking into account that the exponential distribution refers to distributions of
absolutely continuous type and using (2.2), we conclude that for each fixed t ∈ (0;Tmod] the
probability of matching any pair, triple, etc. from the set of elements, specified in (2.1) is equal

to zero. As a consequence, for every fixed t ∈ [0;Tmod]

−ω∗
A < tA(1) < tA(2) < · · · < tA(j) < · · · < tA(NA(t)). (2.3)

Relations (2.3) mean that the individuals of the population A are distinguishable from each

other by the moments tA of entering the population. In addition, it follows from postulateH2 that

the individuals of the population A are distinguishable from each other by tA + min{ξA,ωA}
at which they leave the population.

Denote by

ϕA(j) = min{ξA(j),ωA(j)} (2.4)

the duration of the stayA(j) in the population A before the transitionA(j) to the populationD
or B. Let ηA(j) denote the «fate» indicator of the individual A(j):

ηA(j) = 0, if ξA(j) 6 ωA(j), ηA(j) = 1, if ξA(j) > ωA(j). (2.5)

In (2.5) it is assumed that ηA(j) = 0 means the transition A(j) to the population D, while

ηA(j) = 1 – transition A(j) to the population B. Using (2.4), (2.5), we introduce the triple(
tA(j),ϕA(j),ηA(j)

)
(2.6)

which we call the unique type of an individual A(j), 1 6 j 6 NA(Tmod).
For a fixed t ∈ [0;Tmod] by ΩA(t) we mean the family of unique types of individuals

population A containing NA(t) > 1 triples (2.6):

ΩA(t) =
{(

tA(j),ϕA(j),ηA(j)

)
: tA(j) 6 t, 1 6 j 6 NA(t)

}
. (2.7)

If for some t ∈ [0;Tmod] is true NA(t) = 0, then we assume that

ΩA(t) = ∅. (2.8)

We write A(t) in terms of NA(t) and ΩA(t) for fixed t ∈ [0;Tmod]. If NA(t) = 0, then (2.8)

is true, and A(t) = 0. If NA(t) > 1, then (2.7) is true, and A(t) = |Ω̂A(t)| is the cardinality of
the family

Ω̂A(t) =
{(

tA(j),ϕA(j),ηA(j)

)
∈ ΩA(t) : tA(j) +ϕA(j) > t, 1 6 j 6 NA(t)

}
. (2.9)

In accordance with postulate H2, the family Ω̂A(t) given in (2.9) takes into account all

individuals of the population A that exist at time t, namely: individuals appearing in the

population up to the moment t (inclusive), and left the population at the time moments

following t.

2.3. Recurrent relations for model variables

Let us introduce auxiliary variablesD(t), B(t), meaning by them the number of individuals

of the populationA, who arrived respectively in the populationsD andB during the time interval

[0; t], 0 < t 6 Tmod, and assuming that D(0) = 0, B(0) = 0. We will describe the dynamics of
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the population A using a random process

H(t) =
(
A(t), NA(t), D(t), B(t),ΩA(t)

)
, t ∈ [0;Tmod]. (2.10)

Following [18], we construct sample functions of the processH(t) on the time interval [0;Tmod]
using a sequence of pairs

(tm, H(tm)), m = 0, 1, 2, . . . , t0 = 0, tm 6 Tmod. (2.11)

Based on (2.1)–(2.10), we assume that the components of H(t0) are such that

A(t0) = A0, NA(t0) = A0, D(t0) = 0, B(t0) = 0, (2.12)

ΩA(t0) = Ω
(0)
A , if NA(t0) > 1, ΩA(t0) = ∅, if NA(t0) = 0. (2.13)

The family Ω
(0)
A has the form

Ω
(0)
A =

{(
tA(j),ϕA(j),ηA(j)

)
: tA(j) 6 t0 < tA(j) +ϕA(j), 1 6 j 6 NA(t0)

}
, (2.14)

and contains given (nonrandom) triples (2.6) whose elements satisfy relations (2.2).

Let us construct recurrent relations for the sequence (2.11).

Put m = 0. Using (2.12)–(2.14), we introduce the quantities τ0 and ψ0. Let us assume that

the quantity τ0 has an exponential distribution with the parameter ρA(A0). The value of ψ0 is

given by the relations

ψ0 = min
16j6NA(t0)

{tA(j) +ϕA(j)}, if A(t0) > 1, (2.15)

ψ0 = +∞, if A(t0) = 0. (2.16)

Based on (2.15), denote by
(
tA(∗),ϕA(∗),ηA(∗)

)
a unique triple of elements from (2.14) such that

ψ0 = tA(∗) +ϕA(∗). Let us define

t1 = min
{
Tmod,ψ0, t0 + τ0

}
, (2.17)

and write that

H(t) = H(t0), t ∈ [t0, t1). (2.18)

If in (2.17) t1 = Tmod, then

H(t1) = H(t0). (2.19)

Relations (2.18), (2.19) complete the description of the process H(t).
Let in (2.17) t1 = ψ0. Then

A(t1) = A(t0)− 1,

D(t1) = D(t0) + 1 = 1, B(t1) = B(t0) = 0, if ηA(∗) = 0, (2.20)

D(t1) = D(t0) = 0, B(t1) = B(t0) + 1 = 1, if ηA(∗) = 1,

NA(t1) = NA(t0), ΩA(t1) = ΩA(t0).

Let in (2.17) t1 = t0 + τ0. Then

A(t1) = A(t0) + 1, NA(t1) = NA(t0) + 1,

D(t1) = D(t0) = 0, B(t1) = B(t0) = 0,
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j = NA(t1), ΩA(t1) = ΩA(t0) ∪
(
tA(j),ϕA(j),ηA(j)

)
, (2.21)

tA(j) = t1, ϕA(j) = min{ξA(j),ωA(j)}, ξA(j) ∼ Exp(µA), ωA(j) ∼ FωA
,

ηA(j) = 0, if ξA(j) 6 ωA(j), ηA(j) = 1, if ξA(j) > ωA(j).

We fixm = 1, 2, 3, . . . , and the components of the process H(tm):

H(tm) =
(
A(tm), NA(tm), D(tm), B(tm),ΩA(tm)

)
, (2.22)

ΩA(tm) = ∅, if NA(tm) = 0, (2.23)

ΩA(tm) =
{(

tA(j),ϕA(j),ηA(j)

)
: tA(j) 6 tm, 1 6 j 6 NA(tm)

}
, if NA(tm) > 1. (2.24)

Formula (2.22) includes non-negative integer constants A(tm), NA(tm), D(tm), B(tm).
If NA(tm) > 1, then (2.22) includes the family ΩA(tm) given by (2.24). Each triple(
tA(j),ϕA(j),ηA(j)

)
in (2.24) contains two real and one integer non-negative constant.

