
Mathematical Biology and Bioinformatics
2018. V. 13. № 2. P. 609–619. doi: 10.17537/2018.13.609

====================== MATHEMATICAL MODELING ======================

UDC: 123.4

Simulation of Buffered Advection Diffusion of Calcium in a

Hepatocyte Cell

Jagtap Y.D.*, Adlakha N.†

AMHD, S. V. National Institute of Technology, Ichchhanath

Surat, Gujarat 395007, India

Abstract. The calcium signaling is the basic and vital component of cell

communication in almost all types of human and animal cells. All the vital

functions of parenchymal cell of liver known as hepatocyte cell are regulated by

this calcium signaling. The calcium concentration at specific levels are responsible

for each of the various functions of the cell. The deeper understanding of the

mechanisms and the factors affecting the calcium dynamics in a hepatocyte cell

is vital for various clinical applications related to diseases of the liver. In this

paper, mathematical model is proposed to study intracellular calcium dynamics in

hepatocyte cell by incorporating the processes like diffusion, advection, buffering

etc. The reaction advection diffusion equation has been employed for a two

dimensional unsteady state case, to form an initial and boundary value problem.

The initial and boundary conditions are formulated based on the physical conditions

of cell. Finite volume method and Crank Nicolson scheme have been employed

along spatial and temporal dimension respectively to obtain numerical solution. The

impact of endogenous and exogenous buffers, advection and diffusion on calcium

dynamics in hepatocyte cell has been studied with the help of numerical results.

The rise and fall in spatio-temporal calcium concentration in hepatocyte cell in

response to specific conditions of advection, diffusion and buffer concentrations is

observed. These variations in spatio-temporal calcium concentrations are regulated

in narrow range due to fine coordination among these processes of cell under

normal environmental and physiological conditions. The proposed model gives

better understanding of interrelationship and interdependence of these physical

processes for fine coordination among them to maintain structure and functions of

cell.
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INTRODUCTION

All vital functions of hepatocyte cell like glycogenolysis, production of proteins, contraction

of bile canaliculi, apoptosis, cell cycle, the movement of lysosomes and other vesicles in

cytoplasm are regulated by ionized calcium [1, 2]. The hepatocyte cell is cubical in shape and

its internal calcium stores like endoplasmic reticulum are more denser in apical region of cell.

The Ca2+ ions released from gate of calcium channel in cytoplasm undergoes different physical

mechanisms like transportation and buffering etc. The calcium transport takes place by the

combination of advection and diffusion in cytoplasm. The advection is the transport of Ca2+

ions by bulk motion due to pressure, viscosity, gravity etc. It causes the movement of calcium
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ions in cross flow direction. While the transport of Ca2+ ions due to concentration gradient is

known as diffusion. Besides this transportion activity, calcium concentration is also controlled

by buffering mechanism. About 99 % of calcium in cytoplasm binds with buffers to change their

enzymatic properties [3, 4].

Fig. 1. Transport mechanisms in a hepatocyte cell.

It is evident from experimental investigation that calcium release always originates from

specific region of the cell [1, 4]. The essential role of diffusion mechanism and buffers on

the calcium dynamics is studied in cell with the help of mathematical model by M. S. Jafri

[3]. The significance of numerical models to study biological processes involving diffusion and

buffering is also discussed by past researchers [5]. The numerical study of calcium dynamics

in the presence of excess buffer is reported in neuron cell [6, 7], fibroblast [8, 9], astrocyte

