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Abstract. Some critical remarks are made regarding a series of works by V. K. 

Mukhomorov dealing with polarons and oscillatory and rotational spectrum of a 

large-radius bipolaron near a subsidiary minimum corresponding to its two-center 

configuration. It is shown that V. K. Mukhomorov’s conclusion that by varying the 

bipolaron functional one should look for a constrained rather than absolute 

minimum is erroneous. Consideration of interelectronic correlations corresponding 

to a direct dependence of the wave function of the studied system on the distance 

between the electrons does not break the virial theorem. In the strong coupling 

limit the virial theorem holds true for both one-center and two-center bipolaron 

states, the latter representing a subsidiary minimum which arises due to a choice of 

an insufficiently versatile variation function. The work is done with the support 

from the RFBR (project № 07-07-00313). 
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INTRODUCTION 

The theory of polarons and bipolarons (BP) which was initially developed to explain some 

physical phenomena in polar dielectrics plays an important role in many physical, chemical 

and biological processes occurring not only in solid bodies but also in organic compounds and 

polar liquids including water and various water solutions. In 1- 7 a polaron theory of charge 

transfer in proteins was developed and in 8 this theory was used to describe a hydrated 

electron. 

In works [9, 10] by A. S. Davydov, the fundamentals of the translation-invariant theory of 

a continuum polaron developed by N. N. Bogolubov [11] and S. V. Tyablikov [12] were used 

as the basis for the theory of solitons in biological molecules. At the present time this 

application of the polaron theory is being studied intensively [13, 14, 15]. In 16-22 a 

dynamical theory of soliton formation and soliton transfer in DNA was developed. 

In the continuum approximation, within the framework of which the electron-phonon 

interaction is described in the theory of polarons and large-radius bipolarons, use is made of 

Fröhlich Hamiltonian, and the electron effective mass serves to represent the electron mass. 

This approach is valid for both ionic crystals and amorphous media or polar liquids. The latter 

is possible by virtue of the fact that the structure of the medium, in which quasifree electrons 

and their large-radius autolocalized formations move, does not affect the character of the 

process concerned. Indeed, the continuum approximation only uses the macroscopic 
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parameters of a medium such as the effective mass of charge carriers or high-frequency and 

static dielectric permittivities, while electric fields induced by long-wave optical phonons 

smoothly vary at the wavelengths comparable with distances between ions in polar media. 

Unfortunately, the vast majority of Russian journals lack a special section devoted to 

criticism of erroneous trends which are developed in many papers and published in various 

special editions. Here we will try to fill this vacuum in the theory of polarons and large-radius 

bipolarons and make some critical remarks regarding a series of works by V. K. Mukhomorov 

concerned with polaron subject-matter. V. K. Mukhomorov’s papers on a two-center 

bipolaron other than those discussed in this paper can be found in the references in these 

works. 

Although the polaron theory dates back more than half a century, and numerous mistakes 

that were inevitably made in the course of development of modern scientific concepts were 

corrected, at the present time a trend of the bipolaron theory which seems to be devoid of 

physical meaning, namely, the continuum theory of a two-center bipolaron, is still being 

intensively developed. This is especially true in regard to numerous works dealing with 

oscillatory and rotational spectra of a continuum two-center bipolaron, or an axially 

symmetrical quasimolecular dimer, as this system is termed by V. K. Mukhomorov. Recently, 

some works co-authored with V. K. Mukhomorov have been published 23, 24 in which 

erroneous ideas concerned with a two-center bipolaron were used as the basis for constructing 

a pair potential of interaction between polarons. The latter, notwithstanding a correct general 

formulation of the problem, leads to qualitative and quantitative mistakes in describing the 

physical phenomena involved. 

The authors of 25-30 showed that at the parameters of the medium at which a bipolaron 

can be formed, the minimum corresponding to the two-center configuration represents a 

shallow subsidiary minimum which disappears when the wave function (WF) of the studied 

system is chosen more adequately. Consideration of interelectronic correlations associated 

with a direct dependence of the WF of the system on the distance between the electrons leads 

to a qualitative change in the form of the inter-polaron interaction potential. In this case the 

shallow minimum corresponding to a bipolaron two-center configuration disappears and the 

power dependence has only one minimum corresponding to a one-center bipolaron, or Pekar 

bipolaron. 

To our knowledge, the first work in which a one-center bipolaron was successfully studied 

with due consideration of interelectronic correlations was that by Suprun and Moizhes [31]. 

Earlier Larsen 32 showed that taking into account of interelectronic correlations associated 

with a direct dependence of the WF on the distance between the electrons leads to a huge 

increase in the coupling energy of −D  − center or a bipolaron coupled on Coulomb potential 

analogous to −H  - ion in atomic physics. 

The reasons for which a two-center large-radius bipolaron still remains the subject of 

V. K. Mukhomorov’s studies are detailed in [33] where, apart from the problems concerned 

with erroneous investigations of a bipolaron spatial configuration, as will be shown in what 

follows, he formulated some propositions inconsistent with the fundamentals of both the 

polaron theory and quantum mechanics. We mean erroneous treatment of the variational 

principle and virial theorem as applied to calculations of the bipolaron energy. In this 

connection we focus our attention on criticism of the erroneous statements made in that paper. 

Besides, we make some critical remarks regarding some other works of the author on the 

theory of polarons and bipolarons. 

In [30] we thoroughly analyze the conditions at which the virial theorem holds true for a 

strong coupling bipolaron. There we deal with both one-center and two-center configurations 

as well as with the most general case, i.e. the two-center model, with due regard for 

interelectronic correlations. 
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VARIATIONAL PRINCIPLE AND VIRIAL THEOREM IN THE 

POLARON THEORY 

In [33] V. K. Mukhomorov states that the calculations of the bipolaron energy made in 

[25, 31, 34] (from here on the references are cited in accordance with the numeration of this 

work) with due regard for a direct dependence of the WF of the studied system on the distance 

between the electrons yielded lowered values of the ground state energy, and as a 

consequence, overestimated values of the bipolaron coupling energy. This opinion is reasoned 

by the fact that the authors of [25, 31, 34] found an absolute minimum of the functional 

corresponding to a strong-coupling bipolaron, rather than a constrained one, as they should 

have done according to the rule suggested by V. K. Mukhomorov. 

In other words, V. K. Mukhomorov argues that the use of a direct variational method for 

finding the minimum of a functional corresponding to the energy of a quantum mechanical 

system can lead to lowered values of the ground state energy. This statement is in conflict 

with a fundamental of the quantum mechanics which holds that “in the ground state, the 

energy of a system is the lowest minimal value, i.e. the absolute minimum” (see [35], p. 156), 

that is the energy of a system E  is determined as the lower boundary of 
1−

= HE , where Н is a Hamiltonian of the system. 