Using (2.22)–(2.24), we introduce the quantities τm andψm. Let us assume that the quantity

τm has an exponential distribution with the parameter ρA(A(tm)). The value of ψm is given by

the relations

ψm = min
16j6NA(tm)

{tA(j) +ϕA(j) : tA(j) +ϕA(j) > tm}, if A(tm) > 1, (2.25)

ψm = +∞, if A(tm) = 0. (2.26)

Based on (2.25), denote by
(
tA(∗),ϕA(∗),ηA(∗)

)
a unique triple of elements from (2.24) such that

ψm = tA(∗) +ϕA(∗). Let us define

tm+1 = min
{
Tmod,ψm, tm + τm

}
, (2.27)

and write that

H(t) = H(tm), t ∈ [tm, tm+1). (2.28)

If in (2.27) tm+1 = Tmod, then

H(tm+1) = H(tm). (2.29)

Relations (2.28), (2.29) complete the description of the process H(t).
Let in (2.27) tm+1 = ψm. Then

A(tm+1) = A(tm)− 1,

D(tm+1) = D(tm) + 1, B(tm+1) = B(tm), if ηA(∗) = 0, (2.30)

D(tm+1) = D(tm), B(tm+1) = B(tm) + 1, if ηA(∗) = 1,

NA(tm+1) = NA(tm), ΩA(tm+1) = ΩA(tm).

Let in (2.27) tm+1 = tm + τm. Then

A(tm+1) = A(tm) + 1, NA(tm+1) = NA(tm) + 1,

D(tm+1) = D(tm), B(tm+1) = B(tm),

j = NA(tm+1), ΩA(tm+1) = ΩA(tm) ∪
(
tA(j),ϕA(j),ηA(j)

)
, (2.31)

tA(j) = tm+1, ϕA(j) = min{ξA(j),ωA(j)}, ξA(j) ∼ Exp(µA), ωA(j) ∼ FωA
,
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ηA(j) = 0, if ξA(j) 6 ωA(j), ηA(j) = 1, if ξA(j) > ωA(j).

We replacem withm+ 1 and return to relations (2.22)–(2.31).

2.4. Algorithm for numerical simulation

TheMonte Carlo method is used to calculate the realizations of the random processH(t). At
the beginning of the calculations, the model parameters, initial data and the modeling interval

[0;Tmod] are specified. In addition, the constant ψ∞ > Tmod is specified, which is used for the

quantities ψ0, ψm in formulas (2.16), (2.26) instead of the symbol «+∞».

Next, the sequence (2.11) is modeled based on relations (2.15)–(2.31). Simulation of a

particular realization stops when tm+1 > Tmod. The simulation of theH(t) process is completed
when the specified number of realizations is received. To generate random variables, we use the

formulas and generators of pseudo-random numbers described in [19]–[21].

The simulation algorithm is implemented as a console simulation program written in the

C++ programming language in the Visual Studio 2008 integrated development environment.

The input parameters are read from a special configuration file. Simulation results (realizations

of model variables) are stored in a separate text file.

2.5. An example of numerical simulation

Let [0;Tmod] = [0; 30] days, A(0) = A0 = 0, r1 > 0, r2 > 0, β > 0 and

ρA(z) = r1 exp{−βz}+ r2, z ∈ Z+.

The dimension of the parameters r1, r2 day
−1, β is a dimensionless parameter. The function

ρA(z) specifies a negative feedback that reflects the rate of influx of new individuals of

population A depending on its current size A(t). The function FωA
(u) sets the uniform

distribution of the random variableωA over the interval [0;ω∗
A] of the day, the parameter µA of

the exponential distribution ξA ∼ Exp(µA) has the dimension day
−1.

For a preliminary analysis of the possible behavior ofA(t), consider a deterministic analogue
of the constructed model in the form of the integral equation

xA(t) =

∫ t

0

(
1− FωA

(u)
)
e−µAu ρA(xA(t− u))du, t > 0. (2.32)

Equation (2.32) was proposed and studied in [22]. The solution xA(t) of equation (2.32) is

understood as a continuous non-negative real function describing the size of the population A
at the time t ∈ [0;∞). Denote

θA =

∫ ∞

0

(
1− FωA

(u)
)
e−µAudu =

1

µA

(
1− 1

µAω
∗
A

(
1− e−µAω

∗
A
))

. (2.33)

The constant θA > 0 given by (2.33) is interpreted as the average time spent by individuals in
the population A. Let x∗

A be the unique root of the equation

x = θAρA(x), x ∈ [0;∞). (2.34)

It follows from (2.32)–(2.34) that if the solution xA(t) has a finite

lim
t→+∞

xA(t) = xA(+∞), (2.35)

then xA(+∞) = x∗
A. One of the conditions necessary for the existence of the limit (2.35) is

satisfied, since at the point x = x∗
A the inequality dρA(x)/dx < 0 is true. Sufficient conditions
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for the existence of the limit (2.35) are given in [22].

Let us turn to the stochastic model. Consider the dynamics of A(t) for two sets of model

parameters (the dimension of the parameters is indicated above):

r1 = 150, r2 = 25, β = 0.01, µA = 0.1, ω∗
A = 5, (2.36)

r1 = 250, r2 = 5, β = 0.05, µA = 0.05, ω∗
A = 10. (2.37)

For the parameter sets (2.36), (2.37), the roots of equation (2.34) with an accuracy of two decimal

places are as follows: x∗
A = 136.62 and x∗

A = 64.24.
Figures 2, 3 show ten typical realizations of the population size A(t) for the parameter sets

(2.36), (2.37), respectively.

0 5 10 15 20 25 30
0

50

100

150

t, days

A
(t
)

1

Fig. 2. Typical realizations of the population size A(t) for a set of parameters (2.36); the dotted

line denotes the value x∗A = 136.62.

Table 1 presents interval estimates of the expectation EA(t) for fixed t ∈ [0;Tmod] at the
confidence level P = 0.99 [23]. Interval estimates are calculated on a sample of N = 1000
realizations of the random process H(t).

From Figures 2, 3 and Table 1 it can be seen that the results of stochastic simulation are in

good agreement with the analytical study of the deterministic model (2.32). First, the realizations

of A(t) after the completion of the transitional process on the time interval t ∈ [0; 5] days
reach a level close to x∗

A, and then oscillate in a limited range relative to x∗
A. Secondly, the

expectation A(t) takes values close enough to x∗
A, despite the nonlinearity of the model. The

differences in the behavior of A(t) for the set of parameters (2.36), (2.37) are mainly due to the
values of the parameters of the function ρA(z). Additionally, we note that the deviations of A(t)
and EA(t) from x∗

A are more pronounced for the set of parameters (2.36) due to the fact that

x∗
A = 136.62 > x∗

A = 64.24.
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Fig. 3. Typical realizations of the population size A(t) for a set of parameters (2.37); the dotted

line denotes the value x∗A = 64.24.

