====ИНФОРМАЦИОННЫЕ И ВЫЧИСЛИТЕЛЬНЫЕ ======== =====ТЕХНОЛОГИИ В БИОЛОГИИ И МЕДИЦИНЕ==========

УДК 612.825.5+004.925

Локализация спектральных особенностей энцефалограмм при психических расстройствах Панкратова Н.М.^{*}, Рыкунов С.Д., Бойко А.И., Молчанова Д.А., Устинин М.Н.

Институт математических проблем биологии РАН – филиал «ФИЦ Институт прикладной математики им. М.В. Келдыша Российской академии наук», Пущино, Россия

Аннотация. Рассматривается вопрос изменения спектральных и пространственных характеристик энцефалограмм, наблюдаемых при психических расстройствах. Представлен систематизированный обзор оценке спектра источников литературы, включающий статьи по патологической активности и их расположения в мозге. Рассматривается, прежде всего, спонтанная активность головного мозга в различных состояниях, которая различается по пространственной локализации, а также по когерентности между областями мозга. Представленные в статье работы показывают, что ритмическая активность головного мозга при психических расстройствах отличается от нормальной в нескольких частотных диапазонах. Предложен метод для точного количественного анализа этой активности по данным энцефалографии. Вопрос о пространственном расположении источников патологической активности является ключевым при изучении работы мозга и решается с помощью различных методов локализации. Результаты локализации отображаются на анатомической схеме мозга или на магнитно-резонансной томограмме субъекта, в результате чего строятся гипотезы о нейрофизиологическом механизме изучаемой патологии. Простейшим из методов определения местоположения какой-либо патологии сравнительный анализ можно считать спектров энцефалограмм, наблюдаемых в различных каналах регистрации, распределенных по скальпу или над ним. Такая локализация является чисто качественной и позволяет сделать только самые приблизительные выводы. Метод, предложенный в данной работе, опирается на преобразование Фурье многоканальных данных энцефалографии и локализацию отдельных спектральных компонент. Это позволяет детально изучать те или иные частотные признаки патологической активности мозга и отвечать на вопросы об их связи с анатомией мозга.

Ключевые слова: энцефалография, спектральный анализ, патологическая активность головного мозга человека, психические расстройства

введение

Современные методы исследования электрической активности головного мозга, такие как электроэнцефалография (ЭЭГ) и магнитная энцефалография (МЭГ), позволяют определить и локализовать искомую активность, в том числе и патологическую, с высокой точностью. Записи электромагнитных полей с высокой частотой дискретизации и сотнями каналов могут предоставить сведения о работе как

<u>Математическая биология и биоинформатика.</u> 2018. Т. 13. № 2. doi: 10.17537/2018.13.

^{*}natpan1974@mail.ru

коры, так и глубоких структур мозга. При этом анализ функции мозга осложняется двумя обстоятельствами: одно из них – синхронная природа нейронной активности мозга, заключающаяся в том, что в каждый момент времени происходят миллионы функциональных нейронных событий. Другое состоит в сложности морфологии нейронных популяций, которая приводит к генерации различных конфигураций электромагнитных полей при ИХ активации [1]. Исторически наиболее распространенный подход к решению этих проблем состоял в том, что рассматривалась стимулированная мозговая активность (вызванные или наведенные потенциалы), или же рассматривались характеристики спонтанной электромагнитной активности, относящейся к глобальным событиям, таким как различные фазы сна или бодрствования [2].

данной работе рассматривается вопрос изменения спектральных В И пространственных характеристик ЭЭГ и МЭГ при психических расстройствах. Обзор литературы включает статьи, посвященные спектральным и пространственным электрической активности головного мозга при различных характеристикам психических расстройствах. Кроме того, для нормального функционирования мозга необходимо взаимодействие, интегративная деятельность различных мозговых структур. Уровень такого взаимодействия оценивается интеграцией сигналов ЭЭГ и МЭГ из разных областей мозга посредством когерентного анализа. Таким образом, работы, в которых указываются когерентные особенности электрической активности при психических расстройствах, также представляют интерес. Прежде всего, представляет интерес спонтанная активность головного мозга в различных состояниях. Об актуальности ее исследования говорится, в частности, в работе [3], где авторы отмечают, что их исследования и исследования, на которые они ссылаются, определённо показывают, что ритмическая активность головного мозга при психических расстройствах отличается от нормальной в нескольких частотных диапазонах, но чёткой картины и понимания происходящих изменений, которое можно бы было использовать в диагностических целях, пока нет.

В работах [4-6] предложен и реализован новый метод анализа энцефалограмм. Метод основан на детальном математическом моделировании индивидуального мозга, как совокупности функциональных элементов, генерирующих измеряемые физические поля. Такое моделирование подразумевает, что в каждой точке пространства головы с заданным шагом формируется система элементарных пробных источников, затем строится набор всех возможных паттернов поля, измеряемого в данном приборе. Количество этих паттернов равно 10⁸ при пространственном разрешении в 1 миллиметр. Параметрами модели являются амплитуды элементарных источников, а задача их идентификации решается по данным энцефалографии с помощью предложенного авторами метода точного анализа в пространстве «частота-паттерн». Метод позволяет представить результаты многоканальных измерений в виде набора большого числа (10⁵-10⁶) элементарных когерентных осцилляций. Было найдено, что электрическая активность мозга полностью описывается индивидуальным набором осцилляций, каждая из которых характеризуется инвариантным паттерном поля, амплитудой и частотой. Идентификация параметров модели состоит в выборе схожих паттернов поля и соответствующей амплитуды по результатам попарного сравнения пробных паттернов поля с паттернами, полученными в эксперименте. Это требует большого объема вычислений (10¹³-10¹⁴ сравнений) и позволяет построить детальную функциональную модель мозга со следующим разрешением: по времени – 1 миллисекунда; по пространству – 1 миллиметр; по частоте – тысячные доли герца.