Let us replace the probe function )(0 r  (where r stands for r1 r2,…rN, N is the number of 

electrons) by the function )(0

23
r = N . The scaling coefficient  will be considered as a 

variational parameter. In so doing we do not impose any additional limitations on the initial 

functional, but, on the contrary, introduce the additional variational parameter   and seek an 

absolute (rather than constrained, as is suggested in 33) minimum of functional (1) with the 

WF  . Obviously, relations ][];[ 0  JEJE  are fulfilled, where E  is the ground 

state energy. In the general case we cannot make a categorical conclusion of which of the two 

values -  Jmin  or  0min J  - is larger, since during numeral minimization it is possible 

to appear in distinct local minima, corresponding to these functionals. Therefore the use of a 

scaling transformation does not restrict from below the energy of a functional being 

minimized. When the function )(0 r  leads to an extremum of the functional, at 1=  

 turns to 0 , and ][J  must have an extremum at 1=  36, 37. This property of a scaling 

transformation is so general that holds for any extremum of the initial functional ][ 0J : 

maximum, minimum, or any local extremum. We intentionally refer to a paper by S. I. Pekar 

and M. F. Deigen [37] who clarify the essence of the scaling transformation used in classical 

works on the interaction of electrons with a phonon field. The use of the properties of the 

initial Hamiltonian enables one to carry out variation in terms of the additional variation 

parameter   “by hand” and yields the well-known relation (valid for both a polaron and a 

bipolaron) which implies that the total ground state energy corresponds to the minimum of the 

functional )4)(min( 2 TVVE fq +−= , where E  is the ground state energy, T is the kinetic 

energy, qV  is the energy of an interelectronic interaction (for a polaron 0=qV ), fV - is the 

energy of electron- phonon interaction. 

V. K. Mukhomorov’s statement that the criterion of optimality of electron probe functions 

is the fulfillment of the virial theorem is erroneous since the theorem in itself is fulfilled for 

any extremum of the studied functional including maxima and all the local minima. Naturally, 

in S. I. Pekar’s works there is nothing like what V. K. Mukhomorov says referring to the 

monograph [38]. On the contrary, S. I. Pekar’s statement is as follows: “As is known from the 

theory of direct variational methods, one should assign meaning only to the lowest extremum 

value of a studied functional… All the other extrema can turn out to be a result of insufficient 

versatility of the approximation function and disappear when passing on to more general 
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approximations” 39, p.67 (monograph 38, which has become a bibliographic rarity and has 

been included almost completely in S. I. Pekar’s selection [39]). 

All the manuals to which V. K. Mukhomorov refers in [33], including classical works of 

the 50-s and still earlier papers provide an explanation to the fact that the scaling 

transformation procedure concerned with changing to a new probe function by the 

replacement    )()( 2/3
rr kk N →  can lead to a “considerable decrease of the energy” 36, 

p. 223, and not the reverse, as is stated in 33. Therefore, if it had turned out that in our 

calculations 25 or in calculations of other authors [31] cited in [33] as erroneous, the virial 

theorem does not hold, this would have indicated that the minimum of the functional is not 

found and the correct energy value should be lower, and not the reverse. 

Moreover, the virial theorem holds true even if we would vary an erroneous functional in 

which some terms are missing. As a rule, in this case the values of the ground state energy are 

considerably lowered. If a work with an erroneous result is published, the calculations are 

reproduced by other authors and the errors are eliminated. 

In 40, where the energy of a one-center bipolaron was calculated, some terms were 

missing in the kinetic energy. This led to a considerable decrease in the ground state energy as 

compared to other calculations. In particular, this value was much less than that in [31]. The 

calculations were reproduced by several authors [41 – 43] and the error was corrected. 

Later on the method for calculation of a bipolaron energy suggested in [40] was 

successfully developed in [44] (which was concerned with a one-center bipolaron) and 

yielded one of the lowest values of the total ground state energy of a bipolaron. V. K. 

Mukhomorov erroneously cites [44] as a work on a two-center bipolaron performed by 

alternative methods. 

PEKAR BIPOLARON AND ELECTRONIC CORRELATIONS  

(HISTORY AND FORMULATION OF THE PROBLEM) 

The variational functions used in [31] were earlier [45] applied to calculate the F  - center 

energy. S. I. Pekar offered his post-graduate student O. F. Tomasevich to calculate the F  - 
center energy taking into account correlations, related to the direct dependence of WF on a 

distance between electrons. 

S. I. Pekar never carried out such calculations himself, and his conclusion that taking into 

account of interetectronic correlations reduces the calculated value of the bipolaron energy by 

not more than 1-2% 38, 39, p. 124 was made with reference to O. F. Tomasevich’s 

calculations published in [45]. 

The same function was used in [46] to calculate the bipolaron energy in a metal-ammonia 

solution (we give a correct reference to A. S. Davydov’s paper, since in [33] reference [3] to 

this paper is erroneous). It is interesting, that A. S. Davydov did not perform such calculations 

either. As is reported in [46], (p. 7) they were made by a Kiev State University student, 

Rozenblat. 

A short message by S. G. Suprun and B. Ya. Moizhes about stability of Pekar bipolaron (just 

this model was suggested in monograph [38]) kindled the interest of Kievan physicists who 

were acquainted with the beginnings of the bipolaron theory. V. I. Vinetsky offered one of the 

authors (N. I. Kashirina) to reproduce O. F. Tomasevich’s calculations. They were reproduced 

and revealed that in [45] the normalizing integral N (which is the simplest one) was calculated 

erroneously. Since the phonon part of the functional )( fBpV  
2~ −N , just this negative term 

providing the stability of the F  -center and the bipolaron coupling energy was considerably 

underestimated in [45]. Unfortunately this error belonged among the rare cases when the 

coupling energy was underestimated rather than overestimated, as in [40], at the same time, 

passage to the limit of the functional without taking into account interelectronic correlations 

was fulfilled correctly. 
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The results of 45 were only corrected in 31. The title of the paper “On the role of 

electronic correlation in the formation of Pekar bipolaron” [31] indicates that its authors 

recognize S. I. Pekar as the creator of the model of a one-center bipolaron, the existence of 

which they have managed to prove in more that thirty years after S. I. Pekar had suggested the 

model, including the WF used for the variational calculations in [31]. 

Not long before the paper on a one-center bipolaron [31] came out, Larsen [32] calculated 

the 
−D center energy by Buymistrov-Pekar method [47] (BPM). There he reported that 

consideration of interelectronic correlations leads to a giant increase in the 
−D center 

coupling energy. The WF`s used in his work were very close to those applied by S. G. Suprun 

and B. Ya. Moizhes [31] for calculating the bipolaron energy. 