[10, 11], oocyte [12], myocyte [13, 14] and hepatocyte cell [15] for one and two dimensional

cases. The effect of calcium fluxes on spatio temporal variations of calcium concentration has

been studied in neuron cell [16] and oocyte cell [17, 18]. Some attempts have been made to

study the mechanics of calcium oscillations in pancreatic acinar cell [19, 20]. Very few attempts

are reported for the study of one dimensional advection diffusion of calcium in astrocyte [21],

myocyte [22] and oocyte [23]. No any attempt have been observed to study of buffered advection

diffusion of calcium in hepatocyte cell. In this paper a mathematical model is derived to study

combined effect of advection diffusion of calcium in the presence of different buffers in two

dimensions. The results are obtained to study organization of calcium concentration with time,

in presence of different buffers with different buffer concentrations, at different cross flow

velocities and various values of diffusion coefficient of calcium in cytoplasm. In the primary

part mathematical model with auxiliary conditions is derived to incorporate all mechanisms

under consideration. Then finite volume method is implemented and simulated in MATLAB at

different values of biophysical parameters. Obtained results are discussed in later part of paper.

MATHEMATICAL MODEL

Advection diffusion of calcium in a hepatocyte cell is governed by the principle of

superposition. Total calcium flux in the cell is sum of diffusive and advective flux. The process

of advection diffusion in presence of excess buffer is described by following expression [19, 20],

Rate of change of calcium concentration in hepatocyte cell

= Diffusive flux + Advective flux + Buffer effect.

The partial differential equation involving diffusion, advection and buffering mechanism is

given by [3, 24],

610

Mathematical Biology and Bioinformatics. 2018. V. 13.№ 2. doi: 10.17537/2018.13.609



SIMULATION OF BUFFERED ADVECTION DIFFUSION OF CALCIUM IN A HEPATOCYTE CELL

∂C
∂t

= DC

(
∂2C
∂x2 + ∂2C

∂y2

)
− u∂C

∂x
− k+

j [Bj]∞(C − C∞)

for

0 ≤ x ≤ 20, 0 ≤ y ≤ 20, t ≥ 0, (1)

where C is cytosolic calcium concentration. [B]∞ excess buffer concentration given by
K[B]T
K+C∞

,

where K =
k+j

k−j
is dissociation constant. The numerical values of biophysical parameters used

for simulation are mentioned in Table 1 [3, 24].

Table 1. Numerical values of biophysical parameters

Parameter Description of parameter Numerical value
DC Diffusion coefficient 100-200 µm2/S
u Advection velocity 10-20 µm/s
C∞ Stable calcium concentration 0.1µM

k+j for EGTA Buffer association constant 1.5µM−1S−1

K for EGTA Dissociation constant 0.2µM

k+j for Endogenous buffer Buffer association constant 50 µM−1S−1

K for Endogenous buffer Dissociation constant 10µM

k+j for BAPTA Buffer association constant 600 µM−1S−1

K for BAPTA Dissociation constant 0.17µM
[B]T Total buffer concentration 50-150 upµM

Auxiliary Conditions

The shape of hepatocyte cell is cubical, having sides of length approximately 20 µm each.

The initial and boundary conditions can be framed by considering geometry of cell as follows.

Initial condition. Initially stable calcium concentration in hepatocyte cell is 0.1 µM [1].

Therefore, initial condition can be written as,

Ct=0 = 0.1 µM, for 0 ≤ x ≤ 20, 0 ≤ y ≤ 20, t ≥ 0. (2)

Boundary conditions. As the calcium is released from channels located on membrane of

endoplasmic reticulum, which are very dense near apical surface of a hepatocyte cell [4, 25].

With this assumption, it is considered that calcium releasing channel is kept at (0, 10)µm situated

near midway of apical surface. Therefore by using Fick’s law of diffusion the first boundary

condition can be set as;

lim
x→0,y→10

−DC
∂C

∂x
= σCδ(x, y) for x = 0, 0 ≤ y ≤ 20, t ≥ 0, (3)

where, σC is influx of calcium from calcium channel and δ(x, y) is Dirac delta function sharply
peaked at source kept at point (0,10).

On the remaining sides, other than the side having calcium channel of a hepatocyte cell,

the calcium concentration attains its stable concentration 0.1 µM . Therefore second boundary

condition is framed along remaining sides of cells. It is assumed that, along remaining three

sides calcium attains stable calcium concentration (C∞) in a hepatocyte cell [4, 26].