Этот метод позволяет по данным МЭГ или ЭЭГ строить спектры активности, источники которой находятся в той или иной области головного мозга, так называемые

парциальные спектры [7]. Важным преимуществом предложенного подхода является точность и обратимость всех преобразований. Это позволит пристально изучить активность определённой структуры мозга, что особенно актуально при изучении различных патологий.

СПЕКТРАЛЬНЫЕ ОСОБЕННОСТИ ЭНЦЕФАЛОГРАММ, НАБЛЮДАЕМЫЕ ПРИ ПСИХИЧЕСКИХ РАССТРОЙСТВАХ

При анализе спектральных характеристик энцефалографических данных в данной работе используется традиционное разделение электрической активности головного мозга на отдельные ритмы – полосы частот, соответствующие выделенным диапазонам спектра:

- дельта-ритм от 0.5 до 4 Гц;
- тета-ритм от 4 до 8 Гц, в норме на спектре этого диапазона отсутствует пик, локализация источников тета-активности в контрольных группах определяется в затылочной коре и височной зоне [3];
- альфа-ритм от 8 до 13 Гц, в норме генерируется в затылочной и теменной части мозга [3], на спектре определяется пик на 9–11 Гц;
- мю-ритм от 8 до 13 Гц, отличается от альфа-ритма формой колебаний и локализацией источников в сенсорно-моторную кору головного мозга [8];
- бета-ритм от 13 до 35 Гц;
- гамма-ритм выше 35 Гц.

В биологической психиатрии расстройства условно можно разделить на следующие группы:

- органические психические расстройства;
- расстройства шизофренического ряда;
- расстройства аутистического спектра;
- аффективные психические расстройства.

В данном разделе на основе литературных данных рассматриваются особенности спектров энцефалограмм, наблюдаемые при различных психических расстройствах.

Органические психические расстройства

К расстройствам органическим психическим относятся заболевания, характеризующиеся устойчивым нарушением работы головного мозга, которое может черепно-мозговой быть следствием травмы, эпилепсии. алкогольной или наркотической зависимости. Сюда относят агрессию, задержку психического развития у детей и подростков, сексуальные нарушения. Перечисленные отклонения сопровождаются патологическими изменениями на ЭЭГ передних отделов коры головного мозга пациентов [9]. Так, у пациентов с агрессией и аутоагрессией наблюдается дисфункция передних отделов коры, чаще левого полушария, которая сопровождается увеличением мощности активности дельта-диапазона в лобных отведениях с левосторонней асимметрией [9–12]. При аутоагресии снижена мощность альфа- и бета- активностей в лобных и затылочных областях обоих полушарий, а также в центральных, височных и теменных отделах правого полушария [10]. У детей с задержкой психического развития наблюдается замедление базовой ритмической активности, также присутствует лобная дисфункция [9]. Кроме того, недостаточно развита функциональная специализация областей и полушарий коры головного мозга, связи между областями формируются с отставанием, при этом наблюдается повышение когерентности. Сексуальные нарушения часто связывают с правосторонней височной эпилепсией. У пациентов с парафилией определяют поражение лимбических структур мозга, преимущественно правого полушария [9], также наблюдается увеличение межполушарной когерентности между височными областями коры [9, 13].

Патология	Спектральные особенности	Пространственные особенности	Когерентность	
Агрессия	Увеличение мощности дельта- ритма [9,10]	Лобные отведения с левосторонней асимметрией [9,10].	Снижена когерентность между различными структурами мозга [10]	
	Снижение мощности альфа-ритма [10]	В лобных и затылочных областях обоих полушарий; в центральных, височных и теменных отделах правого полушария [10]		
	Снижение мощности бета-ритма [10]	В лобных областях обоих полушарий; в центральных и теменных отделах правого полушария [10]		
Задержка психического развития	Замедление базовой ритмической активности [9]	Лобная дисфункция [9]	Повышена [9]	
Сексуальные нарушения	Увеличение мощности спектров дельта- и тета-диапазонов [13]	Центральная париетальная затылочная область [13]	Повышена между задневисочными и височными отведениями. Снижена в лобных и центральных отведениях во всех частотных диапазонах [13]	
	Увеличение мощности спектров бета- диапазона [13]	Лобно-центральные области [6]		

Таблица 1. Спектральные и пространственные особенности энцефалограмм при органических психических расстройствах

Аффективные психические расстройства

Аффективные психические расстройства называют также расстройствами настроения. При таких расстройствах наблюдается либо чрезмерное проявление естественных эмоций, либо апатичное отношение к окружающему миру. Сюда можно отнести депрессию [14], депрессивно-маниакальный синдром, тревожные состояния [12, 15], в том числе панические атаки.

Наиболее диагностически значимыми для психических расстройств оказались тета и гамма диапазоны. Синдром навязчивых состояний вызывает изменения в низких частотах бета-ритма и гамма-диапазоне. В работе [3] представлена локализация токовых источников активности тета- и альфа-диапазонов. Авторы показывают особенности спектров и локализации источников активности при рассматриваемых патологиях в сравнении.

О диагностической значимости тета-ритма говорится и в других работах [15–18]. Замечено [16], что тета-ритм генерируется в медиальной префронтальной коре. Считается, что генерация тета-ритма связана с эмоциями, восприятием эмоций, рабочей памятью, кодированием эпизодической памяти, с мониторингом и обработкой

информации об ошибках [16]. В работе [18] тета-ритм предлагается в качестве биомаркера как экспериментально индуцированного стресса, так и хронического стресса, поскольку эти состояния сопровождаются усилением мощности тета ритма в префронтальной коре, в которой определяют дефицит нейрокогнитивности. Вместе с тем наблюдается усиление высокочастотного бета-ритма в задних сенсомоторных областях неокортекса. Что касается альфа-активности, наблюдается её фронтальная асимметрия [12, 15] и гипоактивация левой фронтальной доли, которую при стрессе связывают с повышением риска развития расстройств психики [20]. Авторы работы [15] также предполагают, что при стрессе повышается риск формирования таких психических расстройств, как депрессия, тревожные состояния и др. Показано, что при продолжительном и/или интенсивном воздействии стрессора может произойти «срыв» адаптационной системы организма, что влечёт за собой психосоматические расстройства.

