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Abstract. We use a Markov chain Monte Carlo (MCMC) method to quantify
uncertainty in parameters of the heterogeneous linear compartmental model of cell
population growth, described by a system of ordinary differential equations. This
model allows division number-dependent rates of cell proliferation and death and
describes the rate of changes in the numbers of cells having undergone j divisions.
The experimental data set specifies the following characteristics of the kinetics of
human T lymphocyte proliferation assay in vitro: the total number of live cells and
dead but not disintegrated cells and the number of cells divided j times. Our goal is to
compare results of the MCMC analysis of the uncertainty in the best-fit parameter
estimates with the ones obtained earlier, using the variance-covariance approach,
the profile-likelihood based approach and the bootstrap technique. We show that the
computed posterior probability density functions are Gaussian for most of the model
parameters and they are close to Gaussian ones for other parameters except one. We
present posterior uncertainty limits for the model solution and new observations.
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2. Introduction

The turnover of cell populations is a central process underlying the functioning of immune
system. Knowledge of the proliferation and death rates of the immune cells, e.g. T lymphocytes,
is required to understand and predict the efficiency of the system in health and disease. For
example, for HIV infection it was shown that small variations in parameter values of the
virus-host immune system have a large impact on the viral load set-point, and therefore, the
onset time of AIDS [1]. To evaluate the proliferative performance of lymphocytes various
labeling techniques, mathematical models have been proposed, including deterministic ODEs,
PDEs, as well as the stochastic branching process-based frameworks (see for a comprehensive
overview [2, 3]).

Assessment of the robustness of the mathematical model-based predictions of cell
systems dynamics and evaluation of the effect of drugs on lymphocyte dynamics (e.g.,
anti-PD1 treatment) require the computation of uncertainty for the parameter estimates. Two
complementary types of approaches, i.e., the frequentist- and the Bayesian frameworks, can be
used [4, 5] to quantify the uncertainties. The critical issue of which approach should one use in
a given problem was investigated in [6].

We have previously presented a systematic comparison of three methods belonging to
the class of the frequentist (maximum likelihood) methodology: the variance-covariance-, the
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likelihood-profile- and the bootstrapping (both non- and parametric) methods cf. [7]. These are
extensively used in quantitative modelling of cell population dynamics. During the last years
Markov chain Monte Carlo (MCMC) approach has became rather popular, see, e.g. [4, 8–10].
We apply a MCMC method to quantify uncertainty in parameters of the heterogeneous linear
compartmental model of the labeled cell population dynamics, formulated as system of ordinary
differential equations (ODEs). TheMCMCmethod, which we use, is implemented as theMatlab
toolbox [11], which can be downloaded at http://helios.fmi.fi/˜lainema/mcmc/ with
some examples.

Our goal is to compare results of the MCMC analysis with the ones obtained earlier,
using the variance-covariance approach, the profile-likelihood based approach and the bootstrap
technique, cf. [7]. We show that the computed posterior probability density functions are
Gaussian for most of the parameters and they are close to Gaussian ones for other parameters
except one. We present posterior limits of the model uncertainty and new observations.

In this section we briefly introduce a set of experimental data used for fitting parameters of
the mathematical model and the model itself, see for details [7].

CFSE* based tracking of the T-lymphocyte proliferation using flow cytometry is a powerful
experimental technique in immunology allowing for the tracing of labeled cell populations over
time in terms of the number of divisions cells undergone. The proliferation of CFSE labeled cells
is detected as progressive halving of cellular fluorescence with every cell division completed.
CFSE histograms give information on the fraction of lymphocytes that have divided once, twice,
etc. The percentage of T-cells having undergone from 1 up to 10 divisions can be quantified by
the flow cytometry.

During the first three days of culture there is a significant number of live cells in the well,
which are not lymphocytes. This implies that the dead cell data, at least initially, characterize
the death of heterogenous cell population, rather then the T lymphocyte population. Another
confounding aspect of the data is that the transfer of the peripheral blood mononuclear cells
(PBMCs) from physiological in vivo conditions into in vitro culture will cause a death of many
cells due to the change in milieu, temperature, plastic walls, etc. Notice that the specificity of
T-lymphocyte gating gets better with time, and from day 4 to day 7 the gate used covers almost
all live T cells as counted.