Therefore, in the pioneering papers on a one-center bipolaron 45, 46, a conclusion about 

a lack of any coupled states was drawn as a result of a trivial numerical error made in 

calculations of the bipolaron ground state functional, but not in the least owing to the fact that 

there, as distinct from [25, 31], the virial theorem was used, as is stated by the author of [33]. 

In paper 48 devoted to calculations of the one-center bipolaron energy, it is reported that 

in finding the minimum of the functional use is made of a scaling transformation at which the 

virial theorem holds true automatically. In other papers this may not be reported, as it is not 

always reported what particular method was used to find the minimum of the multiparameter 

functional. 

TOTAL ENERGY OF INTERELECTRONIC INTERACTION AND BIPOLARON 

SPATIAL CONFIGURATION 

The minimum obtained in the framework of a one-center model, could prove to be a 

maximum on the curve for the energy dependence of two polarons if we introduce an 

additional variational parameter which describes the axial symmetry of the bipolaron WF and 

plays the role of the distance between the polarization wells of two interacting polarons. In 

this case we could get a lower value of the bipolaron energy. With this aim in view we carried 

out variational calculations with a maximally versatile WF given in [25]. To describe 

qualitatively the disappearance of subsidiary extrema associated with gradual decrease of the 

WF versatility, we can restrict ourselves to only one term in the WF (4) given in [25]. These 

results do not require invoking any complicated programs for calculating the minimum of the 

multiparameter functional, neither do they demand high-power computers and can be easily 

reproduced. In fig. 1 we present some curves calculated for the simplest WF 

)2exp()1(
2

23212

2

111212 ba raaraPN −−−= rr ,                               (1) 

where N is a normalizing multiplier, −12P is an operator for transposition of electron 

coordinates, 321 ,, aaа  are variational parameters used for finding the energy of a two-center 

bipolaron as a function of a distance between the centers of polarization wells of two 

polarons. 

Curve (1) corresponds to absolute absence of interelectronic correlations associated with a 

direct dependence of the WF on the distance between the electrons ( 312 ,0 aaa == ) and at the 

point 0=R , where R  is a distance between polarons, changes to the value corresponding to 

doubled polaron energy calculated with one Gaussian function. Curve (2) corresponds to a 

more versatile WF, when a direct dependence on the distance between the electrons is lacking, 

but in view of the fact that 31 aa   at 0=R  the WF does not change to a product of one-

electron WFs, i.e. retains the unmultiplicative property. It is seen that in this case, at 0=R  a 

nonzero energy of a bipolaron coupling appears which corresponds to a minimum shallower 

than that at 0R . For curve (3) it was assumed that 02 a , 31 aa = . Subsidiary 

minimum corresponding to a two-center bipolaron disappears; the minimum at the point 
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0=R  deepens. And finally, for the case 02 a , 31 aa  , which is represented by curve 

(4) we have a deeper minimum at 0=R . 

It should be noted, that the virial theorem holds true for the four curves in fig. 1, that is for 

all R relation (5) given in [33] is valid, i.e. 

0)()(2
)(

=++ RURT
dR

RdE
R , 

where )(RE , )(RT , )(RU - are total, kinetic and potential energies of the bipolaron 

correspondingly, R - is the distance between the centers of polaron polarization wells. 

The total dependencies of the bipolaron energy on the distance between the centers of 

polarization wells of two polarons (curves (3) and (4) in fig.1) obtained by us for the 

parameters of crystals in which the criterion of the existence of a bipolaron coupled state is 

met, have a single minimum at 0=R , which corresponds to a spherically symmetrical 

formation, rather than to an axially-symmetrical one. The latter is in complete agreement with 

the qualitative inference and the dependence of the total energy of the interaction between two 

polarons presented in a review by Mott [49, fig.2] and does not contradict any general 

principles of the multielectron theory, as is stated in [33]. 
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Fig. 1. Dependencies of the bipolaron total energy on the distance between the centers of 

polarization wells of two polarons for the probe WF (1) in the strongest coupling limit 0= . 

Curves (1)  (4) correspond to the following parameters (1) − 312 ,0 aaa == ; (2) 

− 312 ,0 aaa = ; (3) − 02 a , 31 aa = ; (4) − 02 a , 31 aa  . The unit of energy is 

2

0

*2* amHa = , the unit of length is 
2*2 emao =  . 

 

Similar dependencies of the energies of +

2H  and 2H molecules on the distance between 

the protons obtained without regard for a repulsion between the nuclei [35] (fig. 3, p. 30), 50 

(fig. 3.3., p. 76) are well known. The latter enables one to study the energy spectrum of a 

helium atom or a hydrogen molecule within the framework of the same model. 

A minimum appears on the curve for the dependence of the hydrogen molecule energy on 

the distance between the protons 51 (fig. 56, p. 362) only when a repulsion between the 

protons is taken into account. Therefore, taken alone, the dependence of the WF on the 

distance between the protons does not lead to occurrence of a minimum at the point 0R . 
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In the Hamiltonian of a system consisting of two polarons, the term representing a 

repulsion between the centers of polarization wells is lacking. Moreover, even the Fröhlich 

Hamiltonian for a two-electron system is independent of the distance R  between the centers 

of polarization wells. This dependence appears only when the probe WF is chosen to contain 

an axial component. Therefore no wonder that an extremely small minimum at 0R  just 

disappeared when a more versatile WF was chosen. 

BIPOLARON EXCITED STATES 

The possibility of an existence of excited, or two-quantum states of bipolarons which can 

appear when we consider the energy of an interaction between two polarons, one of which is 

in an excited state (two-quantum 2s or 2p states), and the other is in the ground s1 -state, 

deserves a special study which will be carried out in an independent work. Notice, however, 

that in [52] the energy corresponding to a relaxed two-quantum bipolaron state in which one 

electron is in the ground 1s- state and the other - in the excited 2p − state (in what follows we 

put η=ε∞/ε0=0) 
*3 -0.08943Ha=F  is greatly lowered. 

We reproduced calculations of the bipolaron energy corresponding to this state for the 

functions determined by expressions (3), (4) in work [52]. For one-electron WFs 1s and 2p 

chosen in the form of )exp()1()1( 1

2

11 rsrrS −++=   and )exp()1()( przdrrP −+=  we 

obtained 
*3 Ha-0.0758146=F . At 0=  in WF S(1) we got 

*3 Ha-0.0750143=F . The latter 

result corresponds to WF (4) in [52] and, as we might expect, exceeds our value of the 

bipolaron energy in the lowest triplet state 
*3 0.076072Ha−=F which was obtained with the 

use of 5 Gaussian orbitals [25]. At the same time the energy of a polaron in 2p – state Fp= 

0.0197Ha* is overestimated in [52]. Our result obtained with the use of a WF P(r) coinciding 

with the WF (4) from [52] was Ep= - 0.021002Ha*. For comparison we present the value of 

the energy of a relaxed р-state obtained in [53] as a result of numerical solution of a relevant 

Euler equation Ep= -0.02285 Ha*. 