Патология	Спектральные особенности	Пространственные особенности	Когерентность	
	Усиление тета-ритма [15,18]	Префронтальная кора [15,18]	п	
Стресс	Альфа-ритм: ослабление низких (8- 10Гц) частот и усиление мощности 10-13Гц [21,22]	Фронтальная асимметрия [21]	повышение связи между амигдалой и дорсальным стриатумом. Снижение связи между амигдалой и гиппокампом	
	Усиление бета-ритма [15]	Задние сенсомоторные области коры [15]	[23].	
	Увеличение мощности тета-ритма [3]	Височная доля, больше справа [3]	Снижение когерентности между лобными областями [14]	
Депрессия	Пик альфа-ритма в более низких частотах [3]	Медиальная затылочная кора, левая височная доля [3]		
Синдром навязчивых состояний	Увеличение мощности тета-ритма [3]	Орбитофронтальная кора, височная доля с обеих сторон [3]		

Таблица 2. Спектральные и пространственные особенности энцефалограмм при аффективных психических расстройствах

Расстройства шизофренического ряда

Существует предположение, что шизофрения и другие психические расстройства возникают из-за периодически возникающей таламокортикальной пароксизмальной так называемой таламокортикальной дизритмии [3. 24, 25]. активности, Высокочастотная кратковременная (1-1.5 с) пароксизмальная активность также была найдена на экспериментальных данных при патологии тиннитус – субъективные слуховые ощущения, возникающие в ухе или голове без очевидных раздражителей – субъективный шум [26]. Источник этой активности определяется в слуховой зоне коры головного мозга. Для проверки гипотезы о таламокортикальной дизритмии, как решающем факторе при шизофрении и других психических расстройствах, авторы работы [3] сравнили результаты пространственно-временного анализа записей спонтанной активности головного мозга контрольной группы и пациентов с синдромом навязчивых состояний, глубокой депрессии и расстройств шизофренического ряда. Для записи электрической активности головного мозга использовалась магнитная энцефалография. Спектральный анализ показал отличие спектров от контроля для пациентов всех рассматриваемых групп.

Изменения спектральных и пространственных характеристик основных ритмов электрической активности мозга при шизофрении отмечается и в других работах. Многие исследователи отмечают характерное увеличение спектральной мощности низкочастотной активности, дельта- и тета-ритмов [27–29] в лобных отделах, что коррелирует с указанием на лобную дисфункцию при данной патологии. При этом активность на более высоких частотах снижена [30, 31]. Решение обратной задачи показывает расположение источников альфа активности в разных областях головного мозга [3], тогда как у контрольной группы источники альфа-ритма преобладают в теменно-затылочной части [3, 30]. В работах [29, 31] показано снижение спектральной мощности бета активности, которое более выражено также в лобных областях.

Патология	Спектральные особенности	Пространственные особенности	Когерентность
шизофрения	Увеличение мощности тета-ритма [3].	Локализация [3,30]: медиальная вентральная префронтальная кора, височная доля	Высокая внутриполушарная и межполушарная [27]
	Низкий уровень альфа-ритма [3].	Источники в различных областях мозга [3].	Снижение лобной когерентности [27]
	Снижение мощности бета-ритма [29].	Снижение мощности альфа- и бета-ритмов выражено в лобных областях [31].	Нарушение синхронизации [29]
	Снижение гамма- активности [3,9].		Ослабление/ отсутствие межполушарных связей в гамма-диапазоне [9]

Таблица 3. Спектральные и пространственные особенности энцефалограмм при психических расстройствах шизофренического ряда

Расстройства аутистического спектра

В работе [32] также делается вывод о связи патологических расстройств с нарушением таламокортикальных связей. Считается, что в этом случае возникает увеличение высокочастотной активности в отделах коры, в частности, у больных аутизмом. Интересно различие альфа- и мю-активностей, приведённое в работах [8, 28]. Эти активности совпадают по частотному диапазону (8–13 Гц), но имеют различную локализацию и отличаются по спектральной мощности. Мю-ритм, как правило, наблюдают в сенсорно-моторной коре и связывают с произвольными движениями. Также он может наблюдаться в отсутствие движений, но при их представлении в воображении, подготовке к ним или при наблюдении за чьим-то движением. Это говорит о связи между восприятием действия и его выполнением. Существует гипотеза, связывающая аутизм с нарушением работы системы зеркальных нейронов (Mirror Neuron System – MNS). Однако функция MNS до сих пор не ясна. Авторы работы [33] в обзоре, посвящённом MNS, делают вывод, что эта система активируется при выполнении какого-либо действия и при наблюдении за другими людьми, выполняющими такое же действие. Таким образом, нарушения в работе системы MNS вызывают коммуникативные проблемы и недостаток социальных взаимодействий. Авторы работы [8] считают, что мю-активность является физиологическим индикатором работы системы MNS. В работе исследуется дисфункция системы зеркальных нейронов с помощью МЭГ и анализа изменения мю-активности у пациентов с аутизмом в сравнении с этой же активностью у здоровых людей при

выполнении тех же заданий, а именно при наблюдении за простыми действиями и при их выполнении. Работы [28,34] посвящены проблеме аутизма у детей. Показано изменение спектральных характеристик во всех диапазонах и отличие локализации источников активности от нормы. Эти особенности отражены в таблице 4. Аутизм авторы связывают с дисфункцией височной коры правого полушария, а также редукцией связей между миндалиной и височной извилиной. Показано снижение активности в диапазонах тета- и альфа-частот, при этом наблюдается увеличение спектральной мощности на частотах выше 20 Гц. Межполушарные различия, в норме характерные для частот выше 20 Гц, нивелируются [28, 34]. Найдено снижение уровня интеграции миндалины, островка и лимбической системы, что препятствует эмоциональному восприятию и развитию ребёнка [28]. Увеличение мощности спектра в гамма диапазоне показано и в работе [35]. Когерентность у больных детей также изменена по сравнению с контрольной группой. В гамма диапазоне у больных детей средняя когерентность не изменяется при когнитивной нагрузке. В тета-диапазоне показатель средней когерентности в фоне снижен и не отличается по отведениям, но достоверно увеличивается при счёте в правом лобном полюсном отведении [34].

