
Mathematical Biology and Bioinformatics. 2014. V. 9. № 2. P. 585–596.

URL: http://www.matbio.org/2014/Lashin_9_585.pdf.

======================= MATHEMATICAL MODELING ======================

УДК: 573.22

HEC 2.0: Improved Simulation of the Evolution of

Prokaryotic Communities

Lashin S.A.*1,2, Klimenko A.I.1,2, Mustafin Z.S.1, Kolchanov N.A.1,2,

Matushkin Yu.G.1

1Department of Systems Biology, Institute of Cytology and Genetics,

Novosibirsk, 630090, Russia
2Faculty of Natural Science, Novosibirsk State University,

Novosibirsk, 630090, Russia

Abstract. Modeling and simulation of prokaryotes and prokaryotic communities are

important for the development of modern fundamental, medical and

biotechnological researches. Previously, we had developed a software package

“Haploid evolutionary constructor”, which models simultaneously describe several

layers of biological organization: genetic, metabolic, population, ecological. Here

we present a new version of the program, which includes the following major

improvements: graphic user interface, parallel version of the computational core,

and support of user-defined plugins. Plugins describe either changes of prokaryotic

population size or cellular metabolism (gene networks). The graphic user interface

components for the “Haploid evolutionary constructor” provide convenient

visualization of data, model construction, setting up and control. High-performance

versions of our software have been implemented using OpenMP and MPI

technologies, and can be run at both desktops and MPI clusters. The software is

available at the website http://evol-constructor.bionet.nsc.ru/ along with

documentation and example models. The “Haploid evolutionary constructor”

provides researchers the convenient tool for simulation of bacterial communities’

evolution. The models of prokaryotic communities constructed with this software

may be used for studying the fundamental principles of evolution, connecting

various levels of biological organization, from genetic to ecological ones. It may

also be used as an educational tool for the illustration of fundamental biological

laws.

Key words: simulation software, bacterial evolution, prokaryotic community.

INTRODUCTION

Prokaryotes communities play a significant role in all major biogeochemical cycles.

Typically, they live and evolve in communities: bacterial mates, biofilms or another complex

spatially distributed multilayer structures [1, 2]. A number of prokaryotic species are

uncultivated outside their natural communities. That is why mathematical modeling and

computer simulations are of great concern in research of prokaryotes living and evolution.

These theoretical tools are important for the development of modern fundamental, medical

and biotechnological researches.

An agent-based modeling is a major approach in simulation software of prokaryotic

organisms. Under this approach, populations are simulated as systems, which contain agents –

separate models of individual organisms or groups of organisms possessing certain traits.

*lashin@bionet.nsc.ru

http://evol-constructor.bionet.nsc.ru/

LASHIN at al.

586
Mathematical Biology and Bioinformatics. 2014. V. 9. № 2. URL: http://www.matbio.org/2014/Lashin_9_585.pdf

Each agent has its own unique history of interactions with environment and other agents.

Agent-based modeling is widely used in ecological modeling, social dynamics, and simulation

of evolutionary processes [3–5]. The models may show how behavior of single individuals

within the bounds of local rules leads to formation of complex patterns including spatially

distributed, like fish shoals, bird flights, swarms of insects and other biological communities

[6–8].

The advantage of this approach is the fact that it allows to map the variety of features of a

separate individual in the most flexible way, and, at the same time, it describes clearly the

interactions between different individuals at micro level. Moreover, while such evolutionarily

significant events as mutations and recombination are discrete and individual-oriented, they

are naturally described via agent-based methods. The main disadvantage of these methods of

simulations is a high computational complexity. However they require quite a lot of

experimental data to describe a “portrait” model. In this regard, we proposed recently a multi-

layer methodology for simulations of prokaryotic communities, and the software package

“Haploid Evolutionary Constructor” (HEC) (http://evol-constructor.bionet.nsc.ru/) for the

purpose of the reduction of computational complexity in simulations of high-diverse

microbial communities as well as the dependency on amounts of experimental biological data.