Table 1. Interval estimates of the expectation EA(t) at the confidence level P = 0.99 for

parameter sets (2.36), (2.37)

t, day Parameter set 2.36 Parameter set 2.37

0 0 0

5 137.040± 0.699 68.277± 0.378

10 135.952± 0.714 62.860± 0.379

15 136.249± 0.689 64.993± 0.365

20 135.766± 0.699 64.495± 0.371

25 135.871± 0.682 64.427± 0.369

30 135.990± 0.685 64.589± 0.376

3. STOCHASTIC STAGE-DEPENDENTMODELOFTHE DEVELOPMENT OF
HIV-1 INFECTION IN THE LYMPH NODE

3.1. Notation and postulates of the model

We will study the initial stage of the development of HIV-1 infection in the lymph node,

which has penetrated a small number of viral particles V after infection of the individual at time

t = 0. To build the model, we used publications listed in the references of [11] (articles No. 7,
8, 11, 12, 26, 28, 29, 30), monograph [24] and articles [25], [26].

Denote the simulation interval by [0;Tmod] and assume that the duration of the interval is

[0;Tmod] is several days. Let us assume that the abbreviation LN means a lymph node. When

building the model, we will take into account only a few factors and events that reflect the

development of HIV-1 infection in the LN. We assume that the target cells for viral particles

are T0 cells – CD4+ T-lymphocytes at rest. T0 cells can come into contact with virus particles

V and become infected I0 cells. Cell I0 is susceptible to contact with antigen-presenting cells
A. Cell I0 after contact with cell A enters the phase G1 of the cell cycle and turns into cell I1.
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After completion of theG1 phase, the cell I1 enters the S−G2−M phases of the cell cycle and

turns into one of the cells I2, I3, I+. The I2 cell is capable of a single division, after which its
descendants turn into two productively infected cells I4 (cells that produce viral particlesV ). Cell
I3 stops at theG2 phase of the cell cycle and after a certain period of time turns into cell I4. Cell
I+ is capable of further reproduction, but it and its descendants are not capable of producing virus

particles V . The dynamics of the population of cells I+ and their descendants is not considered

in the model. Additionally, we note that cells I0 can arise from cells T0 due to contacts of cells

I4 with cells T0.

Let us assume that the number of cell populations T0 and antigen-presenting cells A in the

LN are constant and equal, respectively T ∗
0 > 0, A∗ > 0. Based on the short duration of the

simulation interval [0;Tmod], we will not take into account the decrease in the number of cell
populations I0, I1, I2, I3 due to natural aging and death due to virus infection. The decrease in
the population of I0 cells is due to their migration outflow from the LN and contacts withA cells,

leading to the transformation of I0 cells into I1 cells. Decrease in cell population I4 is caused by
the influence of the V virus particle production process that is destructive for these cells. The

decrease in the population of viral particles V is due to their natural mortality, migratory outflow

from the LN and absorption as a result of contacts with T0 cells.

The scheme of the model is shown in Figure 4, where the following notation is used:

• D – cells I0 and virus particles V that left the LN due to migration outflow, as well as

virus particles that died due to natural mortality;

• K – I4 cells that died under the influence of the viral particle production process;

• W – viral particles absorbed by infected T0 cells.

T0

γT0,V

γT0,I4

D

µI0

I0
γA,I0

I1
βI1

αI2

βI1 , αI3

βI1 , αI+

I3

I+

I2 I4

ωI2

ωI3

V

ηV

K

ωI4

W

γT0,V

D

µV

1

Fig. 4. Scheme of a stochastic model for the development of HIV-1 infection in a lymph node,

symbols in the text.

The number of populations indicated above at time t ∈ [0;Tmod] denoted by

X(t) =
(
I0(t), I1(t), I2(t), I3(t), I4(t), V (t)

)
. (3.1)

For each fixed t > 0, the components I0(t), I1(t), I2(t), I3(t), I4(t), V (t) in (3.1) are

non-negative integer random variables. Let us assume that at the initial time (t = 0) there are
virus particles in the LN and no cells of the Ik populations: V (0) = V0 = const > 0, Ik(0) = 0,
0 6 k 6 4.

Now we formulate the postulates of the model. Fix t and assume that xk = Ik(t), 0 6 k 6 4,
x5 = V (t) are non-negative integer constants. We accept that the events listed in the postulates
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H1–H7 occur independently of each other and independently of the events preceding the time

t. Moreover, without loss of generality let us assume that x0 > 0, x1 > 0, x4 > 0, x5 > 0. The
postulates H1–H7 are as follows.

H1. During the interval (t; t + h) some T0 cell contacts with some virus particle V with

probability γT0,V T
∗
0 x5h + o(h); the probability of contacts between two or more T0 cells and

viral particles V during (t; t+h) is equal to o(h); contact of T0 cells and viral particles V during

(t; t+ h) does not occur with probability 1− γT0,V T
∗
0 x5h+ o(h); γT0,V = const > 0. Contact

of T0 cell with virus particle V results in to the appearance of the I0 cell and the absorption of
the viral particle V .

H2. During the interval (t; t + h) some T0 cell contacts with some I4 cell with probability
γT0,I4T

∗
0 x4h+o(h); the probability of contacts of two or more cells T0 and I4 during (t; t+h) is

equal to o(h); cells T0 and I4 do not contact during (t; t+h) with probability 1−γT0,I4T
∗
0 x4h+

o(h); γT0,I4 = const > 0. Contact of T0 cell with I4 cell results in to the appearance of I0 cell.
H3. During the interval (t; t + h) some I0 cell leaves the LN (migration outflow) with

probability µI0x0h + o(h); the probability that the LN will leave more than one I0 cell for

(t; t + h) is equal to o(h); with probability 1 − µI0x0h + o(h) no I0 cell leaves the LN for

(t; t+ h); µI0 = const > 0.
H4. During the interval (t; t + h) some A cell contacts with some I0 cell with probability

γA,I0A
∗x0h+ o(h); the probability of contacts of two or more cells A and I0 during (t; t+ h) is

equal to o(h); cells A and I0 do not contact during (t; t+ h) with probability 1−γA,I0A
∗x0h+

o(h); γA,I0 = const > 0. Contact of A cell with I0 cell leads to the transition of I0 cell from the

G0 phase to the G1 phase of the cell cycle and transformation of I0 cell into I1 cell.
H5. During the interval (t; t + h) some I1 cell leaves the phase G1 of the cell cycle with

probability βI1x1h+ o(h); the probability that more than one I1 cell leaves the phase G1 of the

cell cycle in (t; t+ h) is equal to o(h); with probability 1− βI1x1h+ o(h) no I1 cell leaves the
phase G1 of the cell cycle in (t; t + h); βI1 = const > 0. A cell I1 that has completed its stay
in the G1 phase of the cell cycle, turns into one of the cells I2, I3, I+ respectively with fixed

probabilities

αI2 > 0, αI3 > 0, αI+ > 0, αI2 + αI3 + αI+ = 1.