Table 1 presents the set of CFSE data that we analyzed. These data specify the following
characteristics of the kinetics of PHA†-induced T lymphocyte proliferation assay in vitro from
day 3 to day 7: (i) the total number of live cells, N(ti), (ii) the total number of dead but
not disintegrated cells, D(ti), and (iii) the number of cells divided j times, Nj(ti), i =
0, 1, . . . , 4, j = 0, 1, . . . , 7.

The heterogenous compartmental model of cell population turnover assumes that the per
capita proliferation and death rates of T-lymphocytes,αj , respectivelyβj , depend on the number
of divisions lymphocytes undergone. The rates of change of Nj(t) and D(t) with time are
represented by the set of ordinary differential equations

dN0

dt
(t) = −(α0 + β0)N0(t),

dNj

dt
(t) = 2αj−1Nj−1(t)− (αj + βj)Nj(t), j = 1, . . . , 7,

dD
dt
(t) =

∑7
j=0 βjNj(t)− δD(t).

(1)

*carboxyfluorescein diacetate succinimidyl ester
†phytohemagglutinin: A phytomitogen from plants that agglutinates red blood cells. The term is commonly used
specifically for the lectin obtained from the red kidney bean (Phaseolus vulgaris) which is also a mitogen that
stimulates T lymphocytes more vigorously than B lymphocytes
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Table 1. Quantitative dynamics of human peripheral blood T lymphocytes following stimulation
with PHA in vitro. At various times, CFSE distribution profiles of lymphocyte populations were
obtained by flow cytometry. The total numbers of live, N(ti), and dead, D(ti), lymphocytes,
and the distribution of lymphocytes with respect to the number of divisions they have undergone,
Nj(ti), j = 0, 1, . . . , 7, were followed from day 3 to day 7 at the indicated times ti, i = 0, 1, . . . , 4.
Adapted by permission from Springer, J. of Math. Biology. Computational analysis of CFSE
proliferation assay. T. Luzyanina, S. Mrusek, J. T. Edwards, D. Roose, S. Ehl, G. Bocharov.
Copyright 2006
Time Total Total
days number of number of Numbers of cells w.r.t. the number of divisions (j) they undergone
ti live cells dead cells Nj(ti)

N(ti) D(ti) 0 1 2 3 4 5 6 7
3 1.4× 105 1.6× 104 29358 22876 43372 39970 5208 98 14 0
4 2.5× 105 2.4× 104 16050 12600 22650 57025 96350 46950 2500 25
5 4.4× 105 6.0× 104 14476 14784 25344 58652 141460 156290 32076 440
6 5.0× 105 1.2× 105 13500 12150 24150 55000 137850 188950 69450 2150
7 5.7× 105 1.3× 105 13509 12198 21603 51927 140560 232160 96102 3420

The first term on the right of equations for Nj(t) represents the cell birth (influx from previous
compartment because of division), while the last term on the right represents cell loss (outflux
from the compartment) due to division and death. In the equation for dead cells, δ denotes the
specific (fractional) decay rate of dead lymphocytes due to disintegration and phagocytosis.

Assuming that the population sizes at time t0 are specified by initial data Nj(t0) andD(t0),
and the condition αj + βj ̸= αi + βi is fulfilled for i ̸= j, the solution of the model can be
expressed in the form

Nj(t) =

j∑
s=1

{
2sNj−s(t0)

j−1∏
m=j−s

αm

j∑
i=j−s

e−ci(t−t0)

j∏
k=j−s,k ̸=i

(ck − ci)
−1

}
+Nj(t0)e−cj(t−t0),

j = 0, 1, . . . 7, t ≥ t0,

D(t) =
7∑

j=0

βj

{
j∑

s=1

2sNj−s(t0)

j−1∏
m=j−s

αm

j∑
i=j−s

e−ci(t−t0) − e−δ(t−t0)

δ− ci

j∏
k=j−s,k ̸=i

(ck − ci)
−1

}

+
7∑

j=0

βjNj(t0)
e−cj(t−t0) − e−δ(t−t0)

δ− cj
+D(t0)e−δ(t−t0), t ≥ t0,

(2)

where cj := αj + βj . The availability of the closed-form solution to the model reduces the
computational treatment of the model-driven data analysis, i.e., the parameter estimation and
uncertainty evaluation.