Currently, there are varieties of software that simulate different aspects of prokaryotic

dynamic life. For example, BacSim [9] intends simulating bacterial biofilms formation as a

result of cellular processes. I.e., it integrates cellular processes into generalized population

model. The basic object in BacSim model is a bacterial cell living in a spatially heterogeneous

environment. While natural bacterial colonies may have a huge size (billions and more cells),

they may be impossible to be simulated (e.g. in [9] they simulate population of about 4000

cells). Besides, only one specie cells are considered, that constrains simulation of genetic

diversity of a community.

Micro-Gen Bacteria Simulator [10], simulates the lifecycle of cultivated bacteria and their

interactions with various molecules, primarily consider ecological, population and metabolic

levels of organization, while the genetic processes and heredity are not described. The

software may be used at high-performance clusters as the used model is scalable. It provides

simulations of high-concentrated bacterial communities (> 107 bacteria/ml, which is close to

natural concentrations).

In contrast the AEvol and RAEvol programs [11, 12], highlight genome evolution

processes in bacterial populations, and do not deal with population or ecological processes

like e.g. substrates exchange. However, one of the major challenges in the modern science is

the conversion from the reductionism in considering biological objects and processes to their

system understanding.

The AgentCell software [13] was developed to simulate stochastic fluctuations at cell-cell

interactions. Using this software, authors simulated chemotactic response to a linear gradient

of attractant of individual swimming bacteria in 3D environment. In this model, each bacterial

cell is an individual object including its own chemotaxis gene network, motor and flagellum.

While the majority of the programs for simulation of bacterial communities are focused on

the description of separate levels of biological organization, our software, Haploid

Evolutionary Constructor (HEC) provides modeling and simulation of communities at the

following levels: genetic, metabolic and population. The approach underlying the HEC is

focused on the simulation of population-genetic, metabolic and ecological factors, and

attempts to substitute the reductionism ideas by synthetic ones, which is the mainstream of the

systems biology.

IMPLEMENTATION

The initial Haploid evolutionary constructor program was published in 2007 [14]. Since

then we have been adding new functions to the program. In particular, bacteriophages [15]

and gene networks [16] layers have been added. In version 2.0 we present the following

http://evol-constructor.bionet.nsc.ru/

HEC 2.0: IMPROVED SIMULATION OF THE EVOLUTION OF PROKARYOTIC

587
Mathematical Biology and Bioinformatics. 2014. V. 9. № 2. URL: http://www.matbio.org/2014/Lashin_9_585.pdf

improvements in the HEC: support of high performance computations, graphical user

interface, and support of the plugin system. The computational core is implemented in the

C++ programming language with the use of Boost [17] and OpenMP [18] libraries (for the

high performance version). The GUI is implemented in the Java programming language (Java

Development Kit 1.6 Standard Edition). Test models are located in the “scripts” directory of

the distribution.

Fig. 1. Principal diagram of the HEC model.

The main concept of the HEC model is presented in Fig. 1. The key object of the model is

a population of prokaryotic cells. Cells belonging to the same population have identical

metabolic function – all of them consume the same substrates and produce the same products.

In HEC, the metabolic function of cells in a population is defined by two submodels: the gene

network of metabolites synthesis (in HEC, it is called synthesis strategy), and the rule of

population reproduction and alleles’ competition/selection via metabolites utilization (so

called trophic strategy in HEC). The numerical parameters of those submodels are assumed as

genes in our methodology. In the case of synthesis strategies, genes determine the rate

constants for certain processes in a gene network; in trophic strategies genes determine

utilization rate constants for metabolites and parameters for their influence on population size.

Hence, the genome of a separate cell (which we may assume to be a generalized genome of

monomorphic population of cells) is represented uniformly as a set of constants, the first part

of which concerns to gene network, the second part – to trophic strategy. In addition to the

monomorphic state (all cells are genetically identical), a population may be in polymorphic

state. In this case there are several allelic variants for some (or for all) genes. The detail

description of the modeling of genetic polymorphism via so called genetic spectra arithmetics

was published in our previous studies [19]. Population-environment interactions are realized

via metabolites transport in-/outside cells (Fig. 1).

Working with the HEC includes two actions: the description/setup of a model and the

simulation runs of a model.