Both the errors lead to a considerable increase of the bipolaron coupling energy, especially 

with regard for the fact that, according to the rule suggested by V. K. Mukhomorov in [52], 

the bipolaron coupling energy in an orthostate is determined by the difference Fs+Fp−
3F 

(where Fs , Fp are the polaron energies in the ground state and 2p –state, respectively), rather 

than by 2Fs−
3F, as in our work [25]. In this connection we believe that conclusions about the 

possibility of the existence of a metastable one-center bipolaron in a triplet state are made in 

[52] as a result of numerical errors. 

TWO-CENTER BIPOLARON IN A STRONG COUPLING METHOD 

To make sure that in the strong coupling limit V. K. Mukhomorov deals with the same 

functional as the authors of 25, 31, 34 we compared functional (1) from [33] (which, 

according to V. K. Mukhomorov was obtained in [55] using the results of the translation-

invariant theory of a strong-coupling bipolaron) 
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with functional (15) from ref. [54]. This BP functional was obtained by Buymistrov-Pekar 

method for the case when translation symmetry is lacking. A similar functional is also used by 

V. K. Mukhomorov in work [56]. The expression )(RE  presented above describes a strong 

coupling addition to the complete functional. As it should follow from [54, eq. (16)], before 

the summation over the wave vectors this addition is written as 
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That is  BpJRE =)(  and both the functionals coincide with the strong coupling 

functional used in ref. [25, 31, 57, 58 up to passing on from summation to integration over 

the phonon wave vectors. The error concerned with incorrect determination of the kinetic 

energy in eq. (16) in [54] was corrected in [33, eq. (1)]. Therefore if we exclude technical 

misprints (functional (1) in [33] has a needless multiplier 1/2 which must be absent in 

determining the density matrix with a normalized Hartry-Fok function [36], p. 215) and pass 

on to the notation used in [25, 31], then it becomes clear that we deal with a traditional strong 

coupling functional for two electrons in a phonon field 

 ~2)( 131212 JJTRE −+=  ,                                               (2) 

where, ( ) +−= 12122112

*2

12 2 dmT  ; ( ) 12

2

12

1

1212 drJ  = − ; ( ) 3412

2

34

2

12

1

1313  ddrJ  = − ; 

( )1

0

11~ −−



− −=  ; ),( jiij rr , i, j=1,2; 0 , 
  are static and high-frequency dielectric 

permittivities, respectively. 

For Heitler-London WF, this expression exactly coincides with the part of the functional 

from ref. [59] corresponding to a two-electron system in a phonon field, describing an 

exchange-coupled pair of paramagnetic centers interacting with optical phonons in ionic 

crystals. Having omitted the terms for the interaction of an electron with Coulomb centers we 

get a functional of a two-center bipolaron 57, 58, or an “axially-symmetrical quasimolecular 

dimer” as it is termed by V. K. Mukhomorov in 54, 60. Clearly, this functional bears no 

relation to translation-invariant solutions of Fröhlich equation for a bipolaron, let alone the 

fact that it was obtained not in V. K. Mukhomorov’s works, as it is stated in [33]. 

Numerical calculations carried out in [33] demonstrate clearly that for the WFs dealt with 

by V. K. Mukhomorov, «the one-center state of a bipolaron is not stable under any 

circumstances which do not violate the main physical principles” [33]. This statement has no 

need in any proof in view of the fact that, in the limit of the strongest coupling, when 

00 ==   , for the multiplicative WF the bipolaron functional splits into a sum of two 

noninteracting polarons. In the general case, for multiplicative WFs if we add into (2) the 

identically zero expression 012012 // − JJ  and rearrange the terms, the bipolaron energy 

BpE  will be expressed as 

022 sspBpp JEEE += , 12

1

12

22 )2()1( draaJss 
−= ,                           (3) 

where )1(a  are one-electron orbitals. 

This property holds not only for the strong coupling functional, but also for bipolaron 

functional obtained by the intermediate coupling method. Therefore, in this approximation for 
0= at 0→R  the bipolaron energy must tend to the same limit as it does at →R , since 

the bipolaron WF chosen in the Heitler-London form at the point 0=R  changes into a 

multiplicative product of one-electron functions. 

THE USE OF BUYMISTROV-PEKAR METHOD FOR CALCULATING THE 

ENERGY OF A TWO-CENTER BIPOLARON 

The bipolaron method suggested in [47] for the case when a translation invariance is 

lacking, was used in [54, 60] to consider a two-center bipolaron. For the most part, the text of 

these works reproduces that of paper [47] which deals with a two-electron system in an ionic 

crystal, up to equation (18) in [47]. Since V. K. Mukhomorov passes on from Fröhlich 
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Hamiltonian and the standard designations to the Hamiltonian used in [47] the derivation of 

the final expression (18) from [47] takes more space than in the original paper. Formula (18) 

is written in [47] with regard to the fact that correlation effects are absolutely lacking, and the 

WFs are chosen in the multiplicative form (one-center system, Pekar bipolaron), therefore the 

part of the two-electron functional corresponding to the addition of an intermediate coupling 

is simplified and is written in the form of a sum of relevant additions of two polaron 

functionals. Nevertheless V. K. Mukhomorov erroneously inserts in this functional a non-

multiplicative two-electron function by Heitler-London method. In order to introduce the 

strong coupling, he uses the general form of the functional which was earlier studied by 

Vinetsky [58] who dealt with one-electron functions chosen in the form (20) from [54]. The 

functional for intermediate coupling addition in [54, eq. (14) and (15)] contains an error, since 

the non-multiplicative functions should have been inserted in quite a different expression (eq. 

10 from [47]). For this reason in [54, 60] all the terms containing the form 

121212 )exp( − kri  are lost in the intermediate coupling addition, that is the part of the 

functional corresponding to the intermediate coupling is determined by the erroneous formula. 

As for the strong coupling functional from ref. [54, 60], it had already been investigated by V. 

L. Vinetsky in work [58] and had not led to a considerable widening of the bipolaron 

existence domain as compared to the calculations in which the simplest hydrogen-like 

functions were used. 