Патология	Спектральные особенности	Пространственные особенности	Когерентность
аутизм	Снижение тета ритма [34].	В задних отделах [28,34].	Снижена [28,34], в фоне не различается по отведениям [34].
	Снижение альфа- ритма [28].	Отличия в левых задних отделах [28,34].	Снижена [28]
	Увеличение	Отличия в левых передних	Повышена [28],
	мощности спектра	отделах.	в гамма диапазоне при
	частот выше 20 Гц	Межполушарные различия	когнитивной нагрузке не
	[28,34].	отсутствуют [28].	изменяется [31].

Таблица 4. Спектральные и пространственные особенности энцефалограмм при психических расстройствах аутистического спектра

В работе [32] сопоставлены представленные выше гипотезы о природе аутизма. А именно, популярная гипотеза об аутизме как следствии нарушения работы системы зеркальных нейронов и гипотеза о возникновении аутизма из-за дисфункции височной коры правого полушария и редукции связей между миндалиной и височной извилиной. Автор делает вывод, что последняя гипотеза противоречит представлению об аутизме с позиции первой. Это еще одно подтверждение актуальности точного количественного подхода к локализации спектральных компонент, предложенного ранее [4, 5, 6]. Этот подход позволит внести ясность в вопрос о том, какие структуры мозга затронуты при данной патологии.

МЕТОДЫ ЛОКАЛИЗАЦИИ СПЕКТРАЛЬНЫХ ОСОБЕННОСТЕЙ ЭНЦЕФАЛОГРАММ

Вопрос о пространственном расположении источников патологической активности является ключевым при изучении работы мозга и решается с помощью различных методов локализации. Результаты локализации отображаются на анатомической схеме мозга или на магнитно-резонансной томограмме субъекта, в результате чего строятся гипотезы о нейрофизиологическом механизме изучаемой патологии. Простейшим из методов определения местоположения какой-либо патологии можно считать сравнительный анализ спектров электроэнцефалограмм или магнитоэнцефалограмм, наблюдаемых в различных каналах регистрации (отведениях), распределенных по скальпу или над ним. Предполагается, что спектральная мощность патологической активности в каких-то каналах может возрастать или снижаться по сравнению со средней мощностью, наблюдаемой в остальных каналах. Выводы о локализации патологии делаются на основе геометрической близости канала, выделяющегося по мощности, к той или иной доле или структуре мозга. Такая локализация является чисто качественной и позволяет сделать только самые приблизительные выводы.

В современных нейрофизиологических исследованиях широко применяются математические методы анализа данных, такие, как спектральный анализ, метод независимых компонент, метод главных компонент и другие. С помощью этих методов выделяется карта поля, по которой решается обратная задача энцефалографии - локализация источника поля. Для решения обратной задачи магнитоэнцефалографии или электроэнцефалографии используются методы многомерной оптимизации и различные модели источника. Результат решения обратной задачи совмещается с магнитно-резонансной томограммой субъекта, что позволяет сделать выводы о нейрофизиологическом источнике данной карты поля.

Рассмотрим методы локализации, использованные в магнитоэнцефалографическом исследовании таламо-кортикальной дизритмии [3]. Магнитные энцефалограммы 30 субъектов с различными психическими расстройствами и 18 субъектов из контрольной группы были записаны на 148-канальном магнитометре. Анализ усредненных спектров показал достоверное отличие здоровых от больных и позволил определить спектральные диапазоны, в которых наблюдались эти отличия. Для каждой магнитоэнцефалограммы был выполнен анализ независимых компонент [36] и выделены 148 независимых компонент (по числу каналов). Каждой независимой компоненте соответствует своя карта магнитного поля и свой источник. Таким образом, возникла проблема выбора для локализации небольшого числа независимых компонент, которые могли бы интерпретироваться как патологические. В работе [3] эта проблема решается с привлечением дополнительных соображений, таких как общая конфигурация спектра, дипольная структура поля, и другие. Отметим, что найденные 148 независимых компонент полностью описывают входную магнитоэнцефалограмму, то есть всю активность мозга во время эксперимента. Процедура выбора из них патологических независимых компонент в работе [3] опирается на эвристические гипотезы и не является математически строгой. По картам поля выделенных патологических независимых компонент решались обратные задачи в модели распределенных источников, при этом накладывалось следующее ограничение: решения могли располагаться только на поверхности коры модельного мозга. Были пространственные распределения предположительных патологических найдены источников.

Недавно был предложен новый метод анализа многоканальных данных, основанный на преобразовании Фурье и анализе когерентности. Метод был предложен в [4] для изучения различных сложных систем и был применен к исследованию спонтанной активности головного мозга в [5, 6]. Этот метод позволяет реконструировать функциональную структуру мозга по данным энцефалографии. Рассмотрим основные положения этого метода на примере магнитной энцефалографии. Магнитный энцефалограф одновременно записывает значения магнитного поля в *K* каналах в дискретные моменты времени, выдавая набор дискретных экспериментальных векторов $\{\mathbf{b}_k\}$, k=1,...,K. Эти векторы являются дискретным представлением набора непрерывных функций $\{\tilde{B}_k(t)\}$ – магнитной индукции в *K* каналах. Благодаря высокой частоте регистрации (порядка килогерца), векторы $\{\mathbf{b}_k\}$ представляют непрерывные функции с достаточной точностью. Многоканальное преобразование Фурье вычисляет

329

набор спектров для функций $\{\tilde{B}_k(t)\}$ с помощью дискретного преобразования Фурье [37]:

$$a_{nk} = \frac{2}{T} \int_{0}^{T} \tilde{B}_{k} \cos\left(2\pi\nu_{n}t\right) dt, \ b_{nk} = \frac{2}{T} \int_{0}^{T} \tilde{B}_{k} \sin\left(2\pi\nu_{n}t\right) dt, \tag{1}$$