The paper is structured as follows. In Sect. 2 we briefly present results on parameter
estimation of the model and their confidence intervals, see for details [7]. Section 3 contains
some useful information about theMCMC toolboxwhichwe use. In Sect. 4 we apply theMCMC
code to system (1) and present results. Section 5 contains conclusions.
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3. Model parameters estimation and their confidence intervals

To estimate the division and death rates of cells, we fit a model to the given data set by
maximizing the likelihood that the data did arise from the model. Applying the maximum
likelihood approach to our problem, we assume that (i) the observational errors, i.e. the residuals
defined as a difference between observed and model-predicted values, are normally distributed,
(ii) the errors in observations at successive times are independent, (iii) the errors in the
components of the state vector are independent, (iv) the variance of observation errors (σ2)
is the same for all the state variables and observation times.

Under these conditions, the log-likelihood function specifying the probability of observing
the given data set is given by

ln(L(p;σ)) = −0.5
(
nd ln(2π) + nd ln(σ2) + σ−2Φ(p)

)
, (3)

where nd is the total number of scalar measurements and Φ(p) is an ordinary least-squares
function

Φ(p) =
4∑

i=1

( 7∑
j=0

(N i
j −Nj(ti;p))2 + (Di −D(ti;p))2

)
, (4)

were p is the vector of estimated parameters.
The problem of maximizing the likelihood function is equivalent to that of minimizingΦ(p),

provided that σ2 is assigned the value

σ∗2 =
1

nd

Φ(p∗), (5)

which follows from the optimality condition ∂(ln(L(p∗;σ)))/∂σ2 = 0. Here p∗ is the parameter
vector, which gives a minimum to the ordinary least-squares function.

The experimental data and the solution of the model corresponding to the best-fit parameter
estimates are shown in Fig. 1. Table 2 presents the best-fit values of the parameters of model (1),
estimated using the data in Table 1, and computational estimates of 95% confidence intervals
for them approximated by the variance-covariance, profile-likelihood and bootstrap methods,
see for details [7].

Parameter estimation results obtained using the ordinary least-squared approach. The death
rates appear to be close to zero (ranging between 10−15 and 10−11, not shown in Table 2) until the
division age of cells gets three and after that they start to increase. The prediction of no death in
cells, that have made six and more divisions, might rather reflect that the data for corresponding
populations are not informative enough for reliable estimation of the death rate. Biologically,
these small values would imply zero death rate of the proliferating cells with division number
age from zero to three, six and seven. The CFSE data set presented in Table 1 does not ensure a
reliable estimation of the division rate for cells which have undergone more than six divisions.
Indeed, the best-fit value of α7 is very high. Because this parameter affect only the kinetics of
cells which have made seven divisions, the unrealistic values might be attributed to a relatively
small contribution of the experimental data, characterizing the number of cells having done
seven divisions, to the objective function. Therefore we can reduce the vector of estimated
parameters to the following components

p = [α0, α1, α2, . . . , α7, β4, β5, δ]. (6)
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Fig. 1. Experimental data (◦) and the best-fit solution of the model (1) (solid lines). Adapted by
permission fromSpringer, J. ofMath. Biology. Computational analysis of CFSE proliferation assay.
T. Luzyanina, S. Mrusek, J. T. Edwards, D. Roose, S. Ehl, G. Bocharov. Copyright 2006.