1. Model setup

At this stage, a user defines the model structure and sets up parameters. The main objects

of the HEC model are prokaryotic population and environment.

Population is characterized by its size, metabolic functionality and genetic diversity. The

metabolic functionality is determined by sets of substrates utilized and synthesized by a

population along with the rules of utilization (and cells reproduction) and synthesis. In the

HEC, these rules are called trophic strategies and synthesis strategies, respectively. The

Genes

Metabolites

…

…

…

Initial
data

G
en

e
n

et
w

o
rk

(S
yn

th
es

is
 s

tr
at

eg
y)

Final
data

Parameters

Reproduction
(trophic strategy)

R
es

t
m

et
ab

o
lit

es

Environmental
metabolites

Homogeneous population of prokaryotic cells

Metabolites
consumption

Metabolites
secretion

Genes

Metabolites

…

…

…

Initial
data

G
e

n
e

 n
et

w
o

rk
(S

yn
th

es
is

 s
tr

at
eg

y)

Final
data

Parameters

Reproduction
(trophic strategy)

R
es

t
m

et
ab

o
lit

es

Homogeneous population of prokaryotic cells

Genes

Metabolites

…

…

…

Initial
data

G
e

n
e

 n
et

w
o

rk
(S

yn
th

es
is

 s
tr

at
eg

y)

Final
data

Parameters

Reproduction
(trophic strategy)

R
es

t
m

et
ab

o
lit

es

Homogeneous population of prokaryotic cells

Genes

Metabolites

…

…

…

Initial
data

G
e

n
e

 n
et

w
o

rk
(S

yn
th

es
is

 s
tr

at
eg

y)

Final
data

Parameters

Reproduction
(trophic strategy)

R
es

t
m

et
ab

o
lit

es

Homogeneous population of prokaryotic cells

Other
populations

Parameters

LASHIN at al.

588
Mathematical Biology and Bioinformatics. 2014. V. 9. № 2. URL: http://www.matbio.org/2014/Lashin_9_585.pdf

current version of the HEC has six trophic strategies and two synthesis ones. Users may also

develop their own strategies via plugins and the HEC open API (see the section “Extension

with user-defined plugins” below). Utilization and synthesis efficiencies are defined as

numerical parameters, each of which is assumed to be a “gene”. The set of distribution for all

genes variants (alleles) in a population is called “generalized population genome”.

Its further evolution is described with the use of so called genetic spectra arithmetics [19].

The user can also set up the general metabolism parameters of a population (mean utilization/

synthesis rates), death and flow parameters etc. The environment is characterized by its

volume, concentrations of environmental and inflow substrates (specific and nonspecific), rate

of flow and presence of populations. The resulted model of prokaryotic community may be

schematically represented via graph of trophic interactions (section “Graphic user interface”,

Fig. 3). Default parameter values were estimated on the base of E. coli data [20] and described

in detail in [16]. The user can edit the additional probability parameters for stochastic

simulation of evolution (frequencies of mutations, horizontal gene transfers and losses of

genes).

2. Simulation process

The following regular actions are simulated per iteration (Fig. 2):

⎯ consumption of environmental substrates by populations;

⎯ substrates utilization and reproduction of populations;

⎯ substrates synthesis and secretion into environment;

⎯ environmental flow.

Fig. 2. Simulation steps per iteration.

After the completion of iteration, the user may simulate additional action (or some actions

at a time):

⎯ mutation in a gene in some cell(s) of a population;

⎯ horizontal transfer of gene(s) from a cell of donor population into a cell of acceptor

population. It may lead to the origin of a novel population [19];

⎯ loss of gene(s) in some cell(s) of a population (also may lead to the origin of a novel

population);

⎯ change of substrates inflow concentration and/or change of flow rate.

There are two modes for model simulations – general and stochastic. In general mode

changes of model structure (see above) can be only defined by user, in stochastic mode they

may occur randomly, according to probabilities set up.