где a_{nk}, b_{nk} – коэффициенты Фурье для частоты v_n в канале с номером k, и $v_n = \frac{n}{T}$, n = 1, ..., N, $N = v_{max} T$, где v_{max} – наибольшая из интересующих частот. Все спектры вычисляются для полного времени измерений T, что важно для выявления детальной частотной структуры системы. Шаг по частоте составляет $\Delta v = v_n - v_{n-1} = \frac{1}{T}$, таким образом, частотное разрешение напрямую определяется временем регистрации. Имея точный многоканальный спектр, можно выполнить обратное преобразование Фурье:

$$B_k(t) = \sum_{n=1}^{N} \rho_{nk} \sin\left(2\pi \nu_n t + \varphi_{nk}\right), \ \nu_n = \frac{n}{T}, \ N = \nu_{\max} T$$
(2)

где $\rho_{nk} = \sqrt{a_{nk}^2 + b_{nk}^2}, \quad \phi_{nk} = atan 2(a_{nk}, b_{nk}), \quad и \quad a_{nk}, b_{nk} - коэффициенты Фурье, вычисленные в (1).$

Точность прямого и обратного преобразования Фурье, использованного в нашем подходе, можно проиллюстрировать тем фактом, что относительное отклонение между входной МЭГ и восстановленной преобразованием (2) составляет меньше, чем 10^{-20} . Для того, чтобы исследовать подробную частотную структуру мозга, мы восстанавливаем многоканальный сигнал на каждой частоте и анализируем полученные функции. Восстановленный многоканальный сигнал частоты v_n во всех каналах:

$$B_{nk(t)} = \rho_{nk} \sin\left(2\pi\nu_n t + \varphi_{nk}\right),\tag{3}$$

где $t \in [0, T_{v_n}], T_{v_n} = \frac{1}{v_n}$ – период этой частоты. Если $\phi_{nk} = \phi_n$, тогда формула (3)

описывает когерентную многоканальную осцилляцию и может быть записана как:

$$B_{nk(t)} = \rho_{nk} \sin(2\pi\nu_n t + \phi_n) = \hat{\rho}_{nk} \rho_n \sin(2\pi\nu_n t + \phi_n), \qquad (4)$$

где
$$\rho_n = \sqrt{\sum_{k=1}^{K} \rho_{nk}^2}$$
 – амплитуда, а $\hat{\rho}_{nk} = \frac{\rho_{nk}}{\rho_n}$ – нормированный паттерн осцилляции.

В многоканальных измерениях пространство определяется расположением каналов. Если временная зависимость не зависит от номера канала k, то получено разделение переменных времени и пространства. Использование нормированных паттернов дает возможность определить пространственную структуру источника по решению обратной задачи, и эта структура остается постоянной за все время осцилляции. Временная зависимость поля определяется функцией $\rho_n \sin(2\pi v_n t + \phi_n)$, общей для всех

каналов, т.е. этот источник осциллирует как единое целое на частоте v_n .

Теоретические основы для реконструкции статичных функциональных сущностей (нейронных цепей, или источников) были изложены в [4, 5]. Эта реконструкция основывается на детальном частотном анализе и выделении частотных компонент с высокой когерентностью и похожими паттернами.

Алгоритм массового анализа в пространстве частота-паттерн может быть записан следующим образом:

1. Преобразование Фурье входного многоканального сигнала.

2. Обратное преобразование Фурье – восстановление сигнала на каждой частоте.

3. Оценка когерентности на каждой частоте. Если когерентность близка к 1, то использовать паттерн и частоту, как когерентную осцилляцию, уравнение (4).

4. Если восстановленный сигнал состоит из нескольких смещенных по фазе когерентных осцилляций, то выделить эти осцилляции:

5. Применить алгоритм слепой идентификации второго порядка (SOBI, [38]) для восстановления временных рядов в уравнении (3);

6. Выбрать ненулевые компоненты;

7. Применить прямое преобразование Фурье к каждой из выбранных компонент и вычислить амплитуду, нормированный паттерн и фазу, используя уравнение (4).

После четвертого шага этого анализа, исходный многоканальный сигнал будет представлен в виде суммы элементарных когерентных осцилляций:

$$B_k(t) \cong \sum_{n=1}^{N} \sum_{m=1}^{M} D_{mn} \hat{\rho}_{mnk} \sin\left(2\pi \nu_n t + \varphi_{mn}\right), \ \nu_n = \frac{n}{T}, \ N = \nu_{\max} T$$
(5)

где M – максимальное количество когерентных осцилляций, выделенных на частоте v_n . Каждая элементарная осцилляция характеризуется частотой v_n , фазой ϕ_{mn} , амплитудой D_{mn} , нормализованным паттерном $\hat{\rho}_{mnk}$, а ее источником является функциональная сущность, обладающая постоянной пространственной структурой.

Метод функциональной томографии реконструирует структуру системы путем анализа набора нормированных паттернов \hat{p}_{mnk} . Функциональная томограмма показывает трехмерную карту распределения энергий, производимых источниками, находящимися в заданной точке пространства. Для построения функциональной томограммы, исследуемая область пространства разбивается на $N_x \times N_y \times N_z$ элементарных кубических ячеек с центрами в \mathbf{r}_{ijs} . Длина ребра куба выбирается в соответствии с желаемой точностью и вычислительными возможностями; при изучении мозга она составляет 1–3 мм. Для того, чтобы вычислить энергию, производимую всеми источниками, расположенными в центре ячейки, строится набор из *L* тестовых диполей \mathbf{Q}_{ijsl} . Магнитная индукция, порождаемая тестовым диполем Q_{ijsl} , расположенном в точке r_{ijs} , регистрируется датчиком с номером *k*, находящимся в точке с координатами r_k и имеющим направление n_k ; *k*-ая компонента ρ_{ijslk}^{ir} тестового паттерна *ijsl* определяется по модели токового диполя в сферическом проводнике [39]:

$$\rho_{ijslk}^{tr} = \frac{\mu_0}{4\pi F^2} \left(\left(\left(\boldsymbol{\mathcal{Q}}_{ijsl} \times \boldsymbol{r}_{ijs} \right) F - \left(\boldsymbol{\mathcal{Q}}_{ijsl} \times \boldsymbol{r}_{ijs}, \, \boldsymbol{r}_k \right) \nabla F \right), \boldsymbol{n}_k \right), \tag{6}$$