Table 2. Computational estimates of 95% confidence intervals for the best-fit parameter values
of the heterogenous model (1) approximated by the variance-covariance, profile-likelihood and
bootstrap methods. Adapted by permission from Springer, J. of Math. Biology. Computational
analysis of CFSE proliferation assay. T. Luzyanina, S. Mrusek, J. T. Edwards, D. Roose, S. Ehl, G.
Bocharov. Copyright 2006

p Best-fit Estimates of 95% confidence intervals
hr−1 values variance-covariance profile likelihood bootstrap method

method method
α0 1.31× 10−2 [0.79, 1.8]× 10−2 [0.94, 1.8]× 10−2 [0.51, 2.1]× 10−2

α1 3.10 ×10−2 [2.1, 4.1]× 10−2 [2.4, 4.0]× 10−2 [2.0, 4.2]× 10−2

α2 5.21 ×10−2 [4.1, 6.4]× 10−2 [4.4, 6.3]× 10−2 [3.8, 6.7]× 10−2

α3 4.95 ×10−2 [4.2, 5.7]× 10−2 [4.4, 5.6]× 10−2 [4.1, 5.8]× 10−2

α4 2.94 ×10−2 [2.1, 3.7]× 10−2 [2.4, 3.5]× 10−2 [2.3, 3.6]× 10−2

α5 7.28 ×10−3 [0.24, 1.2]× 10−2 [0.42, 1.3]× 10−2 [0.32, 1.1]× 10−2

α6 2.26 ×10−2 [0, 5.5]× 10−2 [0.09, 5.8]× 10−2 [0, 4.8]× 10−2

α7 1.37 [0, 6.8] [0.016,∞) [0, 2.7]
β4 7.12× 10−3 [0, 1.8]× 10−2 [0, 1.51]× 10−2 [0, 1.7]× 10−2

β5 2.69× 10−2 [1.2, 4.2]× 10−2 [1.0, 3.8]× 10−2 [1.4, 3.9]× 10−2

δ 4.52× 10−2 [2.7, 6.4]× 10−2 [2.9, 6.0]× 10−2 [2.9, 6.1]× 10−2
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The general approach to characterize the reliability of parameter estimations is based upon
evaluating their confidence intervals (CIs). There exist three major approaches to evaluate
CIs: the technique based on the variance-covariance matrix [12], the profile-likelihood-based
method [13] and the bootstrap method [14].We applied these methods and assessed their relative
performance by computing approximations to 95% confidence intervals for the estimated
parameters, see Table 2, cf. [7]. During the last years statistical MCMC methods have been
also advanced [5] to quantify uncertainty in model parameters. Below we apply the MCMC
method to model (1).

4. MCMC toolbox

In statistics, MCMC methods are a class of algorithms for sampling from probability
distributions based on constructing a Markov chain that has the desired distribution as its
equilibrium distribution [6]. The state of the chain after a large number of steps is then used
as a sample of the desired distribution. The quality of the sample improves as a function of the
number of steps. TheMetropolis-Hastings (MH) algorithm, implemented in the MCMC toolbox
which we use [11], is a MCMC method, it generates a random walk using a proposal density
and a method for rejecting proposed moves.

Since the MCMC Matlab toolbox [11] does not have a Manual, below we present some
useful information collected from the code and the examples which can be downloaded with the
code.

Proposal and prior distribution for the model parameters. The proposal distribution is the
conditional probability of proposing a state xn+1 given xn. The MCMC toolbox [11] uses
multivariate Gaussian proposal distribution. The covariance matrix of the proposal distribution
can be adapted during the simulation according to adaptive schemes described in [11, 15]. If
the Hessian matrix can be easily computed and the best-fit values of the model parameters are
known, we can compute the covariance matrix of the model parameters which is used (once)
in the code as the initial covariance for the Gaussian proposal density for the MCMC samples.
Otherwise, the initial covariance of the parameters is set to the prior covariance which is assigned
by the user or is equal to infinity (as default in the code). In the latter case the initial proposal
covariance for the parameter pi is computed as (pi × 0.05)2. The default prior distribution in
the code is the Gaussian one. The user can assign prior means and standard deviations for all
parameters. If they are not assigned, NaN, respectively, infinity are used as default. The user
can also define his own prior distribution function.