3. Graphical user interface

There is a graphical user interface (GUI) in the HEC v.2 package. GUI provides

visualization of all characteristics for every object of the HEC model: population size

dynamics, environmental concentrations of substrates, trophic interactions in a community,

and alleles’ distributions for every gene in a population. GUI is distributed as standalone

application and consists of the following frames/windows (Fig. 3):

1. frame displaying structure of a prokaryotic community, includes the tabs:

a) community structure as a graph of substrate-products interactions (Fig. 4,a);

Substrates
uptake

Reproduction
Substrates
secretion

Flow in
environment

Mutation,
Horizontal gene transfer,

Gene loss
etc

Substrates
synthesis

HEC 2.0: IMPROVED SIMULATION OF THE EVOLUTION OF PROKARYOTIC

589
Mathematical Biology and Bioinformatics. 2014. V. 9. № 2. URL: http://www.matbio.org/2014/Lashin_9_585.pdf

b) community structure as a graph of interpopulation trophic interactions (Fig. 4,b).

2. frame displaying model dynamics and current model state, includes the tabs:

a) population dynamics (Fig. 5,a);

b) dynamics of environmental metabolites concentrations (Fig. 5,b);

c) distributions of alleles for all genes in populations (Fig. 5,c).

3. frame displaying a model written in special HEC script language (which described in

detail in [16]), includes the tabs:

a) script describing only the state of the current model (only declare part);

b) script describing the whole model from its beginning including all calculation

commands.

4. control frame for the simulations, includes buttons performing actions described above

(section “Simulation process”).

Fig. 3. Overview of the HEC graphic user interface.

Fig. 4. Structure of prokaryotic community displayed as: a) graph of substrate-product interactions; b)

trophic graph.

a) b)

LASHIN at al.

590
Mathematical Biology and Bioinformatics. 2014. V. 9. № 2. URL: http://www.matbio.org/2014/Lashin_9_585.pdf

Fig. 5. a) Population dynamics of the community; b) substrates dynamics; c) alleles frequencies of the

Population 1.

The final model and the simulation scenario can be saved in a script-file using the HEC

script language.

4. Extension with user-defined plugins

At present, there are two types of plugins in the HEC: trophic strategy plugins and

synthesis strategies plugins. Plugins should be built as dynamic libraries (*.dll on Windows,

*.so on Linux). In order to make personal plugins, one should develop subclasses of the

abstract classes Increaser (for trophic strategies) and SynthesisStrategy (for

synthesis strategies). The detail plugin instructions are available at the HEC web-site

(http://evol-constructor.bionet.nsc.ru) along with necessary include files and *.dll/*.so

templates.

4.1. Implementing new trophic strategy

The Increaser class is located in the “Increaser.h” file:

class Increaser {

public:

 virtual double calculate(double curPopSize,

 int nGNum,

 int cGNum,

 int dGNum,

 const vector<float>& curMonoGenome,

 const vector<int>& curMonoCodes,

 const vector<double>& nSubstrates,

 const vector<double>& sSubstrates,

 float deathCoef, float flowCoef,

 double totalPopSize) = 0;

};

a) b)

c)

http://evol-constructor.bionet.nsc.ru/

HEC 2.0: IMPROVED SIMULATION OF THE EVOLUTION OF PROKARYOTIC

591
Mathematical Biology and Bioinformatics. 2014. V. 9. № 2. URL: http://www.matbio.org/2014/Lashin_9_585.pdf

A subclass of the Increaser class should implement the method calculate

defining the new size of a monomorphic population. For this purpose, one can operate the

following parameters:

⎯ double curPopSize – size of the current monomorphic population,

⎯ int nGNum – number of utilization efficiency genes for nonspecific substrates,

⎯ int cGNum – number of utilization efficiency genes for specific substrates,

⎯ int dGNum – number of synthesis efficiency genes for specific substrates,

⎯ const vector<float>& curMonoGenome – alleles values (rate constants)

for utilization and synthesis efficiencies indexed in the following order

([0,nGNum-1] – nonspecific substrates utilization rates,

[nGNum,nGNum+cGNum-1] – specific substrates utilization rates,

[nGNum+cGNum, nGNum+cGNum+dGNum-1] – specific substrates synthesis

rates,

⎯ const vector<int>& curMonoCodes – substrates indices in

correspondence with curMonoGenome (explanation in Fig.6),

⎯ const vector<double>& nSubstrates – nonspecific substrates amounts

(molecules) consumed by all cells of a population,

⎯ const vector<double>& sSubstrates – specific substrates amounts

(molecules) consumed by all cells of a population,

⎯ float deathCoef – death coefficient,

⎯ float flowCoef – flow coefficient,

⎯ double totalPopSize – size of the whole community.