где $F = a(ar_k + r_k^2 - (\mathbf{r}_{ijs}, \mathbf{r}_k)),$ $\nabla F = (a^2 r_k^{-1} + a^{-1}(\mathbf{a}, \mathbf{r}_k) + 2a + 2r_k)\mathbf{r}_k - (a + 2r_k + a^{-1}(\mathbf{a}, \mathbf{r}_k))\mathbf{r}_{ijs}, \ \mathbf{a} = \mathbf{r}_k - \mathbf{r}_{ijs}, \ \mathbf{a} = |\mathbf{a}|, \ \mathbf{r}_k = |\mathbf{r}_k|,$ $|n_k| = 1, \mu_0 = 4\pi \cdot 10^{-7}.$

Нормированный паттерн вычисляется как

$$\hat{\boldsymbol{\rho}}_{ijslk}^{tr} = \frac{\boldsymbol{\rho}_{ijslk}^{tr}}{\left|\boldsymbol{\rho}_{ijsl}^{tr}\right|}, \, \boldsymbol{\Gamma}\boldsymbol{\beta}\boldsymbol{e} \, \left|\boldsymbol{\rho}_{ijsl}^{tr}\right| = \sqrt{\sum_{k=1}^{K} \left(\boldsymbol{\rho}_{ijslk}^{tr}\right)^{2}} \tag{7}$$

Все тестовые диполи, находящиеся в точке \mathbf{r}_{ijs} , лежат в одной плоскости, ортогональной к \mathbf{r}_{ijs} , так как результат векторного произведения $Q_{ijsl} \times \mathbf{r}_{ijs}$ является ненулевым только для таких диполей. Тестовые диполи покрывают круг в L_{max} направлениях с шагом в $360/L_{max}$ градусов, как правило, достаточным является $L_{max} = 8$.

Используя формулу (7), для каждого из диполей вычисляется набор нормированных паттернов:

$$\{\boldsymbol{\rho}_{ijsl}^{tr}\}, i = 1, \dots, N_x; j = 1, \dots, N_y; s = 1, \dots, N_z; l = 1, \dots, L_{\max}$$
(8)

При изучении мозга для каждого испытуемого используется несколько миллионов тестовых паттернов. Эти паттерны порождаются тестовыми диполями, равномерно распределенными в пространстве локализации.

Для каждого из нормированных паттернов $\hat{\rho}_{mn}$ вычисляется следующая функция, определяющая различие между этим паттерном и одним из тестовых паттернов:

$$\chi(i,j,s,l) = \sum_{k=1}^{K} \left(\hat{\rho}_{ijslk}^{\prime r} - \hat{\rho}_{mnk} \right)^2, \qquad (9)$$

где $\hat{\rho}_{ijslk}^{ir}$ — *k*-ая компонента тестового паттерна *ijs*, $\hat{\rho}_{mnk}$ — *k*-ая компонента нормированного паттерна *mn*, *k* — номер канала.

Положение и направление источника, соответствующего паттерну $\hat{\rho}_{mn}$, определяется числами (*I*, *J*, *S*, *L*), соответствующими минимуму функции $\chi(i, j, s, l)$ по переменным $i = 1, ..., N_x$; $j = 1, ..., N_y$; $s = 1, ..., N_z$; $l = 1, ..., L_{max}$. Минимум этой функции находится методом полного перебора - выбором наименьшего из нескольких миллионов значений функции χ для каждого паттерна $\hat{\rho}_{mn}$. Эта процедура определяет положение r_{IJS} – решение обратной задачи для паттерна $\hat{\rho}_{mn}$, без пространственной фильтрации каналов и без введения весовых функций. Энергия этого источника D_{mn}^2

Повторяя эту процедуру для всех нормированных паттернов $\hat{\rho}_{mn}$: m = 1, ..., M; n = 1, ..., N, возможно распределить в пространстве энергии всех осцилляций из выражения (5). Результатом такого распределения является функциональная томограмма мозга, восстановленная по данным МЭГ.

Рис. 1. Функциональная томограмма в полосе частот 8–11 Гц, показанная совместно с магнитнорезонансной томограммой испытуемого [6]. Мощность источников отображается цветом в соответствии с легендой (справа). Представлены стандартные томографические сечения: сагиттальное (S), аксиальное (A) и корональное(C).

На рисунке 1 показано использование предложенного метода для локализации альфа-ритма контрольного субъекта в состоянии покоя, глаза закрыты [6]. Функциональная томограмма построена по данным магнитной энцефалографии в полосе частот от 8 до 11 Гц. При этом не делается априорных предположений о местонахождении источников, элементарные токовые диполи распределяются в свободном пространстве эксперимента. Затем функциональная томограмма сравнивается с полученной независимо магнитно-резонансной томограммой. Результат сравнения соответствует общепринятым представлениям о локализации альфа-ритма. Из полученных в работе [6] результатов следует, что данный метод позволяет количественно изучать спонтанную активность мозга в любом спектральном диапазоне.

ЗАКЛЮЧЕНИЕ

По результатам изучения литературных источников можно сделать вывод о большом разнообразии спектральных особенностей, отмечаемых при различных психических расстройствах. Для того, чтобы использовать спектры энцефалограмм в качестве диагностических признаков, необходимо количественное изучение этих спектров. Особенно важна точная локализация различных частотных компонент, которая позволит установить соответствие между функциональной и анатомической структурами мозга [40].