How a new sample of the MCMC chain is computed in the code. First, a new candidate for
all parameters is sampled from the Gaussian proposal. Then, using these values, new prior values
are computed using Gaussian prior distribution (as default) with prior means and variances, or
using a prior distribution, given by the user. These prior values are then checked whether they
satisfy certain criterion(s). If so, then the new candidate is accepted and saved in the MCMC
chain. If no, a certain algorithm (delayed rejection) is applied. If, after this, the new point is still
not accepted, the previous sample is saved in the chain again (so a set of parameters is repeated
twice in the chain).

Prior probability distribution for data. If the best-fit parameter values are known, we can
compute and pass to the code the initial error variance. The user can also pass to the code the
prior error variance. If the initial error variance is not defined, then it is taken equal to the prior
error variance. If the latter is not defined, then the initial error variance is set by the code to 1
(default) and the prior variance is set equal to the initial error variance. If user sets the option
”to update the error variance”, then, for each sample of the chain, the variance is sampled as
conjugate priors specified by the prior variance of the inverse gamma distribution, with the
”noninformative ” defaults equal to the prior values. Otherwise, the error variance is not updated
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and the corresponding predictive envelope is not computed.
Posterior distribution. In Bayesian statistics, the posterior probability of a random event or an

uncertain proposition is the conditional probability that is assigned after the relevant evidence
is taken into account. Similarly, the posterior probability distribution is the distribution of an
unknown quantity, treated as a random variable, conditional on the evidence obtained from an
experiment or survey.

The output of the MCMC code includes, in particular, the posterior means and standard
deviations of the parameters and a chain for the error variance (and, hence, error standard
deviation). The predictive posterior distribution of the model: we can calculate the model fit
for a randomly selected subset of the chain and calculate the predictive envelope of the model
(e.g., 50%, 90%, 95%, 99% posterior regions).

One way to assess the accuracy of the posterior estimates is by calculating the Monte Carlo
error for each parameter. This is an estimate of the difference between the mean of the sampled
values (which we are using as our estimate of the posterior mean for each parameter) and the
true posterior mean. As a rule of thumb, the simulation should be run until the Monte Carlo error
for each parameter of interest is less than about 5% of the sample standard deviation.

Burn-in samples and acceptance rate. The Markov chain is started from an arbitrary initial
value and the algorithm is run for many iterations until this initial state is ”forgotten”. These
samples, which are discarded, are known as burn-in. The remaining set of accepted values (of
the model parameters) represent a sample from the target (posterior) distribution.

The MH algorithm works best if the proposal density matches the shape of the target
distribution from which direct sampling is difficult. If a Gaussian proposal density is used,
the variance parameter σ2 has to be tuned during the burn-in period. This is usually done by
calculating the acceptance rate, which is the fraction of proposed samples that is accepted in a
window of the last N samples. The desired acceptance rate depends on the target distribution,
however it has been shown theoretically that the ideal acceptance rate for a one dimensional
Gaussian distribution is abut 50%, decreasing to abut 23% for anN -dimensional Gaussian target
distribution.

If σ2 for parameters is too small the chain will mix slowly, i.e., the acceptance rate will be
high but successive samples will move around the space slowly and the chain will converge only
slowly to the posterior distribution. On the other hand, ifσ2 is too large the acceptance rate will be
very low because the proposals are likely to land in regions ofmuch lower probability density, the
chain will converge very slowly. Ideally, the proposal distribution should have similar ”shape”
to posterior (target) distribution.

Kernel density. Kernel density estimation is one of the widely used non-parametric
estimation techniques for estimating the probability density function of a random variable. For a
univariate random variableX with unknown density f(x), if we draw a sample of n independent
and identically distributed observations x1, x2, . . . , xn, the kernel density estimator is given
by [16]

f̂(x) =
1

n

n∑
i=1

1

h
K
(x− xi

h

)
where h is the bandwidth that controls the amount of smoothness, andK(·) is the kernel function
which is usually chosen to be a symmetric density function. In the MCMC code [11], the kernel
function is the normal (Gaussian) density function.