Fig. 6. Correspondence between allele values (curMonoGenome) and substrate numbers

(nSubstrates, sSubstrates) via substrate indices (codes at curMonoCodes). For example, the

utilization rate for nonspecific substrate N1 (which concentration is n1) is r1, as curMonoGenome

[curMonoCodes [1]] == r1 and nSubstrates [curMonoCodes [1]] == n1;

The return value of the method is the new population size (double).

r0 r1 r3 c1 c2 c6 d1 d3 d5

curMonoGenome

(alleles’ values)

nGNum cGNum dGNum

0 1 3 1 2 6 1 3 5

curMonoCodes

(numbers of

corresponding

substrates)

nGNum cGNum dGNum

n0 n1 … s0 s1 s2

Intercellular substrates

nSubstrates sSubstrates

Substrate

concentration
sjni

Genes/alleles enumeration

…

LASHIN at al.

592
Mathematical Biology and Bioinformatics. 2014. V. 9. № 2. URL: http://www.matbio.org/2014/Lashin_9_585.pdf

4.2. Implementing new synthesis strategy

The SynthesisStrategy class is located in the “SynthesisStrategy.h” file:

class SynthesisStrategy {

public:

 virtual void synthesize(_PolymorphPopulation* p) = 0;

};

A subclass of this class should implement the method synthesize, defining the new

values of synthesized specific substrates. The class _PolymorphPopulation (located in

“_PolymorphPopulation.h” file) provides the functionality for getting necessary population

data and setting new values of the synthesized substrates:
class _PolymorphPopulation

{

public:

 virtual ~_PolymorphPopulation(void){}

virtual std::vector<GeneticSpectrumVector>

getProdSpecGenes() const = 0;

virtual std::vector<double> getSSCaptured() const = 0;

virtual std::vector<double> getNSCaptured() const = 0;

virtual double getMeanCellProductivity() const = 0;

virtual double getPopulationSize() const = 0;

virtual void setSynthesizedSubstrate

(int subNum, double value) = 0;

};

The only nontrivial data type here is the class GeneticSpectrumVector (located in

“GeneticSpectrumVector.h” file), which describes the distribution of alleles in a population.

Simple synthesis strategy, previously described in our studies [19], is exampled in the file

“SynthesisStrategySimple.cpp”.

5. High performance version of the computational core

Using the profiler Intel Parallel Amplifier [21], we have found the only function to be

excessively time-consuming in simulations of communities of high genetic diversity (106–108

unique allelic combinations). This is the function of population size change. The main idea of

this function is to look over all allelic combinations in a population (stored in genetic spectra)

to calculate specific growth for each combination.

At present, there are two high-performance versions of the HEC: first one uses MPI (only

available for the console version), the second uses OpenMP (available for both console and

GUI versions). MPI version uses MPI_Bcast and MPI_Reduce functions to share

computational tasks. All processes have almost equal load (minor variations occur if number

of possible allelic combinations is aliquant to the number of processes). In OpenMP version,

the whole populations are distributed in parallel threads, that minimizes number of memory

reads/writes but additionally requires number of parallel threads to be aliquot to the number of

populations in a community (otherwise, some threads may stand idle).

The MPI version may also be used on shared memory systems. On Microsoft Windows, it

is required to install Microsoft HPC Pack. In order to run this version, one should use the

command prompt and type mpiexec –n N hec_mpi.exe script.txt command,

where N is the number of parallel processes; script.txt is the name of model script.