C = C∞ = 0.1 µM (4)

along the three boundaries, x = 20, 0 ≤ y ≤ 20 µm, y = 0, 0 ≤ x ≤ 20 µm, and y = 20,
0 ≤ x ≤ 20 µm.

611

Mathematical Biology and Bioinformatics. 2018. V. 13.№ 2. doi: 10.17537/2018.13.609



YOGITA, NEERU

SOLUTION

The first step of finite volume method is discretization of domain under consideration i.e.

hepatocyte cell. In two dimensions hepatocyte cell (represented by square) is discretised as

shown in Fig. 2, by using uniform grid having 81 nodal points. The hepatocyte cell is divided

into 9 control volumes along each of the x and y direction. The horizontal and vertical distances

between cell faces are denoted by δx and δy [27] equal to 2.5 µm each. The time step taken for

numerical simulation is ∆t = 1 msec.

Fig. 2. Two dimensional discretization of hepatocyte cell.

Equation (1) can be rearranged as,

1

DC

∂C

∂t
=

∂2C

∂x2
+

∂2C

∂y2
− u

DC

∂C

∂x
−

k+
j [Bj]∞

DC

(C − C∞) (5)

for 0 ≤ x ≤ 20, 0 ≤ y ≤ 20, t ≥ 0

It can be written as,

1

DC

∂C

∂t
=

∂2C

∂x2
+

∂2C

∂y2
− a

∂C

∂x
− b (C − C∞) (6)

for 0 ≤ x ≤ 20, 0 ≤ y ≤ 20, t ≥ 0

where, a = u
DC

and b =
k+j [Bj ]∞

DC

Now to apply second step of finite volume method, i.e discretization of equation over a

control volume, integrating Eq.(6) w. r. to time (t) and space (x) gives, [23]∫ t+∆t

t

∫ xe

xw

∫ yn
ys

1
DC

∂C
∂t
dydxdt =

∫ t+∆t

t

∫ xe

xw

∫ yn
ys

(
∂2C
∂x2 + ∂2C

∂y2

)
dydxdt
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− a

∫ t+∆t

t

∫ xe

xw

∫ yn

ys

∂C

∂x
dydxdt− b

∫ t+∆t

t

∫ xe

xw

∫ yn

ys

(C − C∞) dydxdt (7)

Solving space integration we get,

δxδy
DC

∫ t+∆t

t
∂CG

∂t
dt =

∫ t+∆t

t

[(
∂C
∂x

)
xe
−

(
∂C
∂x

)
xw

+
(

∂C
∂y

)
yn

−
(

∂C
∂y

)
ys

]
dt

− aδy

∫ t+∆t

t

[Cxe − Cxw ]dt− bδxδy

∫ t+∆t

t

CGdt+ bC∞δxδy∆t (8)

The weighted parameter θ is used to solve time integral.

δxδy
DC

[CG − C0
G] = θ

[
CE−CG

δx
− CG−CW

δx
+ CN−CG

δy
− CG−CS

δy

]
∆t

+(1− θ)
[
C0

E−C0
G

δx
− C0

G−C0
W

δx
+

CN0−C0
G

δy
− C0

G−C0
S

δy

]
∆t

−aδy
{
θ
[
CG+CE

2
− CW+CG

2

]
+ (1− θ)

[
C0

G+C0
E

2
− C0

G+C0
W

2

]}
∆t

− bδxδy[θCG − (1− θ)C0
G]∆t+ bδxδy∆t (9)

where θ lies between 0 to 1 and the values of coefficient at old time t are super scripted with 0.
The eq.(9) can be rearrange in the following form,[