At the point 0=R  ( 0= ) the bipolaron coupling energy must identically turn to zero 

since there the Heitler-London functions change to a product of one-electron orbitals and the 

bipolaron functional breaks up into a sum of two polaron functionals. In V. K. Mukhomorov’s 

work, on the contrary, the maxima on the curves for the bipolaron coupling energy 

PBp FFF 2−=  at the point 0=R  correspond to negative values and fall to still lower 

energies as the coupling constant decreases, and at →R  start demonstrating correct 

asymptotic behavior, i.e. vanish (fig. 1 in [60], and coinciding with it fig. 1 in [59]). Therefore 

in the sited works, the limit transitions are not fulfilled which indicates that they contain 

numerical errors. 

VIOLATION OF VIRIAL THEOREM IN V.K. MUKHOMOROV’S WORKS 

Analysis of fig.1 in paper 33 can serve to illustrate that the virial theorem does not hold 

true there, rather than prove that a one-center bipolaron is not stable. Indeed, curve (1) 

corresponding to the bipolaron kinetic energy in Hartry-Fok approximation, at 0=R  changes 

to double polaron energy with opposite sign. At the same time, as is seen from fig.1 in 54, 

60, at the same point, the energy of the bipolaron ground state in the strong coupling limit is 

not equal to double bipolaron energy in the same Hartry-Fok approximation. The numerical 

results in [54] were reported to have been obtained approximately. At first the strong coupling 

functional was varied, and then the parameters obtained were substituted into the addition for 

intermediate coupling. This approximation is justified for relatively high values of the 

parameter . Thus, the virial theorem must hold true for the part of bipolaron functional 

corresponding to the strong coupling, and according to this theory, at the extremum point at 

0=R  (point of maximum in the case under consideration) the total energy must be exactly 

equal to kinetic energy with opposite sign. 

Dependencies (2) and (3) in fig.1 of [33] describing consideration of correlation terms in 

the total functional are also erroneous. Fig.1 in 33 suggests that at 0=R  the kinetic energy 

decreases as the correlation effects increase. According to the virial theorem this means that 

the total energy of the system increases when the electronic correlations are taken into 

account. Let us remark here that this behavior of the kinetic energy cannot be accounted for 

by a trivial technical misprint in fig.1 in [33], since in the text of [33] V.K. Mukhomorov 

interprets fig.1 as follows: “It is seen from fig.1 that as the versatility of the electron WF 
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increases, the general dependence, i.e. decrease of the contribution into the electron kinetic 

energy at 0→R  is preserved”. Notice that parameter С1 is variational (see eq.(9) in 33), 

and, as the functional varies, it should be put equal to zero since, as it follows from fig.1 in 

[33], inclusion of the electron configuration p2  into the WF leads to a higher energy. Maybe 

in [33] in this case too, in exact antithesis with the virial theorem, the total energy decreases 

as the kinetic energy falls down? Indeed, at page 817 33 one can read that “at zero the total 

bipolaron energy decreases due to inclusion of the electronic correlation into the total 

function”. 

The question arises of whether V.K. Mukhomorov carried out any numerical calculations 

at all, or the dependencies of the bipolaron coupling energy on the distance between the 

polarons given in 33, 54, 60 were obtained from qualitative assumptions in which the main 

properties of the system under consideration were not taken into account? 

In fig.2 we show the dependencies of the bipolaron kinetic energy obtained by us for the 

same parameters of the WF as in fig.1. It is seen that the kinetic energy curves occur in 

reverse order as compared to the curves representing the total energy of the system and at 

0=R  are equal to the bipolaron potential energy with opposite sign. 
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Fig. 2 Dependence of the bipolaron kinetic energy on the distance between the centers of 

polarization wells of two electrons for probe WF (1) and parameter 0= . The energy 

dependencies (1)  (4) correspond to the same variation parameters values as in fig. 1. 

 

POLARON ENERGY IN BUYMISTROV-PEKAR METHOD 

(TRANSLATION SYMMETRY IS LACKING) 

The calculations of the polaron energy by Buymistrov-Pekar method presented in [54, 60] 

for determination of the bipolaron coupling energy should also be recognized as erroneous. In 

these works V. K. Mukhomorov states that in the intermediate coupling range (αс  5 ÷ 10) 

Buymistrov-Pekar method yields lower values of the polaron energy than integration over 

Feynman trajectories does. But actually Buymistrov-Pekar method leads to energies lower 

than in Feynman method only in the strongest coupling limit ( 30c ) and only due to the 

fact that this method enables one to choose the WF in a more accurate form and the polaron 

energy in Feynman method in the limit of large   approaches the result obtained by direct 

variation of a one-parameter Gaussian function. At 6= c , the polaron coupling energy 

obtained by Buymistrov-Pekar method [47], which V. K. Mukhomorov uses in his works, 

obeys a simple dependence −pJ  given in 61. This value of the polaron energy is 
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much higher than that obtained by Feynman. Paper 34, cited by V. K. Mukhomorov as 

erroneous, presents a correct dependence of the polaron energy, obtained by Buymistrov-

Pekar method, on the constant of electron-phonon interaction. Paper 26, where the energy of 

an intermediate coupling bipolaron is calculated by Buymistrov-Pekar method [47], presents a 

comparison of polaron energies obtained by Buymistrov-Pekar method and other techniques. 

At the same time, to study the region of a bipolaron existence, V. K. Mukhomorov not 

only fails to use the value of Feynman energy, but he also takes a value considerably 

exceeded as compared to that found by Buymistrov-Pekar method. For example, in 54, at 

5= , the polaron energy is calculated to be ( ) −=+−=  3.41072.0622.1 2

pJ  instead 

of − 5 , as it must be in Buymistrov-Pekar method for this constant of electron-phonon 

coupling irrespective of whether Gaussian, or hydrogen-like functions are chosen as probe 

functions of polarons. If V. K. Mukhomorov had chosen the exact polaron energy value, as it 

is done in ref. [ 25 ] for the case of strong coupling, or Feynman energy, as in ref. [ 26 ] for 

intermediate coupling, then even in the limit 00 = , the two-center bipolaron energy 

would have been higher than double polaron energy. Work [54] differs from earlier work [60] 

only in the number of graphs illustrating the dependence of the intermediate coupling 

contribution on the crystal parameters. The contribution itself is calculated by V. K. 

Mukhomorov with the use of the erroneous expression. 

Incorrect treatment of Buymistrov-Pekar method and erroneous results obtained in 

calculations of the polaron energy by this method attracted our attention to work [62] where 

the method is used to investigate a polaron. As a result of variation of the polaron functional 

(obtained using Buymistrov-Pekar canonical transformation and averaging of the initial 

Hamiltonian over phonon variables) with respect to the electron WF, V. K. Mukhomorov gets 

a simple differential equation describing a polaron. Apart from the term corresponding to the 

electron kinetic energy, the equation contains a term )exp( 2

0 rV −  which, according to V. K. 