We measured parallelization efficiency on Novosibirsk cluster supercomputer NCS 30-T

[22] (6-core processes X5670 2.93 GHz (Westmere)) for the MPI version. OpenMP version

was measured on laptop (Amd Phenom II x6 1055T). Model scripts used for load testing

~106–108 allelic combinations in a community are listed in Additional file 1. Results of load

testing are shown in Table 1 (NCS 30-T) and Table 2 (laptop).

HEC 2.0: IMPROVED SIMULATION OF THE EVOLUTION OF PROKARYOTIC

593
Mathematical Biology and Bioinformatics. 2014. V. 9. № 2. URL: http://www.matbio.org/2014/Lashin_9_585.pdf

Table 1. Measures of parallelization efficiency on Novosibirsk cluster supercomputer NSC 30-

T. Standard deviation was rounded up

Number of
processes

Calculation time (mean),
hh:mm:ss

Parallelization efficiency
(mean)

Acceleration (mean) Standard
deviation, sec

1 8:02:26 1 1 249

2 4:10:24 0.9633 1,9266 65

4 2:05:20 0.9623 3,8492 188

8 1:02:03 0.9718 7,7744 4

16 0:31:06 0.9695 15,512 3

24 0:20:48 0.9664 23,1936 3

36 0:13:46 0.9734 35,0424 1

64 0:07:52 0.9582 61,3248 2

96 0:05:13 0.9633 92,4768 1

144 0:03:32 0.9481 136,5264 1

264 0:02:03 0.8914 235,3296 2

Table 2. Measures of parallelization efficiency (MPI) on 6-core laptop (Amd Phenom II x6

1055T)

Number of

allelic

combinations

Number of

generations

Computational time (sec.) – parallelization efficiency

Number of parallel threads

1 2 3 4 5 6

1000 25000 53 sec 45 sec – 58% 44 sec –4 0% 44 sec – 30% 45 sec – 23% 52 sec – 17%

5000 10000 73 sec 46 sec – 79% 38 sec – 64% 34 sec – 54% 33 sec – 44% 37 sec – 33%

10000 5000 68 sec 39 sec – 87% 31 sec – 73% 27 sec – 63% 25 sec – 54% 27 sec – 42%

100000 500 85 sec 48 sec – 89% 35 sec – 81% 28 sec – 76% 24 sec – 71% 23 sec – 62%

1000000 50 162 sec 88 sec – 92% 61 sec – 89% 48 sec – 84% 40 sec – 81% 37 sec – 73%

10000000 4 199 sec 101 sec – 99% 69 sec – 96% 55 sec – 90% 46 sec – 87% 44 sec – 75%

For those load tests, we have obtained almost linear acceleration in the MPI console

version. Using the NCS 30-T cluster, we have reduced the computational time from 8 hours (1

process) to 2 minutes (264 processes on 22 computational nodes, see Additional file 2).

In OpenMP version, the acceleration may be observed even for communities of relatively

low genetic diversity (~100 allelic combinations and more) (Table 3).

Table 3. Measures of parallelization efficiency (OpenMP) on 6-core laptop Amd Phenom II x6

1055T

Number of

allelic

combinations

Number of

generations

Computational time (sec.) – parallelization efficiency

Number of parallel threads

1 2 4 8

1000 25000 49 sec 39 sec – 63% 37 sec – 33% 35 sec – 18%

5000 10000 65 sec 41 sec – 80% 29 sec – 56% 28 sec – 29%

10000 5000 59 sec 35 sec – 84% 23 sec – 64% 21 sec – 35%

100000 500 75 sec 49 sec – 77% 23 sec – 82% 21 sec – 45%

1000000 50 147 sec 81 sec – 91% 45 sec – 82% 34 sec – 54%

10000000 4 186 sec 99 sec – 94% 73 sec – 64% 48 sec – 48%

Increasing genetic diversity of a community, we get more and more efficient

parallelization tending to linear. It should be noted that actual acceleration on OpenMP may

exceed number of physical processors. For instance, using 6-core processor laptop, we ran

OpenMP version with 10 threads and obtained 8-fold acceleration.

RESULTS AND DISCUSSION

As demonstration model, we have constructed the “poisoner-prey” model which is the

variation of the classic predator-prey model [23]. In this model, the community consists of

two populations P1 and P2, producing substrates S2 and S1, respectively. S1 activates growth

of P1 while S2 inhibits P2 (Fig. 7).