H6. During the interval (t; t+h) some I4 cell produces one virus particle V with probability

ηV x4h + o(h); the probability of producing more than one virus particle V for (t; t + h) is
equal to o(h); with probability 1− ηV x4h+ o(h) for (t; t+ h) no virus particles are produced;
ηV = const > 0.

H7. During the interval (t; t + h) some virus particle V leaves the LN with probability

µV x5h+ o(h) (migration outflow with probability pV or natural mortality with probability 1−
pV ); the probability that more than one viral particle V leaves the LN in (t; t + h) is equal
to o(h); with probability 1 − µV x5h + o(h) no virus particle V leaves the LN for (t; t + h);
µV = const > 0, 0 < pV = const < 1.

For further description of the model we assume that the symbols I2, I3, I4 mean some or

arbitrarily chosen cell respectively of the population I2, I3, I4. The postulates H8–H10 are as
follows.

H8. Let the cell I2 appear in the population I2 at some point in time tI2 6 t. We assume

that the cell I2 leaves the population I2 at time tI2 +ωI2 and, as a result of division, forms two

cells of the population I4. The parameter ωI2 = const > 0 means the duration of the phases
S −G2 −M of the cell cycle for the cells of the population I2.

H9. Let the cell I3 appear in the population I3 at some point in time tI3 6 t. We assume that

the cell I3 leaves the population I3 at time tI3 +ωI3 and becomes a cell of the population I4.
The parameter ωI3 = const > 0 means the duration of stay of the cells of the population I3 in
the stopped phase G2 of the cell cycle.
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H10. Let the cell I4 appear in the population I4 at some point in time tI4 6 t.We assume that

the cell I4 dies at the moment of time tI4 +ωI4 due to the process of producing viral particles

that is destructive for the cells of the I4 population. The random variable ωI4 is distributed

over a finite time interval [a; b], 0 < a < b, with an absolutely continuous distribution function
FωI4

(s), FωI4
(a) = 0, FωI4

(b) = 1, and ωI4 does not depend on tI4 and on the behavior of

other individuals of the studied populations.

3.2. Families of unique cell types

Let us introduce families ΩI2(t), ΩI3(t), ΩI4(t) of unique cell types of populations I2, I3, I4,
t ∈ [0;Tmod]. In the following expressions, by A we mean a fixed population of cells from the

set I2, I3, I4. Taking into account the zero numbers of cell populations I2, I3, I4 at t = 0, we
assume that the variable NA(t) means a random variable that specifies the number of cells that

entered the population A during the time interval [0; t] ⊂ [0;Tmod], and NA(0) = 0.
Relying on the postulatesH8–H10 and using the constructions from section 2, we introduce

the family ΩA(t) of unique types of cells in the population A:

ΩA(t) =
{(

tA(j),ϕA(j)

)
: 0 < tA(j) 6 t, 1 6 j 6 NA(t)

}
, if NA(t) > 1, (3.2)

ΩA(t) = ∅, if NA(t) = 0. (3.3)

In formula (3.2), the unique types of cells in the population A are represented by pairs(
tA(j),ϕA(j)

)
, (3.4)

where j = 1, 2, . . . , NA(t) means the serial number of the next cell A entering the population

A, A(j) – cell A with sequence number of j. Set

0 < tA(1), tA(2), . . . , tA(j), . . . , tA(NA(t)) 6 t (3.5)

specifies the moments of arrival of cells in the population A up to the time t (inclusive). The
ϕA(j) component used in (3.4) is as follows. IfA = I2 thenϕA(j) = ωI2 , ifA = I3 thenϕA(j) =
ωI3 (the constants indicated in postulates H8, H9). For A = I4 we assume that ϕA(j) = ωI4 is

a random variable introduced in postulate H10.

Note that, in accordance with postulatesH1,H2,H4,H5,H8–H10, the moments (3.5) of the

appearance of cells in the populations I2, I3, I4 are due to random variables with an exponential

distribution containing various parameters. The residence times of cells in the populations I2,
I3 are given by constants, and the residence time of cells in the population I4 is given by the
distribution FωI4

. These distributions refer to distributions of absolutely continuous type. Based

on the structure of family elements (3.2), we have that all cells located in the populations I2, I3,
I4 at the current moment of time are distinguishable from each other in time tA(j) +ϕA(j).

By analogy with (2.9), we note that the family

Ω̂A(t) =
{(

tA(j),ϕA(j)

)
∈ ΩA(t) : tA(j) +ϕA(j) > t, 1 6 j 6 NA(t)

}
(3.6)

takes into account all cells of the population A existing at time t, and its size A(t) = |Ω̂A(t)| is
the cardinality of family (3.6).
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3.3. Recurrent relations for model variables

The dynamics of the populations I0, I1, I2, I3, I4, V will be described using a random process

H(t) =
(
X(t), Y (t),Ω(t)

)
, t ∈ [0;Tmod], (3.7)

where

Y (t) =
(
NI2(t), NI3(t), NI4(t), I+(t), Iout(t), Vout(t)

)
,

Ω(t) =
(
ΩI2(t),ΩI3(t),ΩI4(t)

)
. (3.8)

The components X(t), Y (t), Ω(t) used in (3.7), (3.8) are indicated in (3.1), (3.2), (3.3). In

addition, I+(t) is understood as an auxiliary variable reflecting the number of cells that entered
the population I+ during the time interval [0; t], 0 < t 6 Tmod, and I+(0) = 0. Auxiliary
variables Iout(t), Vout reflect, respectively, the number of cells I0 and virus particles V that left

the LN during the time interval [0; t], 0 < t 6 Tmod, and Iout(0) = Vout(0) = 0.
We construct sample functions of the process H(t) on the time interval [0;Tmod] using a

sequence of pairs

(tm, H(tm)), m = 0, 1, 2, . . . , t0 = 0, tm 6 Tmod. (3.9)

Based on the description of the model (sections 3.1, 3.2), we assume that the components of

H(t0) are as follows:

I0(t0) = I1(t0) = I2(t0) = I3(t0) = I4(t0) = 0, V (t0) = V0, (3.10)

NI2(t0) = NI3(t0) = NI4(t0) = 0, I+(t0) = 0, (3.11)

ΩI2(t0) = ∅, ΩI3(t0) = ∅, ΩI4(t0) = ∅. (3.12)

Let us construct recurrent relations for the sequence (3.9).