Метод функциональной томографии, предложенный авторами препринта, преобразует весь массив экспериментальных данных в набор элементарных источников – осцилляторов, распределенных в пространстве и отображающих функциональную структуру системы. Это преобразование является точным и полностью обратимым, что позволяет детально изучать пространственно-временные свойства спонтанной активности мозга в различных психических состояниях.

Работа выполнена при поддержке Программы Президиума РАН №27 «Фундаментальные проблемы решения сложных практических задач с помощью суперкомпьютеров» и грантов РФФИ 17-29-02178, 18-29-02087, 16-07-00937, 16-07-01000, 17-07-00677, 17-07-00686.

СПИСОК ЛИТЕРАТУРЫ

- 1. Llinas R. The intrinsic electrophysiological properties of mammalian neurons: insights into central nervous system function. *Science*. 1988. V. 242. № 4886, P. 1654–1664.
- Llinas R.R., Pare D. Of dreaming and wakefulness. *Neuroscience*. 1991. V. 44, № 3. P. 521–535.
- Schulman J.J., Cancro R., Lowe S., Lu F., Walton K.D, Llinas R.R. Imaging of thalamocortical dysrhythmia in neuropsychiatry. *Frontiers in Human Neuroscience*. 2011. V. 5. Article No. 69. doi: <u>10.3389/fnhum.2011.00069</u>
- 4. Llinás R.R., Ustinin M.N. Precise Frequency-Pattern Analysis to Decompose Complex Systems into Functionally Invariant Entities: U.S. Patent. US Patent App. Publ. 20160012011 A1. 01/14/2016.
- Llinás R.R., Ustinin M.N. Frequency-pattern functional tomography of magnetoencephalography data allows new approach to the study of human brain organization. *Front. Neural Circuits*. 2014. V. 8. Article No. 43. doi: <u>10.3389/fncir.2014.00043</u>
- Llinás R.R., Ustinin M.N., Rykunov S.D., Boyko A.I., Sychev V.V., Walton K.D., Rabello G.M., Garcia J. Reconstruction of human brain spontaneous activity based on frequency-pattern analysis of magnetoencephalography data. *Front. Neurosci.* 2015. V. 9. Article No. 373. doi: <u>10.3389/fnins.2015.00373</u>
- 7. Рыкунов С.Д., Устинин М.Н., Полянин А.Г., Сычев В.В., Линас Р.Р. Комплекс программ для расчёта парциальных спектров головного мозга человека. *Математическая биология и биоинформатика*. 2016. Т. 11. № 1. С. 127–140. doi: 10.17537/2016.11.127
- 8. Honaga E., Ishii R., Kurimoto R., Canuet L., Ikezawa K., Takahashi H., Nakahachi T., Iwase M., Mizuta I., Yoshimine N., Takeda M. Post-movement beta rebound

abnormality as indicator of mirror neuron system dysfunction in autistic spectrum disorder: An MEG study. *Neuroscience Letters*. 2010. V. 478. P. 141–145. doi: 10.1016/j.neulet.2010.05.004

- 9. Киренская А.В. ЭЭГ-исследования в биологической психиатрии: основные направления и перспективы. *Российский психиатрический журнал.* 2006. № 6. С. 19–27.
- 10. Рагозинская В.Г. Особенности спектральной мощности ЭЭГ при аутоагрессии. Известия высших учебных заведений. Уральский регион. 2015. № 2. С. 97–104.
- 11. Киренская-Берус А.В., Гавриленко А.Я., Журавлев А.Б., Лаврова Т.Н., Максимова Н.В., Мямлин В.В., Новотоцкий-Власов В.Ю., Вандыш-Бубко В.В., Ткаченко А.А. ЭЭГ-исследование нейрофизиологических механизмов предиспозиции к гомицидному поведению у лиц с органическими психическими расстройствами. Агрессия и психическое здоровье. Под ред. Дмитриевой Т.Б. и Шостаковича Б.В. Москва, 2002. С. 323–349.
- Harrewijn A., Van der Molen M.J.W., Westenberg P.M. Putative EEG measures of social anxiety: Comparing frontal alpha asymmetry and delta-beta cross-frequency correlation. *Cognitive, Affective and Behavioral Neuroscience*. 2016. V. 16. № 6. P. 1086–1098. doi: <u>10.3758/s13415-016-0455-y</u>
- 13. Киренская-Берус А.В., Ткаченко А.А. Особенности спектральных характеристик ЭЭГ лиц с девиантным сексуальным поведением. *Физиология человека*. 2003. Т. 29. № 3. С. 22–32.
- 14. Fingelkurts A.A. Altered structure of dynamic electroencephalogram oscillatory pattern in major depression. *Biological Psychiatry*. 2015. V. 77. № 12. P. 1050–1060. doi: 10.1016/j.biopsych.2014.12.011
- 15. Cavanagh J.F., Shackman A.J. Frontal Midline Theta Reflects Anxiety and Cognitive Control: Meta-Analytic Evidence. *Journal of Physiology, Paris*. 2015. № 109. P. 3–15. doi: <u>10.1016/j.jphysparis.2014.04.003</u>
- Pinner J.F.L., Cavanagh J.F. Frontal theta accounts for individual differences in the cost of conflict on decision making. *Brain Research*. 2017, V. 1672. P. 73–80. doi: <u>10.1016/j.brainres.2017.07.026</u>
- 17. Jeste S.S., Frohlich J., Loo S.K. Electrophysiological biomarkers of diagnosis and outcome in neurodevelopmental disorders. *Current Opinion in Neurology*. 2015. V. 28. № 2. P. 110–116. doi: 10.1097/WCO.00000000000181
- 18. Пашков А.А., Дахтин И.С., Харисова Н.С. Электроэнцефалографические биомаркеры экспериментально индуцированного стресса. Вестник ЮУрГУ. Серия «Психология». 2017. Т. 10. № 4. С. 68–82.
- Palmiero M., Piccardi L. Frontal EEG Asymmetry of Mood: A Mini-Review. Frontiers in Behavioral Neuroscience. 2017, V. 11. Article No. 224. doi: 10.3389/fnbeh.2017.00224
- Koolhaas J.M., Bartolomucci A., Buwalda B., de Boer S.F., Flügge G., Korte S.M., Meerlo P., Murison R., Olivier B., Palanza P., et al. Stress revisited: a critical evaluation of stress concept. *Neuroscience and Biobehavioral Reviews*. 2011. V. 35. № 5. P 1291– 1301. doi: <u>10.1016/j.neubiorev.2011.02.003</u>
- Fumoto M., Sato-Suzuki I., Seki Y., Mohri Y., Arita H. Appearance of high-frequency alpha band with disappearance of low-frequency alpha band in EEG is produced during voluntary abdominal breathing in an eyes-closed condition. *Neuroscience Research*. 2004. V. 50. № 3. P. 307–317. doi: 10.1016/j.neures.2004.08.005
- 22. Dunkley B.T., Sedge P.A., Doesburg S.M., Grodecki R.J., Jetly R., Shek P.N., Taylor M.J., Pang E.W. Theta, mental flexibility, and post-traumatic stress disorder: connecting