LASHIN at al.

594
Mathematical Biology and Bioinformatics. 2014. V. 9. № 2. URL: http://www.matbio.org/2014/Lashin_9_585.pdf

Fig. 7. The structure of trophic relations in the community. See text for details.

Nonspecific substrate N1 is utilized by both populations. Depending on relations between

utilization efficiency for S1 in cells of P1 and sensitivity to S2 in cells of P2, there may be

various dynamics of the community: stable/decay oscillations, stationary states and death of

the whole community. If the populations are genetically polymorphic (gene for S1 utilization

in P1 cells and/or gene of S2 sensitivity in P2 cells), one may observe directional selection:

mean utilization efficiency for S1 is being increased in P1 cells, while mean sensitivity for S2

is being decreased in P2 cells. The creation of the model is described in detail in Additional

file 3, while the script with the same model – in Additional file 4.

The models of prokaryotic communities constructed with the HEC may be used for

studying the fundamental principles of evolution, connecting various levels of biological

organization, from genetic to ecological ones. The HEC may also be used as an educational

tool for the illustration of fundamental biological laws. Finally, we hope that in future we

might use the HEC for the tasks of microbial biotechnology.

We have performed optimization of computational algorithm of the HEC. The higher

genetic diversity has a prokaryotic community, the more effective the optimization is (almost

linear acceleration was obtained). We assume such communities to be most interesting for

studiers, and hope that the HEC and its high-performance versions presented in this paper will

allow users to explore more complex and variable models of biological processes in

prokaryotic communities, and therefore, to get advances in evolutionary biology. One can also

use the HEC to study competition and evolution in gene networks populations, including

adaptations of gene networks parameters to particular environmental or cellular conditions.

Model of a gene network may be described in the HEC in terms of synthesis strategies, while

criterion of optimality and selection mechanisms – in terms of trophic strategies.

The study was supported by the following grants: Budget Project VI.61.1.2, RFBR 13-04-00620.

REFERENCES

1. Webb J.S., Givskov M., Kjelleberg S. Bacterial biofilms: prokaryotic adventures in

multicellularity. Current opinion in microbiology. 2003. V. 6. № 6. P. 578–585.

HEC 2.0: IMPROVED SIMULATION OF THE EVOLUTION OF PROKARYOTIC

595
Mathematical Biology and Bioinformatics. 2014. V. 9. № 2. URL: http://www.matbio.org/2014/Lashin_9_585.pdf

2. Stoodley P., Sauer K., Davies D.G., Costerton J.W. Biofilms as complex differentiated

communities. Annual Reviews in Microbiology. 2002. V. 56 № 1. P. 187–209.

3. Grimm V., Berger U., Bastiansen F., Eliassen S., Ginot V., Giske J.,Goss-Custard J.,

Grand T., Heinz S., Huse G. et al. A standard protocol for describing individual-based

and agent-based models. Ecological modelling. 2006. V. 198 № 1. P. 115–126.

4. Macy M., Willer R. From factors to actors: Computational sociology and agent-based

modeling. Annual review of sociology. 2002. V. 28. P. 143–166. URL:

http://www.jstor.org/stable/10.2307/3069238 (accessed 18.11.2014).

5. DeAngelis D.L., Mooij W.M. Individual-based modeling of ecological and evolutionary

processes. Annual Review of Ecology, Evolution, and Systematics. 2005. P. 147–168.

6. Hoare D., Couzin I., Godin J-G., Krause J. Context-dependent group size choice in fish.

Animal Behaviour. 2004. V. 67. № 1. P. 155–164.

7. Grimm V., Revilla E., Berger U., Jeltsch F., Mooij W.M., Railsback S.F., Thulke H-H.,

Weiner J., Wiegand T., DeAngelis D.L. Pattern-oriented modeling of agent-based

complex systems: lessons from ecology. Science. 2005. V. 310. № 5750. P. 987–991.