Put m = 0. Using (3.10)–(3.12), we introduce a random variable τ(0) with exponential

distribution, whose parameter

ρ(t0) = γT0,V T
∗
0 V (t0) + µV V (t0) > 0. (3.13)

Let us define

t1 = min
{
Tmod, t0 + τ

(0)
}
. (3.14)

We will preliminarily assume that

H(t) = H(t0), t ∈ [t0, t1]. (3.15)

If in (3.14) t1 = Tmod, then (3.15) completes the description of the process H(t).
Let in (3.14) t1 = t0 + τ

(0). Then some of the componentsH(t) are subject to change at the
point t = t1, namely:

with probability
γT0,V T

∗
0 V (t0)

ρ(t0)
:

I0(t1) = I0(t0) + 1 = 1; V (t1) = V (t0)− 1 = V0 − 1; (3.16)

with probability
µV V (t0)

ρ(t0)
:

V (t1) = V (t0)− 1 = V0 − 1, and additionally,

Vout(t1) = Vout(t0) + 1 = 1 with probability pV . (3.17)
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We fixm = 1, 2, 3, . . . and the components of the process H(tm):

H(tm) =
(
X(tm), Y (tm),Ω(tm)

)
. (3.18)

Formula (3.18) includes X(tm), Y (tm) whose components are non-negative integer constants.
Components

Ω(tm) = (ΩI2(tm),ΩI3(tm),ΩI4(tm)
)
,

used in (3.18) have the following structure. Let A ∈ {I2, I3, I4}. If NA(tm) > 1, then (3.18)
includes the family ΩA(tm) given by (3.2). Each pair

(
tA(j),ϕA(j)

)
in ΩA(tm) contains two real

positive constants. If NA(tm) = 0, then (3.18) includes family ΩA(tm) = ∅.
Using (3.18), we introduce the quantities τ(m), ψ

(m)
I2

, ψ
(m)
I3

, ψ
(m)
I4

. Denote:

ρ(tm) = γT0,V T
∗
0 V (tm) + γT0,I4T

∗
0 I4(tm) + µI0I0(tm)

+ γA,I0A
∗I0(tm) + βI1I1(tm) + ηV I4(tm) + µV V (tm). (3.19)

Let us assume that for ρ(tm) > 0 the quantity τ(m) has an exponential distributionwith parameter

ρ(tm). If ρ(tm) = 0, then we assume that τ(m) = +∞.

Let us define the quantities ψ
(m)
I2

, ψ
(m)
I3

, ψ
(m)
I4

using the following relations:

ψ
(m)
I2

= min
16j6NI2

(tm)
{tI2(j) +ϕI2(j) : tI2(j) +ϕI2(j) > tm}, if I2(tm) > 1, (3.20)

ψ
(m)
I2

= +∞, if I2(tm) = 0, (3.21)

ψ
(m)
I3

= min
16j6NI3

(tm)
{tI3(j) +ϕI3(j) : tI3(j) +ϕI3(j) > tm}, if I3(tm) > 1, (3.22)

ψ
(m)
I3

= +∞, if I3(tm) = 0, (3.23)

ψ
(m)
I4

= min
16j6NI4

(tm)
{tI4(j) +ϕI4(j) : tI4(j) +ϕI4(j) > tm}, if I4(tm) > 1, (3.24)

ψ
(m)
I4

= +∞, if I4(tm) = 0. (3.25)

Let us define

tm+1 = min
{
Tmod,ψ

(m)
I2

,ψ
(m)
I3

,ψ
(m)
I4

, tm + τ(m)
}
. (3.26)

We will preliminarily assume that

H(t) = H(tm), t ∈ [tm, tm+1]. (3.27)

Suppose that in (3.26) tm+1 = Tmod. Then (3.27) completes the description of the process

H(t). If, on the contrary, tm+1 < Tmod in (3.26), then some of the H(t) components change at
the point t = tm+1. Changes in the components of H(t) are reflected in the relations below.

Let in (3.26) tm+1 = ψ
(m)
I2

. Then

I2(tm+1) = I2(tm)− 1, I4(tm+1) = I4(tm) + 2, NI4(tm+1) = NI4(tm) + 2,

j = NI4(tm+1)− 1, k = NI4(tm+1), tI4(j) = tI4(k) = tm+1, (3.28)

ΩI4(tm+1) = ΩI4(tm) ∪
(
tI4(j),ϕI4(j)

)
∪
(
tI4(k),ϕI4(k)

)
,

where ϕI4(j), ϕI4(k) are independent random variables distributed over a finite interval [a; b]
with distribution function FωI4

.
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Let in (3.26) tm+1 = ψ
(m)
I3

. Then

I3(tm+1) = I3(tm)− 1, I4(tm+1) = I4(tm) + 1, NI4(tm+1) = NI4(tm) + 1,

j = NI4(tm+1), tI4(j) = tm+1, ΩI4(tm+1) = ΩI4(tm) ∪
(
tI4(j),ϕI4(j)

)
, (3.29)

where ϕI4(j) is a random variable distributed over a finite interval [a; b] with distribution

function FωI4
.

Let in (3.26) tm+1 = ψ
(m)
I4

. Then

I4(tm+1) = I4(tm)− 1. (3.30)

Let, finally, in (3.26) tm+1 = tm + τ(m). Changes in the H(t) components at the point
t = tm+1 are caused by the occurrence of one of the events whose intensities are presented in

formula (3.19). The changes are:

with probability
γT0,V T

∗
0 V (tm)

ρ(tm)
:

I0(tm+1) = I0(tm) + 1; V (tm+1) = V (tm)− 1; (3.31)

with probability
γT0,I4T

∗
0 I4(tm)

ρ(tm)
:

I0(tm+1) = I0(tm) + 1; (3.32)

with probability
µI0I0(tm)

ρ(tm)
:

I0(tm+1) = I0(tm)− 1, Iout(tm+1) = Iout(tm) + 1; (3.33)

with probability
γA,I0A

∗I0(tm)

ρ(tm)
:

I0(tm+1) = I0(tm)− 1, I1(tm+1) = I1(tm) + 1; (3.34)

with probability αI2

βI1I1(tm)

ρ(tm)
:

I1(tm+1) = I1(tm)− 1, I2(tm+1) = I2(tm) + 1, NI2(tm+1) = NI2(tm) + 1, j = NI2(tm+1),

tI2(j) = tm+1, ϕI2(j) = ωI2 , ΩI2(tm+1) = ΩI2(tm) ∪
(
tI2(j),ϕI2(j)

)
; (3.35)

with probability αI3

βI1I1(tm)