δxδy
DC∆t

+ θ
δx

+ θ
δx

+ θ
δy

+ θ
δy

+ aθδxδy
]
CG =[

δxδy
DC∆t

− (1−θ)
δx

− (1−θ)
δx

− (1−θ)
δy

+ (1−θ)
δy

− a(1− θ)δxδy
]
C0

G

+
[

θ
δx

− aθδy
2

]
CE +

[
θ
δx

+ aθδy
2

]
CW +

[
θ
δy

]
CN +

[
θ
δy

]
CS+[

(1−θ)
δx

− a(1−θ)δy
2

]
C0

E +
[
(1−θ)
δx

+ a(1−θ)δy
2

]
C0

W

+

[
(1− θ)

δy

]
C0

N +

[
(1− θ)

δy

]
C0

S + bδxδy (10)

The Crank Nicolson scheme can be imposed by putting θ = 1/2 in Eq.(10),[
δxδy
DC∆t

+ 1
2

(
1
δx

+ 1
δx

+ 1
δy

+ 1
δy

)
+ 1

2
aδxδy

]
CG

=
[

δxδy
DC∆t

− 1
2

(
1
δx

+ 1
δx

+ 1
δy

+ 1
δy

)
− 1

2
aδxδy

]
C0

G

+
[

1
2δx

− aδy
4

]
CE +

[
1

2δx
+ aδy

4

]
CW +

[
1

2δy

]
CN +

[
1

2δy

]
CS+[

1

2δx
− aδy

4

]
C0

E +

[
1

2δx
+

aδy

4

]
C0

W +

[
1

2δy

]
C0

N +

[
1

2δy

]
C0

S + bδxδy (11)

Eq.(11) can be put in the following form, for all internal nodes,

aGCG = a0GC
0
G + aECE + aWCW + aNCN + aSCS

+ aEC
0
E + aWC0

W + aNC
0
N + aSC

0
S + Su (12)

where,

aG =
[

δxδy
DC∆t

+ 1
2

(
1
δx

+ 1
δx

+ 1
δy

+ 1
δy

)
+ 1

2
aδxδy

]
a0G =

[
δxδy
DC∆t

− 1
2

(
1
δx

+ 1
δx

+ 1
δy

+ 1
δy

)
− 1

2
aδxδy

]
aE =

[
1

2δx
− aδy

4

]
; aW =

[
1

2δx
+ aδy

4

]
aN = aS = 1

2δy

Su = bδxδy
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To incorporate first boundary condition at node 5, setting, CW = σC

aGCG = a0GC
0
G + aECE + aNCN + aSCS + aEC

0
E + aNC

0
N + aSC

0
S + Su (13)

where,

aG =
[

δxδy
DC∆t

+ 1
2

(
1
δx

+ 1
δy

+ 1
δy

)
+ ( 1

δx
+ 1

2
aδxδy)

]
a0G =

[
δxδy
DC∆t

− 1
2

(
1
δx

+ 1
δy

+ 1
δy

)
− ( 1

δx
+ 1

2
aδxδy)

]
aE =

[
1

2δx
− aδy

4

]
; aN = aS = 1

2δy

Su =
[

2
δx

+ b
2

]
σC + bδxδy

To incorporate second boundary condition at node 1, setting C∞ = 0.1 and aW = aS = 0 we
get,

aGCG = a0GC
0
G + aECE + aNCN + aEC

0
E + aNC

0
N + Su (14)

where,

aG =
[

δxδy
DC∆t

+ 1
2

(
1
δx

+ 1
δy

)
+ ( 1

δx
+ 1

δy
+ 1

2
aδxδy)

]
a0G =

[
δxδy
DC∆t

− 1
2

(
1
δx

+ 1
δy

)
− ( 1

δx
+ 1

δy
+ 1

2
aδxδy)

]
aE =

[
1

2δx
− aδy

4

]
; aN = 1

2δy

Su =
[

2
δx

+ b
2

]
CB + bδxδy

Similarly, second boundary condition can be incorporate at all boundary nodes, 1 to 73, 9 to

81, and 73 to 81. All equations obtained for each node forms the system of linear algebraic

equations. Which can be expressed in matrix form as follows, for each time step;

[A]81×81[C]81×1 = [B]81×1. (15)

The Gauss elimination method is used to solve Eq.(15) at each time iteration to obtain solution

vector C81×1 by developing a MATLAB program.