8. Olfati-Saber R. Flocking for Multi-Agent Dynamic Systems: Algorithms and Theory.

Automatic Control, IEEE Transactions on. 2006. V. 51. № 3. P. 401–420.

9. Kreft J.U., Booth G., Wimpenny J.W.T. BacSim, a simulator for individual-based

modelling of bacterial colony growth. Microbiology. 1998. V. 144. № 12. P. 3275–

3287.

10. Murphy J.T., Walshe R. Modelling Antibiotic Resistance in Bacterial Colonies Using

Agent-Based Approach. In: Understanding the Dynamics of Biological Systems. Eds.:

Dubitzky W., Southgate J., Fuß H. New York: Springer Science & Business Media,

2011. P. 131–154.

11. Knibbe C., Mazet O., Chaudier F., Fayard J-M., Beslon G. Evolutionary coupling

between the deleteriousness of gene mutations and the amount of non-coding sequences.

Journal of Theoretical Biology. 2007. V. 244. № 4. P. 621–630.

12. Beslon G., Parsons D.P., Sanchez-Dehesa Y., Peña J-M., Knibbe C. Scaling laws in

bacterial genomes: a side-effect of selection of mutational robustness? Biosystems.

2010. V. 102. № 1. P. 32–40.

13. Emonet T., Macal C.M., North M.J., Wickersham C.E., Cluzel P. AgentCell: a digital

single-cell assay for bacterial chemotaxis. Bioinformatics. 2005. V. 21 № 11. P. 2714–

2721.

14. Lashin S.A., Suslov V.V., Kolchanov N.A., Matushkin Y.G. Simulation of coevolution

in community by using the "Evolutionary Constructor" program. In Silico Biology.

2007. V. 7. № 3. P. 261–275.

15. Lashin S.A., Matushkin Y.G., Suslov V.V., Kolchanov N.A. Evolutionary trends in the

prokaryotic community and prokaryotic community-phage systems. Russian Journal of

Genetics. 2011. V. 47. № 12. P. 1487–1495.

16. Lashin S.A., Matushkin Y.G. Haploid evolutionary constructor: new features and

further challenges. In Silico Biology. 2012. V. 11. № 3. P. 125–135.

17. Boost C++ Library. URL: http://www.boost.org/ (accessed 18.11.2014).

18. The OpenMP® API specification for parallel programming. URL:

http://openmp.org/wp/ (accessed 18.11.2014).

19. Lashin S.A., Suslov V.V., Matushkin Y.G. Comparative Modeling of Coevolution in

Communities of Unicellular Organisms: Adaptability and Biodiversity. Journal of

Bioinformatics and Computational Biology. 2010. V. 8. № 3. P. 627–643.

20. Sundararaj S., Guo A., Habibi‐Nazhad B., Rouani M., Stothard P., Ellison M., Wishart

D.S. The CyberCell Database (CCDB): a comprehensive, self-updating, relational

database to coordinate and facilitate in silico modeling of Escherichia coli. Nucleic

acids research. 2004. V. 32. № suppl 1. P. D293–D295.

http://www.google.ru/search?hl=ru&tbo=p&tbm=bks&q=inauthor:%22Werner+Dubitzky%22
http://www.google.ru/search?hl=ru&tbo=p&tbm=bks&q=inauthor:%22Jennifer+Southgate%22
http://www.google.ru/search?hl=ru&tbo=p&tbm=bks&q=inauthor:%22Hendrik+Fu%C3%9F%22

LASHIN at al.

596
Mathematical Biology and Bioinformatics. 2014. V. 9. № 2. URL: http://www.matbio.org/2014/Lashin_9_585.pdf

21. Intel Parallel Amplifier. URL: http://software.intel.com/intel-parallel-studio-xe

(accessed 18.11.2014).

22. Novosibirsk cluster supercomputer NCS 30-T. URL: http://www2.sscc.ru/HKC-

30T/HKC-30T.htm (accessed 18.11.2014).

23. Lotka A.J. Contribution to the Theory of Periodic Reactions. Journal of Physical

Chemistry. 1910. V. 14. № 3. P. 271–274.

Received December 04, 2014.

Published December 29, 2014.