ρ(tm)
:

I1(tm+1) = I1(tm)− 1, I3(tm+1) = I3(tm) + 1, NI3(tm+1) = NI3(tm) + 1, j = NI3(tm+1),

tI3(j) = tm+1, ϕI3(j) = ω32 , ΩI3(tm+1) = ΩI3(tm) ∪
(
tI3(j),ϕI3(j)

)
; (3.36)

with probability αI+

βI1I1(tm)

ρ(tm)
:

I1(tm+1) = I1(tm)− 1, I+(tm+1) = I+(tm) + 1; (3.37)

with probability
ηV I4(tm)

ρ(tm)
:

V (tm+1) = V (tm) + 1; (3.38)

557

Mathematical Biology and Bioinformatics. 2023. V. 18.№ 2. doi: 10.17537/2023.18.543



PERTSEV, LOGINOV

with probability
µV V (tm)

ρ(tm)
:

V (tm+1) = V (tm)− 1, and additionally,

Vout(tm+1) = Vout(tm) + 1 with probability pV . (3.39)

We replacem withm+ 1 and return to relations (3.18)–(3.39).

3.4. Algorithm for numerical simulation

The modeling algorithm is similar to the algorithm given in Section 2.4. However, there are

also some differences. In particular, we use the constants ψ
(∞)
I2

, ψ
(∞)
I3

, ψ
(∞)
I4

in relations (3.21),

(3.23), (3.25) instead of the symbol «+∞», accepting that

Tmod < ψ
(∞)
I2

< ψ
(∞)
I3

< ψ
(∞)
I4

.

Similarly, if in formula (3.19) it turns out that ρ(tm) = 0, then we assume that

τ(m) = τ(∞) = const > ψ
(∞)
I4

.

Note that for a fixed tm the elements of each family ΩI2(tm) 6= ∅, ΩI3(tm) 6= ∅ sorted in

ascending order tI2(j)+ϕI2(j), tI3(j)+ϕI3(j), indicated in relations (3.20), (3.22). This property

significantly reduces the computational costs associated with finding the quantities ψ
(m)
I2

, ψ
(m)
I3

introduced in (3.20), (3.22).

3.5. An example of numerical simulation

The stochastic model contains a large number of parameters that affect the dynamics of

the X(t) components given by formula (3.1). For an analytical study of X(t), some methods
of the theory of branching random processes can be used [27], [28], but a detailed study is a

very difficult task. By analogy with Section 2.5, to plan computational experiments with the

model, we use a deterministic analogue of the stochastic stage-dependent model. To construct

the equations of a deterministic model and study its solutions, we will rely on the results of [10],

[11], [29].

In contrast to (3.1), we assume that continuous non-negative real functions

I0(t), I1(t), I2(t), I3(t), I4(t), V (t) (3.40)

describe the number of populations I0, I1, I2, I3, I4, V at time t ∈ [0;∞). The equations of the
deterministic model have the form:

dI0(t)

dt
= γT0,V T

∗
0 V (t) + γT0,I4T

∗
0 I4(t)− (µI0 + γA,I0A

∗)I0(t), (3.41)

dI1(t)

dt
= γA,I0A

∗I0(t)− βI1I1(t), (3.42)

dI2(t)

dt
= αI2βI1I1(t)− αI2βI1I1(t−ωI2) ∼ I2(t) =

∫ t

t−ωI2

αI2βI1I1(s)ds, (3.43)

dI3(t)

dt
= αI3βI1I1(t)− αI3βI1I1(t−ωI3) ∼ I3(t) =

∫ t

t−ωI3

αI3βI1I1(s)ds, (3.44)

I4(t) =

∫ t

0

(
1− FωI4

(s)
)(
2αI2βI1I1(t−ωI2 − s) + αI3βI1I1(t−ωI3 − s)

)
ds, (3.45)
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dV (t)

dt
= ηV I4(t)− (µV + γT0,V T

∗
0 )V (t), t > 0, (3.46)

I0(0) = 0, I1(t) = 0, t ∈ [−max{ωI2 ,ωI3}; 0], (3.47)

I2(0) = 0, I3(0) = 0, I4(0) = 0, V (0) = V0 > 0. (3.48)

The symbol «∼» in equations (3.43), (3.44) means the equivalence of differential and

integral equations, taking into account the initial data (3.47), (3.48). In equations (3.41)–(3.46)

the derivatives of variables at the point t = 0 are their right-hand derivatives. For the

subsequent study, it is important that the stochastic model and system (3.41)–(3.48) have the

same parameters and initial data.

Note that system (3.41)–(3.46) is linear, the variable I4(t) is expressed in terms of the

variable I1(t), and the variables I2(t), I3(t) are not explicitly included in the equations for the
rest of the model variables. We also take into account that 1 − FωI4

(s) = 0 for s > b > 0.
Therefore, to study the asymptotic behavior of the dynamics of variables (3.40), it suffices to

consider the system of equations

dI0(t)

dt
= γT0,V T

∗
0 V (t) + γT0,I4T

∗
0 Ĩ4(t)− (µI0 + γA,I0A

∗)I0(t), (3.49)

dI1(t)

dt
= γA,I0A

∗I0(t)− βI1I1(t), (3.50)

dV (t)

dt
= ηV Ĩ4(t)− (µV + γT0,V T

∗
0 )V (t), t > b, (3.51)

supplemented by initial data (3.47), (3.48) and recording the variable Ĩ4(t) in integral form:

Ĩ4(t) =

∫ b

0

(
1− FωI4

(s)
)(
2αI2βI1I1(t−ωI2 − s) + αI3βI1I1(t−ωI3 − s)

)
ds. (3.52)

System (3.49)–(3.51), taking into account (3.52), refers to systems of Wazhevsky equations

(positive systems) with delay. To study the solutions of the system (3.49)–(3.51), the properties

of matrices of a special kind can be used. Denote

ω∗
I4
=

∫ b

0

(
1− FωI4

(s)
)
ds, ϕI4 = (2αI2 + αI3)βI1ω

∗
I4
,

and introduce the matrix

Q =

 µI0 + γA,I0A
∗ −γT0,I4T

∗
0ϕI4 −γT0,V T

∗
0

−γA,I0A
∗ βI1 0

0 −ηVϕI4 µV + γT0,V T
∗
0

 .