Mukhomorov, corresponds to the effective potential of interaction between an electron and 

phonons. Parameters of the potential are determined as a result of the parametrical fitting with 

the use of the value of the variational parameter   in the simplest Gaussian 

function )exp(~)( 2rrp − . The parameter   is determined by the variation of the initial 

functional. 

To our opinion, the problem of parametrical fitting is the most exacting. The author 

should have demonstrated that as a result of solution of a Schrödinger equation obtained in 

this way, one can obtain, at least approximately, the same polaron energy and the WF that 

were used in deriving the fitting potential. In other words, he should have proved that the 

method of deriving an approximate differential equation is self-consistent. In [62] no 

numerical values are given for the variational parameter  , nor for the parameters 0V  and   

of the fitting potential. The author of [62] carefully investigates the Schrödinger equation and 

arrives at a conclusion that the first bound state appears for the parameter 8.2= . 

As a numerical illustration we refer to our calculations of the polaron energy carried out 

by Buymistrov-Pekar method for the parameter 9.2= which slightly exceeds the critical 

value found in [62]. For the simplest WF of a polaron chosen in the form )exp( 2rp  −= , 

we obtained the following values of various contributions into the polaron energy 

icscep VVTE ++= (where ppeT −= , scV  is the term of the potential energy of the 

strong coupling functional, icV  is an intermediate coupling addition in the total 

functional):
51009322.4 −= , 

91026354.5 −=eT , 
41033942.1 −−=scV , 89987.2−=icV , 

90000.2−=pE  (Feynman units of energy and length are used). Therefore, for 9.2= , the 

intermediate coupling Buymistrov-Pekar method yields the values completely coinciding with 
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those found by the weak coupling method, i.e. −pE . This peculiarity of Buymistrov-

Pekar method is discussed in [47], eq. (11)-(14). This limiting case is obtained for the electron 

WF
21−== Vconst , where V is the crystal volume. Indeed, for 6 , the functional of 

Buymistrov-Pekar method [47] is practically independent of the choice of the WF. For any 

WF, whether it be chosen in the form of a sum of exponents, or one exponent, or a sum of 

Gaussians, or one Gaussian, or a constant value independent of r , the polaron energy is 

−=pE  with good accuracy. In view of the fact that, according to eq. (11) of work [47], 

in the case under consideration the matrix element is 0)cos(  kr , differential equation 

(8), given in [62] takes a simple form =− *2 2m . Therefore, for 6 , the method 

suggested by V. K. Mukhomorov yields a differential equation independent of electron-

phonon interaction. The latter results from the fact that V. K. Mukhomorov discarded in the 

functional all the terms which being averaged over angular variables were independent of the 

electron coordinate, however just these terms lead to a weak coupling formula for polaron 

functional. 

In the limit of strong coupling, on the contrary, in equation (8) from [62], we can 

approximately put 0ka , then equation (8) studied by V.K. Mukhomorov in [62] goes over 

into Schrödinger equation for an electron moving in a field of self-consistent polarization 

potential: 

( )( )2

1 2 12 2 12 0c r d +    +  = ,                                      (4) 

where )( ii r , and WF 
2  is determined as a result of minimization of the polaron 

functional corresponding to the total energy of the studied system. 

In the limit of strong coupling, the main equation (9) in [62] must have the same form. 

However, it does not, since the square bracket in the denominator under the integral sign lacks 

a square, a multiplier by the integral contains a superfluous factor 22 c , and the unnecessary 

multiplier 2

c appears at the term in the denominator of subintegral expression proportional to 

the wave vector. 

In view of lots of errors in the basic equation (9) used in work [62], below we present a 

correct polaron equation which we obtained after varying expression (10) from work [47] 

with respect to the electronic WF and averaging it over angular variables. 

3

2 2 2

4 sin( )
0
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c k

k

k kr J
dk

r k J

 
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 + − 
 ,                                       (5) 

where )()exp()( rirJ k = kr ; for )exp(~ 2r−  matrix element kJ  equals 

)8exp( 2 k− , pc ace = 22
 is the dimensionless constant of electron- phonon 

interaction, 1

0

1 −−

 −= c , ( )= map 2  is the effective Feynman polaron radius. 

The extreme case of the strong coupling can be obtained from (5), if in the denominator of 

subintegral expression we put 01 2 − kJ , that corresponds to the approximate relationship 

0
)1(2

)1(
222

2


−+

−
−=

k

kk

k
Jmk

JC
a


,                                                (6) 

where 0

2 11,4 −=−= nckceCk  , = n is the refractive index, or in the 

dimensionless Feynman units ( 12 =m , 1= , 1= ) kC ck = 8 . 

Expression (6) is taken from work [47] (see formula (13) and (17)), because in work [62] 

commented by us, the coefficient kC  and expression (6) determining a variation parameter 



KASHIRINA, LAKHNO 

MATHEMATICAL BIOLOGY & BIOINFORMATICS, 2007, v 2, № 2, http://www.matbio.org/downloads_en/Kashirina_en2007(2_10).pdf 

22 

are written down with errors. Thereby in the limit of the strong coupling equation (5) 

rearranges to the form 

4 sin( )
0c kkr J

dk
rk

 
 + +   =  

 .                                           (7) 

If in equation (4) we substitute the expression ( ) =− 22

12

1

12 2)exp( kir kr , integrate over 

the coordinate 
2r  and average over the angular variables of the wave vector, we will get, as 

one would expect, an expression which coincides with equation (7). 

Therefore we believe that Fredholm integral equation studied in [62] bears no relation to 

Buymistrov-Pekar method and the polaron problem. 

V. K. Mukhomorov states that the method of electron configurations interaction that he 

uses for Schrödinger states of electrons in a combined polarization potential well (which are 

obtained from one-electron eigenvalue equations) yields that nodeless state s1  occurs over the 

p2 - level on the energy scale. This contradiction allegedly disappears due to the fact that an 

additional restriction, namely virial theorem, is placed from below on the functional energy. 

We believe that this fact is caused by the same reason for which Buymistrov-Pekar method in 

the case of lack of translation symmetry [47] yields lower energies of the polaron energy than 

Feynman method does, which is reported in [54, 60, 62]. However, when one needs to expand 

the region of a bipolaron existence, the values of bipolaron energy calculated by V. K. 

Mukhomorov in [54, 60] by Buymistrov-Pekar method exceed not only those calculated by 

Feynman method, but also the values calculated by the perturbation theory technique. That is 

V. K. Mukhomorov makes numerous numerical errors which lead him to results inconsistent 

with reason. 