in the parietal cortex. *PLOS One*. 2015. V. 10. № 4. Article No. e0123541. doi: 10.1371/journal.pone.0123541

- Werff S.J., van der Berg S.M., Pannekoek J.N., Elzinga B.M., van der Wee N.J. Neuroimaging resilience to stress: a review. *Frontiers in Behavioral Neuroscience*. 2013. V. 7. Article No. 39. doi: <u>10.3389/fnbeh.2013.00039</u>.
- 24. Llinas R.R., Ribary U., Jeanmonod D., Kronberg E., Mitra P.P. Thalamocortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography. *Proceedings of the National Academy of Sciences of the USA*. 1999. V. 96. P. 15222–15227.
- 25. Schulman J.J, Ramirez R.R., Zonenshayn M., Ribary U., Llinas R.R. Thalamocortical dysrhythmia syndrome: MEG imaging of neuropathic pain. *Thalamus & Related Systems*. 2005. V. 3. № 1. P. 33–39. doi: <u>10.1017/S1472928805000063</u>
- 26. Панкратова Н.М., Устинин М.Н., Линас Р. Обнаружение патологической активности головного мозга по данным магнитной энцефалографии. Математическая биология и биоинформатика. 2013. Т.8. № 2. С. 679–690. doi: <u>10.17537/2013.8.679</u>
- Мельникова Т.С., Лапин И.А., Саркисян В.В. Обзор использования когерентного анализа ЭЭГ в психиатрии. Социальная и клиническая психиатрия. 2009. Т. 19. № 1. С. 90–94.
- 28. Лущекина Е.А., Хаердинова О.Ю., Лущекин В.С., Стрелец В.Б. Межполушарные различия спектральной мощности и когерентности ритмов ЭЭГ у детей с растройствами аутистического спектра. *Физиология человека*. 2017. Т. 43. № 3. С. 32–42.
- 29. Стрелец В.Б., Магомедов Р.А, Гарах Ж.В., Новотоцкий-Власов В.Ю. Спектральная мощность и внутрикорковые взаимодействия по бета-ритму в норме и при шизофрении. *Журн. высш. нервн. деят.* 2004. Т. 54. № 2. С. 259–266.
- 30. Basar-Eroglu C., Schmiedt-Fehr C., Marbach S., Brand A., Mathes B. Altered oscillatory alpha and theta networks in schizophrenia. *Brain Res.* 2008. V. 15. № 1235. P. 143–152.
- 31. Knyazeva M.G., Jalili M., Meuli R., Hasler M., De Feo O., Do K.Q. Alpha rhythm and hypofrontality in schizophrenia. *Acta Psychiatr. Scand.* 2008. V. 118. № 3. P. 188–199.
- 32. Gregory M., Mandelbaum D. Evidence of a faster posterior dominant EEG rhythm in children with autism. *Research in Autism Spectrum Disorders*. 2012. № 6. P. 1000.
- Rizzolatti G., Craighero L. The mirror-neuron system. Annual Review of Neuroscience. 2004. V. 27. P. 169–192. doi: <u>10.1146/annurev.neuro.27.070203.144230</u>
- 34. Лущекина Е.А., Подрезная Е.Д., Лущекин В.С. Новотоцкий-Власов В.Ю., Стрелец В.Б. Сравнительное исследование тета- и гамма-ритмов ЭЭГ в норме и при раннем детском аутизме. *Журн. высш. нерв. деят.* 2013. Т. 63. № 4. С. 451–459.
- 35. Menassa D.A., Braeutigama S., Bailey A., Falter-Wagner C.M. Frontal evoked γ activity modulates behavioural performance in Autism Spectrum Disorders in a perceptual simultaneity task. *Neuroscience Letters*. 2018. V. 665. № 5. P. 86–91. doi: 10.1016/j.neulet.2017.11.045.
- Makeig S., Jung T.P., Bell A.J., Ghahremani D., Sejnowski T.J. Blind separation of auditory event-related brain responses into independent components. *Proc. Natl.Acad. Sci. U.S.A.* 1997. V. 94. P. 10979–10984.
- 37. Frigo M., Johnson S.G. The Design and Implementation of FFTW3. *Proceedings of the IEEE*. 2005. V. 93. № 2. P. 216–231.
- Belouchrani A., Abed-Meraim K., Cardoso J.-F., Moulines E. A blind source separation technique using second-order statistics. *IEEE Trans. Signal Processing*. 1997. V. 45. P. 434–444. doi:<u>10.1109/78.554307</u>

- 39. Sarvas J. Basic mathematical and electromagnetic concepts of the biomagnetic inverse problem. *Phys. Med. Biol.* 1987. V. 32. № 1. P. 11–22.
- 40. Панкратова Н.М., Рыкунов С.Д., Устинин М.Н. Локализация спектральных особенностей энцефалограмм при психических расстройствах. Препринты ИПМ им. М.В.Келдыша. 2018. № 138. 20 с. doi: <u>10.20948/prepr-2018-138</u>

Рукопись поступила в редакцию 03.07.2018. Дата опубликования 06.08.2018.