What can do the MCMC toolbox. The MCMC code can do the following:

• Produce MCMC chain for user written -2*log(likelihood) and−2 ∗ log(prior) functions.
Thesewill be equal to sum-of-squares functions when usingGaussian likelihood and prior.

• In case of Gaussian error model, sample the model error variance from the inverse Gamma
382
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distribution.

• Do plots and statistical analyses based on the chain, such as basic statistics, convergence
diagnostics, chain timeseries plots, 2 dimensional clouds of points, kernel densities, and
histograms.

• Calculate densities, cumulative distributions, quantiles, and random variates for some
useful common statistical distributions without using Mathworks own statistics toolbox.

5. Results of the MCMC code applied to model (1)

The user has to define, at least, two functions, to run the MCMC code: the one to compute
the model solution and another one to compute the objective function. Since the model solution
in our case is given analytically (2), we compute the objective function (sum-of-squares) by (4).
If a minimum of the objective function Φ(p∗) is computed (e.g. by the fminsearch code), the
estimate for the error variance σ2 is obtained as

mse =
Φ(p∗)
nd − np

, (7)

where, in our case, nd = 36 is the number of the data points and np = 11 is the number of the
estimated parameters. In our case mse ≈ 5.07 × 107 and

√
(mse) ≈ 7.12 × 103. Then, we

compute the covariance of the estimated parameters which is further used as the initial proposal
covariance for the MCMC samples,

tcov = 2×H−1(p∗)×mse, (8)

where H is the Hessian matrix,

H(p) :=
{ ∂

∂p

}{ ∂

∂p

}T

Φ(p) ∈ Rnp×np , Hk,m(p) =
∂2

∂pk∂pm
Φ(p), (9)

with Hk,m being the (k,m)-th element of H . Note that the Hessian H(p∗) is not singular here
since we set all ”problematic” parameters β to zero. We use an exact Hessian H(p∗) since we
have a code to compute analytically the first and second derivatives of the objective with respect
to the estimated parameters.

We set the number of simulations to 20000, allow automatic sampling and estimation of the
error variance, set the initial covariance for the Gaussian proposal density of theMCMC sampler
to tcov and we use the best-fit parameter values as the starting point for the MCMC chain. As
a result of the MCMC simulation run, we obtain a structure that contains some information
about the run and matrices that contain the actual MCMC chains for the parameters and for
the observation error variance. Figure 2 shows the one-dimensional parameter chains. We used
the positivity condition on the parameter values. The acceptance rate is about 81%. One can
conclude that after the burn-in period (not shown) all the parameters, except α7, converge.

For convergence diagnostics we computed the Geweke criterion. Geweke’s MCMC
convergence diagnostic is a test for equality of the means of the first a% and last b%of aMarkov
chain [17]. We take the default values, a = 10% and b = 50%, as Geweke suggested. The
corresponding code gives vectors z, c ∈ Rnp ,

z = [−10, 6.7,−6.7,−0.30,−0.56, 2.5, 0.91,−197,−5.6,−2.9,−5.7]× 10−2,

c = [0.915, 0.946, 0.946, 0.998, 0.996, 0.980, 0.993, 0.049, 0.955, 0.977, 0.955].
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Fig. 2. One dimensional parameter chains. Curves indicate the mean value of the parameters.
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Table 3.MCMC statistics, number of simulations (samples) ia equal to 20000
parameter mean std MC error geweke
α0 0.014058 0.0026337 0.00010853 0.91519
α1 0.032698 0.0050817 0.00022892 0.9464
α2 0.052512 0.0055983 0.00024943 0.94594
α3 0.05023 0.0033669 0.00015214 0.99762
α4 0.029199 0.0032575 0.00014038 0.99551
α5 0.00963 0.0036393 0.00016458 0.9799
α6 0.037262 0.022393 0.0010226 0.99274
α7 9.3479e+008 2.5245e+009 5.1731e+008 0.048973
β4 0.0082371 0.0043493 0.00017712 0.95503
β5 0.024307 0.0070822 0.00030413 0.97689
δ 0.042339 0.010258 0.00043598 0.9549