System (3.49)–(3.51) has a trivial equilibrium

I0(t) ≡ 0, I1(t) ≡ 0, V (t) ≡ 0. (3.53)

Using the results of [29], we establish that the equilibrium (3.53) is asymptotically Lyapunov

stable if detQ > 0, which is equivalent to the inequality R0 < 1, where

R0 =
(2αI2 + αI3)ω

∗
I4
γA,I0A

∗(ηV γT0,V T
∗
0 + γT0,I4T

∗
0 (µV + γT0,V T

∗
0 )
)

(µI0 + γA,I0A
∗)(µV + γT0,V T

∗
0 )

. (3.54)
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The constant R0 given by formula (3.54) is called the base reproduction number. Since the

system (3.49)–(3.51) is autonomous, the asymptotic stability of the trivial equilibrium (3.53)

means also the exponential stability (3.53) [30]. Consequently, for R0 < 1, the components of
solution (3.40) after a certain transitional period will decrease exponentially.

If R0 > 1 (detQ < 0), then the behavior of the solution (3.40) on the interval [0;Tmod] will
essentially depend on V0. In addition, some model parameters are not included in the expression

forR0, for example, βI1 ,ωI2 ,ωI3 . Following the Euler method [30], we will look for a solution

to the system of equations (3.49)–(3.51) in the form

X(t) = (I0(t), I1(t), V (t)) = (c1, c2, c3)e
λt,

where c1, c2, c3 are some constants, λ is a complex number. It is easy to establish, that for

R0 > 1 among the roots λ of the characteristic equation there exists a real root λ0 > 0 [29].
This implies that for some initial data (3.47), (3.48) the solution of system (3.49)–(3.51) admits

asymptotically exponential growth.

Let us turn to the stochastic model. Next, in parentheses, the dimension of the model

parameters is indicated. Based on the [7], [8], [10], [11], we assume thatT ∗
0 = 5·108,A∗ = 2·106,

µI0 = 2.5 (day−1), βI1 = 0.8 (day−1),ωI2 = 0.75 (day), ηV = 150 (day−1), µV = 3.5 (day−1),

γT0,V = 1.2 · 10−9 (day−1), γT0,I4 = 2.5 · 10−7 (day−1). Additionally, we assume that pV = 0.7,
ωI3 = 1.25 (day), the random variable ωI4 is given by the expression ωI4 = 0.75 + 0.6 ξ2.5,
where ξ is uniformly distributed over the interval [0; 1], [a; b] = [0.75; 1.35] (day),ω∗

I4
= 0.921

(day). We will say that the reduced values of the parameters constitute the reference set.

Consider the dynamics of (3.1) on the interval [0;Tmod] = [0; 10] days for model parameters
that include parameters from the reference set and three additional sets:

αI2 = 0.45, αI3 = 0.25, γA,I0 = 7.3 · 10−9 (day−1), (3.55)

αI2 = 0.25, αI3 = 0.65, γA,I0 = 2.1 · 10−8 (day−1), (3.56)

αI2 = 0.25, αI3 = 0.65, γA,I0 = 4.5 · 10−8 (day−1). (3.57)

Using (3.54) we find that R0 = 0.9037, R0 = 2.5716, R0 = 5.4084 for the reference set of
parameters supplemented with sets (3.55), (3.56), (3.57), respectively.

The results of numerical simulation are presented in Figures 5, 6, 7 and in Tables 2, 3, 4.

Figures 5, 6, 7 show ten typical realizations of the auxiliary variable log10(XS(t) + 1) for the
parameter sets (3.55), (3.56), (3.57), respectively, and V0 = 10, 50, 100, where XS(t) — total

number of all X(t) components:

XS(t) = I0(t) + I1(t) + I2(t) + I3(t) + I4(t) + V (t).

Tables 2, 3, 4 contain interval estimates for the probability of the event P{XS(t) = 0} for fixed
t ∈ [0;Tmod] at the confidence level P = 0.99 [23]. These interval estimates were calculated
using a sample of N = 10000 realizations of the random process H(t).

It can be seen from Figure 5 that for R0 < 1, most of the n = 10 realizations of the variable
log10(XS(t)+1) go to zero in a fairly short period of time, while others, oscillating, are supported
at some level. It follows fromTable 2 that the probability P{XS(t) = 0} increases as t increases.

Figure 6 shows that for R0 = 2.5716 only a part of n = 10 realizations of the variable

log10(XS(t) + 1) vanishes in a short period of time (which is similar to the behavior of

realizations for parameter set (3.55)), however, the remaining realizations allow significant

growth. It can be seen from Table 3 that, with the set of parameters (3.56), the probability of the

event P{XS(10) = 0} is less than with the set (3.55).
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Table 2. Interval estimates of the probability of the event P {XS(t) = 0} at the confidence level
P = 0.99 and R0 = 0.9037 for the set of parameters (3.55)

t, day V0=10 V0=50 V0=100

0 0 0 0

0.1 0 0 0

0.4 0.0489± 0.0056 0 0

0.7 0.3542± 0.0123 0.0046± 0.0017 0

1.0 0.6595± 0.0122 0.1237± 0.0085 0.0151± 0.0031

5.0 0.9942± 0.0019 0.9730± 0.0042 0.9465± 0.0058

10.0 0.9972± 0.0014 0.9863± 0.0031 0.9738± 0.0041
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)
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1
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1
Fig. 5. Typical realizations of log10(XS(t) + 1) with R0 = 0.9037 for a set of parameters (3.55)

and (a) V0 = 10; (b) V0 = 50; (c) V0 = 100.

Table 4 shows that with an increase inR0 and V0, the probability of eradicating the infection

in the LN on the tenth day P{XS(10) = 0} significantly decreases compared to the option

(3.56). This is also confirmed by Figure 7, which demonstrates a significant increase in at least

half of the n = 10 realizations of log10(XS(t) + 1).
Tables 5, 6 present interval estimates of expectations EIout(t), EVout(t) at the confidence

level P = 0.99 [23] for t = 10 days in dependencies on V0 and R0. The interval estimates

EIout(t), EVout(t) are calculated from a sample of N = 10000 realizations of the processH(t).
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Table 3. Interval estimates of the probability of the event P {XS(t) = 0} at the confidence level
P = 0.99 and R0 = 2.5716 for the set of parameters (3.56)

t, day V0=10 V0=50 V0=100

0 0 0 0

0.1 0 0 0

0.4 0.0505± 0.0056 0 0

0.7 0.3486± 0.0123 0.0050± 0.0018 0

1.0 0.6483± 0.0123 0.1121± 0.0081 0.0133± 0.0029

5.0 0.9772± 0.0038 0.9015± 0.0077 0.8121± 0.0101

10.0 0.9792± 0.0037 0.9104± 0.0074 0.8290± 0.0099
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0.0

0.5

1.0

1.5

2.0

2.5

(a)

t, days

lo
g
1
0
(X

S
(t
)
+

1
)

1

0 2 4 6 8 10
0.0

1.0

2.0

3.0 (b)

t, days

lo
g
1
0
(X

S
(t
)
+

1
)

1

0 2 4 6 8 10
0.0
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S
(t
)
+

1
)

1
Fig. 6. Typical realizations of log10(XS(t) + 1) with R0 = 2.5716 for a set of parameters (3.56)

and (a) V0 = 10; (b) V0 = 50; (c) V0 = 100.