ABOUT ERRONEOUS TREATMENT OF LITERATURE ON BIPOLARON 

THEORY IN V. K. MUKHOMOROV’S WORKS 

In [25] we did not state that the one-center bipolaron model is generally accepted, as 

V. K. Mukhomorov treats our words. Works [25-30], as well as [63], where integration over 

trajectories is used, just deal with the two-center bipolaron model. In these works the distance 

between the centers of polarization wells of the two polarons is considered as a variational 

parameter, but the energy minimum realizes for the one-center configuration rather than for 

the two-center one. In 25 we wrote that in view of a considerable energy gain obtained for 

the one-center bipolaron, after publication of [31] investigations of the two-center 

configuration practically ceased. The only exception is numerous works by V. K. 

Mukhomorov. The author of 33 states that the situation is directly opposite and in all the 

known works done by alternative methods a bipolaron in the ground singlet state is 

established to be a two-center axially-symmetrical dimer. By way of example he refers to 

papers 44, 64−69. Let us analyze these works and show that the publications cited in [33] 

can serve to illustrate the validity of our statement, rather than prove V. K. Mukhomorov’s 

contention. Among the papers cited in 33 only three, namely 64, 67, 68, deal with a two-

center bipolaron. 

In 64 (which was published much earlier than 31) a model Hamiltonian is suggested 

for calculations of the bipolaron energy by integration over trajectories. There a variational 

parameter is introduced which can be treated as a distance between the centers of polarization 

wells of the two polarons. The model is considered qualitatively and numerical calculations 

are lacking. 

In the well-known and frequently cited work [65] the bipolaron coupling energy is 

calculated by integration over trajectories in the framework of a one-center model, but not in 

the context of a two-center one, as it is stated in [33]. In the limit of strong coupling the 

bipolaron energy obtained in [65] coincides with the value found by the strong coupling 

method with the use of WF (1) for a1=a3, a20, 0=R . It is emphasized (65, p.252) that in 
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the strong coupling limit the best results are obtained with the use of the WF presented in 

[31], and also with the WFs of the form of 

))(exp(|)|1(~),( 2

2

2

12121 rrrrkrr +−−+  , 

))(exp())(exp(1(~),( 2

2

2

1

2

2121 rrrrkrr +−−−−  , 

which enable one to describe the correlation effects more correctly than WF (1) does. 

Attention is drawn to the fact that in WF (1) correlation effects are taken into account only if 

02 a , otherwise a bipolaron is not formed. 

Later on 63, the results of 64, 65 were generalized by introducing an additional 

variational parameter a  corresponding to the distance at which the interacting electrons 

fluctuate. This parameter is an analog of the distance between the centers of polarization wells 

of two polarons. Variational calculations revealed that the minimum of the functional 

corresponds to a =0. This result was obtained by the method of integration over trajectories. 

It completely correlates with our conclusion that a two-center bipolaron is unstable. 

In 66 an indirect interaction of two electrons through a field of optical and acoustical 

phonons is investigated by the excitation theory method. The main conclusion of the work is 

that in ionic crystals an effective electron-electron interaction induces attraction of the 

electrons and screening of the Coulomb repulsion between the electrons. Therefore when an 

electron-phonon interaction is taken into account, the “inoculating” Coulomb repulsion 

r1 decreases and becomes equal to r01  . Against the background of the residual 

interaction r01   the potential of interaction between two electrons oscillates. These 

oscillations are caused by cutoff of the phonon spectrum by Debye value of the phonon wave 

vector. 

It should be noted that in 66 the energy of interaction between two polarons is not 

calculated, since averaging is performed only over the coordinate corresponding to the center 

of mass of the interacting particles while the coordinate corresponding to the distance between 

the electrons remains free. Therefore in the limit of weak coupling the authors of [66] 

calculate a screened potential of interaction between two electrons and do not deal with 

finding the coupling energy of a one-center or two-center bipolaron. 

In 67 the energy of a two-center bipolaron is found by a variational method. Exchange 

effects are taken into account by introducing an exchange-correlation pseudo potential used in 

atomic and molecular systems. The WF is chosen in the simplest form corresponding to 

Hartry-Fok approximation. Consideration of correlation effects leads to lowering of the two-

center bipolaron energy. At 0=R  a nonzero coupling energy appears, however the one-center 

configuration corresponds to the maximum on the curve for the energy dependence on the 

distance R between the centers of polarization wells of two polarons. 

Our calculations yield a similar dependence of the bipolaron energy on the distance R for 

a probe WF determined by a sum of several terms of the form of (1) for the parameters 

iii aaa 312 ,0 = (i=1,2…N, N is the number of the terms). In 29 we give a dependence of the 

bipolaron energy on the distance R for the case of intermediate coupling ( 0,9 ==  ) 

corresponding to this approximation. When the interelectronic correlations ( iii aaa 312 ,0  ) 

are taken into account still further, the extremum corresponding to the two-center 

configuration disappears. We believe that introduction of a more versatile pseudo potential 

which would take into account peculiarities of interaction between the electrons and a phonon 

field and specifics of the direct dependence of a probe WF on the distance between the 

electrons could improve considerably the results of [67] where the findings of [57, 58] are 

perfected only slightly. 

In 68 a two-center bipolaron is studied by a simplest method of molecular orbitals. 

Configuration interaction is not taken into account. A later work of the same author 44 deals 
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with a one-center bipolaron. The minimum found there is much deeper than that for a two-

center configuration while in absolute magnitude it is nearly equal to that obtained in [31]. 

In paper [69] the properties of polaron gas are considered with due regard for interaction 

between polarons. The authors deal with weak and intermediate (from the side of weak 

7 ) electron-phonon coupling. In the limit of weak coupling the polaron gas is studied by 

the excitation theory method. At first, the coordinate of the bipolaron center of mass is 

excluded by the method suggested in [61], then the effective potential of pair interelectronic 

interaction is studied as a function of the distance 
12r  between the electrons. Here, as in [66], 

averaging over the distance between the electrons is not carried out, therefore the object of 

investigations is not the total energy of the system consisting of two polarons, but a pair 

interelectronic potential shielded by phonons. Therefore the dependencies given in fig.1 of 

paper [69] remind (in the region of large distances between electrons) the dependence of the 

total energy of a two-center bipolaron on the distance between the centers of polarization 

wells only in shape. In passing on to systems with weak coupling, the curve changes into a 

hyperbole describing the dependence
121 r . 

Larsen [32] studies a screened interelectronic potential in the limit of weak electron-

phonon coupling by Buymistrov-Pekar method. After averaging over the phonon variables, 

Adamovski’s method of canonical transformation [70] also enables one to identify a pair 

(repulsive) interelectronic interaction corresponding to effective interaction between the 

electrons screened by a phonon field. While in [69] a pair interparticle potential is called an 

effective self-consistent potential of interelectronic correlation, in [70] this interaction is 

called interpolaron. However in the subsequent text it is explained that averaging of this 

interaction over the electron coordinates does not yield the total energy of the two polarons, 

since the main contribution into the bipolaron energy is made by the terms in the total 

functional which are independent of the distance between the electrons. These terms are 

responsible for the formation of a coupled bipolaron state. 