The order of the elements of these vectors corresponds to the order of parameters in the
vector p (6). The meaning of these vectors is the following. If the chain converges, then zn tends
toN (0, 1) as n → ∞, where n is the number of samples and the values of a and b are fixed. We
can use this result to test the null hypothesis of equal location, which, if it is rejected (i.e., |Zn|
is large), indicates that the chain has not converged by time n0 [17]. We observe that the largest
element of the vector z corresponds to the parameters α7, which, as we obtained earlier, has a
very large or infinite 95% confidence interval. In Fig. 3 we plot Geweke’s diagnostic z, which
shows how this diagnostic satisfiesN (0, 1) for all parameters, except α7. These plots are given
by the code. We observe that the diagnostic z is closer to N (0, 1), except the parameter α7.

In the code, the vector c is computed as

c = 2× (1− nordf(abs(z))),

its value is given in Table 3 (last column). Here nordf is the standard normal (Gaussian)
cumulative distribution. Ideally, all components of the vector c should be equal to 1. Again,
the vector c shows that its element corresponding to α7 is equal to 0.049, what implies that α7

does not converge.
Table 3 presents mean and standard deviation (std) from the chain, the Monte Carlo error

estimates (MC error) and a simple test (geweke) for a null hypothesis that the chain has
converged. Note that the Monte Carlo error for each parameter, except α7, is about 5% of the
corresponding standard deviation or less.

Some of the estimates of 95% confidence intervals, computed using the mean value and the
standard deviation (see Table 3), are more close to ones computed by the variance-covariance
approach, while others are close to the ones computed by the profile-likelihood method and by
the parametric bootstrap technique:

α0 ∈ [0.94, 1.9]× 10−2, α1 ∈ [2.2, 4.3]× 10−2, α2 ∈ [4.1, 6.4]× 10−2,

α3 ∈ [4.3, 5.7]× 10−2, α4 ∈ [2.6, 3.6]× 10−2, α5 ∈ [0.21, 1.7]× 10−2,

α6 ∈ [0, 8.3]× 10−2, α7 ∈ [0, 61.3]× 109, β4 ∈ [0, 1.7]× 10−2,

β5 ∈ [0.97, 3.9]× 10−2, δ ∈ [2.1, 6.4]× 10−2.
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Fig. 4. The computed posterior probability density functions of the model parameters. The best-fit
values of the model parameters, cf. Table 2, are indicated by (∗), the means of the parameter chains
computed by MCMC are indicated by (⋄). The CIs computed by the variance-covariance method
(solid lines), the profile-likelihood approach (dashed lines) and by the parametric bootstrapping
(dot-dashed lines) are depicted (see Table 2).

Figure 4 shows the posterior probability density functions of the model parameters,
computed from the chain values using kernel density estimator. Note that a very small left
part of density curves for the parameters α6,α7,β4 is located to the left from zero. In this
figure, we also plotted, for each parameter, its best-fit value (cf. Table 2) with the corresponding
CIs computed by the variance-covariance method, the profile-likelihood approach and by the
parametric bootstrapping (see Table 2) and its mean value computed from the MCMC chain. We
observe that the best-fit values of the parameters are very close to the mean values or coincide
with the means.

Examples of two dimensional marginal posterior distributions for some of the model
parameters are presented in Fig. 5. In this way we can directly examine parameter correlation.
Note that all pairs of correlated parameters are depicted in this figure: (α5,α6), (αi,βi, i = 4, 5),
(αi−1,βi, i = 4, 5), and (α6,β5), (β4,β5), (β5, δ). This correlation is explained by the structure
of the model (the model is linear and some parameters αi and βi compensate each other) and by
a small number of the experimental data, especially for last generations of cells. As an example,
in this figure are given non-correlated parameters: (α0,αi, i = 3, ..., 7), (α3, β5), (α5,β4) and
(β4, δ).