The simulation results given in Tables 5, 6 have the following interpretation. An increase in

R0 and V0 leads to a significant increase in the average number of I0 cells and V virions that

left the LN during the period [0; 10] days. An increase in the average number of I0 cells and V
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Table 4. Interval estimates of the probability of the event P {XS(t) = 0} at the confidence level
P = 0.99 and R0 = 5.4084 for the set of parameters (3.57)

t, day V0=10 V0=50 V0=100

0 0 0 0

0.1 0 0 0

0.4 0.0482± 0.0055 0 0

0.7 0.3420± 0.0122 0.0042± 0.0017 0

1.0 0.6406± 0.0124 0.1065± 0.0079 0.0112± 0.0027

5.0 0.9541± 0.0054 0.7964± 0.0104 0.6302± 0.0124

10.0 0.9548± 0.0054 0.7990± 0.0103 0.6340± 0.0124

0 2 4 6 8 10
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Fig. 7. Typical realizations of log10(XS(t) + 1) with R0 = 5.4084 for a set of parameters (3.57)

and (a) V0 = 10; (b) V0 = 50; (c) V0 = 100.

virions that left the LN means an increase in the spread of HIV-1 infection in the body of an

infected individual.

Concluding the section, we note that for any V0 > 0, the deterministic model (3.41)–(3.48)
does not allow eradication of HIV-1 infection in the LN on finite time intervals both for R0 < 1
and for R0 > 1. The calculations show that, within the framework of the stochastic model, it

is possible to eradicate HIV-1 infection in LN at finite time intervals. For given sets of model

parameters, the probability of eradication of HIV-1 infection in the LN on the time interval
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Table 5. Interval estimates of the expectation EIout(10) at the confidence level P = 0.99

depending on from V0 and R0

R0 V0=10 V0=50 V0=100

0.9037 5.347± 1.648 23.617± 3.229 50.015± 5.140

2.5716 40.014± 8.767 162.799± 17.713 320.057± 24.773

5.4084 297.835± 53.062 1437.796± 113.064 2924.625± 161.858

Table 6. Interval estimates of the expectation EVout(10) at the confidence level P = 0.99

depending on from V0 and R0

R0 V0=10 V0=50 V0=100

0.9037 8.418± 1.040 40.140± 2.037 81.951± 3.234

2.5716 31.465± 5.788 132.323± 11.682 261.038± 16.332

5.4084 211.903± 36.877 1022.588± 78.512 2077.983± 112.318

[0; 10] days is positive and takes values greater than 0.6 (see Tables 2, 3, 4). Therefore, the

stochastic model provides more meaningful information than the deterministic model regarding

the dynamics of the development of HIV-1 infection in the LN at the initial stage after infection

of the individual.

Let us additionally note one of the computational problems that arise in the stochastic model.

An increase in the size of the population I4 to the values I4(t) ∼ 106 leads to a significant

increase in the computational cost of finding the value ψ
(m)
I4

specified in (3.24). It requires the

involvement of methods for working with large data sets and parallel computing algorithms.

Another possible way to reduce the cost of calculating ψ
(m)
I4

is related to the modification of

postulate H10. Let us assume that postulate H10 uses the discrete distribution function FωI4
(s)

with a finite set of admissible values of the random variable ωI4 . In this case it is possible to

introduce several auxiliary families of unique types of cells in the population I4. Each auxiliary
family will be ordered by the time points at which the cells leave the I4 population. Setting
a unique type for the cell I4 and including it in one of the auxiliary families is simulated

immediately after the appearance of I4 in the population I4. The current value of ψ
(m)
I4

is either

kept unchanged, or the new value ψ
(m)
I4

is found after several comparison operations.

4. CONCLUSIONS

The article presents deterministic and stochastic approaches to the construction of

stage-dependent models that arise in immunological problems. An important aspect of

stochastic stage-dependent models is the inclusion of non-Markovian constraints on individuals.

Non-Markovian constraints on individuals are due to the use of rather arbitrary distribution

functions that describe the duration of stay of individuals in populations.

The examples given in the article show that the deterministic and stochastic approaches

complement each other and allow one to study the dynamics of variables in a continuous-discrete

formulation. The results of the analytical study of deterministic models make it possible to plan
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computational experiments with stochastic models based on the Monte Carlo method.

It should be noted that stochastic stage-dependent models are important for studying the

dynamics of small populations. Within the framework of stochastic stage-dependent models, it

is possible to estimate the probabilities of degeneration of populations and study the distribution

laws of the number of populations over finite time intervals depending on the variation of model

parameters. Fluctuations of variables can lead to the appearance of various variants of population

dynamics, which are impossible within the framework of deterministic models.

The approach proposed in the article can be generalized to the construction and study of

stage-dependent models that describe the dynamics of populations in problems of epidemiology,

ecology, and demography.

The article was prepared with the financial support of the Russian Science Foundation, project

23-11-00116.
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==================МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ =================

Стохастическое моделирование в иммунологии

на основе стадия-зависимой структуры

с немарковскими ограничениями для динамики

отдельных клеток и патогенов
Перцев Н.В., Логинов К.К.

Институт математики им. С.Л. Соболева Сибирского отделения
Российской академии наук, Новосибирск, Россия

Институт вычислительной математики им. Г.И. Марчука
Российской академии наук, Москва, Россия

Аннотация. В работе приведен системный подход к моделированию

реакции иммунной системы на вирусные инфекции. Разработаны и

численно реализованы две непрерывно-дискретные стохастические модели,

возникающие в математической иммунологии. Переменными моделей

являются целочисленные случайные величины, отражающие количество

индивидуумов (клеток и вирусных частиц), и наборы уникальных типов

индивидуумов, учитывающие текущее состояние и историю пребывания

индивидуумов в некоторых стадиях их развития. Законы распределения

длительности указанных стадий отличны от экспоненциального или

геометрического. Представлено вероятностное описание одно-стадийной

стохастической модели динамики численности некоторой популяции.

Сформулирована стохастическая модель развития ВИЧ-1 инфекции в

лимфатическом узле в начальный период после заражения здорового человека.

Приведен вычислительный алгоритм, основанный на методе Монте-Карло.

Каждая из стохастических моделей дополняется детерминированным

аналогом в форме интегральных и дифференциальных уравнений с

запаздыванием. Представлены результаты численного моделирования.

Ключевые слова: стадия-зависимая модель, немарковские ограничения для
индивидуумов, метод Монте-Карло, вычислительный эксперимент, иммунология,
ВИЧ-1 инфекция.
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