Buymistrov-Pekar method (from the strong coupling region) and strong coupling methods 

do not enable one to identify this interaction since the coordinates of the center of mass 

cannot be separated from the distance between the electrons. In [71] these variables are 

separated, however only due to the fact that the author erroneously excludes the terms 

hindering this separation from the bipolaron functional, considering them to be fast 

oscillating. We believe that in carrying out variational calculations this approach is invalid 

and can be justified only when the missing terms cannot lead to an increase in the total 

energy. But if we bear in mind that in the strong coupling approximation the phonon spectrum 

is not restricted to Debye wave vector and integration over phonon variables and over electron 

coordinates is performed within infinite limits, then the origin of coordinates can be chosen at 

any point. In this case the operator of electron-phonon interaction can contain arbitrarily fast 

oscillating terms, which, according to the logic of the author of [71], can be neglected, 

including the operator itself. After “separation of the variables” V. K. Mukhomorov suggests 

a numerical solution of the equation obtained in this way, and as a zero approximation he uses 

the results of [54, 60] the fallacy of which we have already discussed. 

E. P. Solodovnikova and A. N. Tavkhelidze [72] had generalized Bogolubov-Tyablikov 

translation invariant approach to a two-particle system long before paper [71] was published. 

At the end of their paper the authors express profound gratitude to N. N. Bogolubov for 

numerous and fruitful discussions of the problem of two bodies in the limit of strong 

coupling. Besides, well before the publication of [71] the bipolaron energy was calculated in 

the framework of a one-center model for coordinates of the center of mass and the distance 

between the electrons. The authors of [73] showed that the problem can be reduced to solution 

of two integro-differential equations. They explain in detail why one fails to separate the 

variables. In the iteration procedure used to find a numerical solution of the equations 

obtained, they use WFs, found in [43] by a variational method, as a zero approximation. The 

bipolaron energy obtained was lower by a few percent than that found earlier [43]. 
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V. I. Vinetsky (an author of pioneering works which proved the possibility of the 

existence of a bound bipolaron [57, 58] in the framework of a two-center model) devoted his 

last work (co-authored with his followers) to calculations of the one-center bipolaron energy 

[74]. There he reproduced the results of [31] and calculated the bipolaron energy in terms of 

the center of mass and relative distance between the electrons. Use was made of both 

Gaussian and hydrogen-like WFs. One of the main conclusions of the work was that 

consideration of the correlation associated with a direct dependence of the WF of the system 

on the distance between the electrons considerably improves the criteria of a bipolaron 

existence. 

The aim of our calculations [25-29] was not only to get qualitative estimates but also to 

obtain reliable numerical results. Thus, we applied our system of functions to calculate the 

energy of −Н  ion and the energy of para- and ortho- helium. The reliability of our approach 

was checked in calculations of the energy of a singlet and the nearest triplet terms of a 

hydrogen molecule. The results are given in [29] and represent one of the best numerical 

values of these quantities obtained thus far. The WFs that V. K. Mukhomorov applied to such 

classic systems of atomic and molecular physics yield only their qualitative estimates. This is 

especially true in regard to calculations of the energy of −Н ion. In all the works aimed at 

getting exact energy values of the above mentioned quantities account is necessarily taken of 

the effects associated with the direct dependence of the WF of the system on the distance 

between the electrons. In paper [75] which provides an example of the most exact calculations 

of the energy of two-electron atomic systems, use is made of a system of WFs very close to 

ours, namely  −−−=
ш

iiiii rararaPC )2exp()1( 3122111212 . This system is also used in papers 

[70, 76] the results of which are in a good agreement with the energies of a free bipolaron 

state [27-29] and a bound one [77] obtained by us by the intermediate coupling method. 

V. K. Mukhomorov states that “if a one-center state of a continuum bipolaron were stable, 

additional consideration of the so-called ion terms in the electron configuration would lead to 

stabilization of the bipolaron”. At the same time he refers to one of his works where simple 

calculations demonstrate that such corrections play no part in stabilization of bipolaron 

formations. We have reproduced the results of [31] and can state that calculation of the 

bipolaron energy with due regard for interelectronic correlations with the help of hydrogen-

like functions used in [31] is an extremely cumbersome and labor consuming procedure. This 

is especially true in regard to analytical calculation of the integral corresponding to electron-

phonon interaction. Therefore “simple calculations” presented by the author of [33] are 

erroneous. As for the fact that consideration of ion terms leads to stabilization of a bipolaron 

in a one-center configuration, this is just what we showed in [25]. 

We have not calculated the stability of biexcitons with regard for electronic correlations, 

therefore we cannot compare two-center and one-center models for this quantum-mechanical 

system. We can only give a reference to calculations of the biexciton energy carried out by 

Adamovski in the framework of a one-center model of an exciton and biexciton [78]. We 

believe that in view of a great difference between the effective masses of electrons and a hole, 

a biexciton may exist in a two-center configuration. The reason is that heavy holes repulse 

one another, so as protons in a hydrogen molecule do. This fact is reflected in the biexciton 

Hamiltonian. In a bipolaron the initial Hamiltonian does not have any repulsive terms, 

therefore the parallel that V. K. Mukhomorov draws between a biexciton and bipolaron is 

invalid. 

Beneath criticism are V. K. Mukhomorov’s remarks concerned with references to 

nonexistent experiments which allegedly confirm the preference of the two-center bipolaron 

model over the one-center one in metal ammonia solutions. Up to the present moment there is 

not any experimental evidence for the existence of a continuum polaron in these systems, not 

to speak of a two-center or one-center bipolaron. We can only speak of attempts to describe 

experimental facts in the framework of some or other model of which the polaron one, 
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especially in continuum consideration, is not the main. This is indicated just in the monograph 

by Tompson which the author of [33] refers to. 

We believe that after publication of paper [31], repeated reproduction and confirmation of 

its results by some independent research teams by various methods and with the use of 

various WFs chosen with regard for the direct dependence of the distance between the 

electrons, the author of [33], in turn, could have reproduced pertinent calculations and make 

sure that the virial relation, as it must be, holds true not only for the subsidiary minimum 

corresponding to the two-center configuration, but also for the one-center one, which leads to 

much lower energies of the bipolaron energy. Then he would not have done a series of 

erroneous works devoted to the study of vibrational and rotational spectra of “a continuum 

axial-symmetrical quasimolecular dimer” near the subsidiary minimum corresponding to the 

bipolaron two-center configuration in isotropic crystals. Numerous references to the works of 

this series are given in V. K. Mukhomorov’s papers cited in this article. 
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