Figure 6 shows the histogram of the chain for the error posterior standard deviation. Recall
that we obtained, using (7),

√
(mse) ≈ 7.12× 103. Themse value was used as the initial error

variance to start the MCMC run.
Figure 7 presents (a) the best-fit of the given data using the posterior means of the model

parameters and (b) the 95% posterior probability limits of the model solution uncertainty
and predicted observations. Note that data for N7 are not fitted. This is because there is no
convergence for α7. Note also that, when plotting all the predictive envelopes in the same scale,
we observe almost the same size of the envelopes (not shown).
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Fig. 5. Two dimensional marginal posterior distributions for some of the model parameters. The
computed chain consists of 20000 samples, only every 10th sample is plotted.
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Fig. 6. The histogram of the chain for posterior error standard deviation.
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Fig. 7. Plots of the data-fitted model solutions together with the uncertainties. Circles present the
data. The solid lines show the median fits (the posterior means of the model parameters). Darker
areas correspond to the 95% posterior probability limits of the model uncertainty, while the lighter
areas present the same uncertainty level in predicting new observations. The time scale is shifted
by 72 hours. The variables y(1), y(2), . . . , y(9) imply N0, N1, . . . , N7, D.
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Fig. 8. Solid curves indicate the posterior probability density functions of the model parameters
computed from the MCMC chain using kernel density estimate. Dashed curves indicate normal
probability density functions computed using the best-fit parameter estimates and their variances,
cf. Table 2.
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Fig. 9. Solid curves indicate the posterior probability density functions of the model parameters
computed from the MCMC chain using kernel density estimate. Dashed curves indicate
normal probability density functions computed using the best-fit parameter estimates and their
variances, cf. Table 2.

We also investigated, fixing the non-identifiable parameter α7 at some value, whether the
posterior probability density functions are close to the Gaussian ones. Figure 8 shows, for each
model parameter, except α7, (a) the posterior probability density functions computed from
the MCMC chain using kernel density estimate and (b) normal probability density functions
computed using the best-fit parameter estimates and their variances, cf. Table 2. We do not show
here results for α7 since, as we obtained above, the chain for this parameter does not converge
and hence the MCMC estimation results for this parameter are not reliable. We see that the
densities computed by the two methods are centered at the same location for all parameters. The
estimated densities almost coincide for all parameters except α5,α6,β4. This implies that the
posterior densities are Gaussian for most of the model parameters and they are close to Gaussian
ones for the parameters α5,α6,β4.

As Fig. 5 indicates, if we fix parameters α6, β5 and α7, then we can expect that correlation
between the remaining model parameters will be minimal. So we fix these three parameters at
their best-fit values, cf. Table 2, and compute the posterior probability density for the remaining
parameters, see Fig. 9. We observe that now the posterior density for α5 and β4 are much closer
to the Gaussian one.

6. Conclusions

The statistical MCMC method, being implemented as the Matlab toolbox [11], allows one
to get much more information about the model behavior and the data: the posterior probability
density functions of the model parameters and the posterior probability limits of the model
uncertainty and uncertainty in predicting new observations. It also allows one to get easily two
dimensional marginal posterior distributions for the model parameters and in this way directly
examine parameter correlation.

As our particular example on the cell population dynamics model shows, some of the
confidence intervals computed by the MCMC method are more close to ones computed
by the variance-covariance approach, while others are close to the ones computed by the
profile-likelihood method and by the bootstrap technique.
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Our experience with theMCMC code suggests that an efficient methodology to proceed with
the application of the MCMC analysis should consist of the following stages

1 compute the minimum of the data mismatch expressing objective function by, e.g., the
fminsearch code, and

2 use the MCMCmethod to compute (i) posterior probability distributions for the estimated
parameters and (ii) the 95% posterior probability limits for the model parameters
uncertainty and predicted observations.

In this setting (i) we sequentially compute the initial estimate for the error variance (mse) to start
the code with and (ii) thus, avoid the need the Hessian matrix because the code creates an initial
proposal covariance for the MCMC method, using the best-fit values of the model parameters.
Overall, the use of MCMCmethod for the identification of the cell growth models allows one to
comprehensively explore the information about the model parameters and in parallel to express
the uncertainty in the estimates without the need for a prior analysis of the model parameter
identifiability. The method greatly extends the set of characteristics on immune cell turnover
which can be extracted from the labelling assays using ODE models.
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