RESULTS AND DISCUSSION

Fig. 3. The spatial variation of calcium profile in the presence of EGTA buffer.

The spatial variation of calcium in the presence of 50 µM EGTA buffer, with 10 µm/sec
cross flow velocity is shown in Fig. 3. The calcium concentration in hepatocyte cell at time t=0,

10, 50, 60ms is plotted in subplots A, B, C, D respectively. Initially before opening the mouth
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of calcium channel the calcium concentration is 0.1 µM . After opening the mouth of calcium

channel nodal calcium concentration increases with time. The nodal calcium concentration

becomes constant after t = 50 ms. Thus steady state concentration is achieved within 50 ms
in the presence of 50 µM EGTA buffer and 10 µm/sec cross flow velocity. The calcium

concentration observed to be maximum at the mouth of calcium channel. It decreases sharply to

attain stable concentration in remaining part of cell.

The effect of change in EGTA buffer concentration at constant cross flow velocity and

diffusion coefficient is shown in Fig. 4. The calcium profile in a hepatocyte cell in the presence of

0, 50, 100 µM EGTA buffer concentration is plotted in subplots A, B, C respectively. The nodal

calcium concentration is maximum in absence of any kind of buffer. It is higher for lower values

of buffer concentration. The buffer binds with free calcium ions as soon as they are released from

mouth of calcium channel. This results in decrease in nodal calcium concentration away from

the mouth of calcium channel.

Fig. 4. Spatial variation of calcium profile at different EGTA buffer concentrations and constant

cross flow velocity in the hepatocyte cell.

Fig. 5. The effect of cross flow velocity on spatial calcium profile in the presence of EGTA buffer

in the hepatocyte cell.

The calcium concentration in hepatocyte cell with cross flow velocity 0, 10, 20 µm/s in
the presence of 50 µM EGTA buffer is shown in subplots A, B and C of Fig. 5. respectively.

We observed that the nodal concentration of calcium increases slightly with increase in cross

flow velocity of calcium ions.
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Fig. 6. The effect of cross flow velocity on temporal calcium profile in the presence of EGTA

buffer.

Fig. 7. The effect of cross flow velocity on calcium profile in the presence of BAPTA buffer.

Fig. 8. The effect of cross flow velocity on calcium profile in the presence of endogenous buffer.
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The effect of cross flow velocity on nodal concentration is shown in Fig. 6. The graphs are

plotted at node 5, 14, 15, 25. The increase in calcium concentration is sharp in vicinity of mouth

of channel. It decreases sharply away from channel mouth. The effect of increased cross flow

velocity is observed high in the region nearby the channel. It decreases with distance away from

the mouth of channel.

The effect of cross flow velocity on calcium concentration in the presence of BAPTA buffer

is shown in Fig. 7. The minimum nodal calcium concentration is seen in the presence of BAPTA

buffer. This is due to high binding capacity of BAPTA buffer. As soon as calcium is released

frommouth of calcium channel BAPTA buffer binds with calcium ions with in very short period.

This leads to decrease in nodal calcium concentration. The increase in cross cross flow velocity

has not shown any substantial change on calcium profile in the presence of BAPTA buffer.

The effect of cross flow velocity on calcium concentration in the presence of endogenous

buffer is shown in Fig. 8. The calcium profile with cross flow velocity 0, 10, 20 µm/s is plotted
in subplots A, B, C respectively. The calcium concentration increases slightly with increase in

cross flow velocity in the presence of endogenous buffer.

The effect of change in value of diffusion coefficient of calcium in cytoplasm on calcium

concentration is shown in Fig. 9. The calcium profile has been plotted by keeping constant

cross flow velocity and constant EGTA buffer concentration with DC = 100, 150, 200 µm2/s.
It is observed that as diffusion coefficient increases, the calcium concentration decreases

simultaneously. This is because the increase in diffusion coefficient causes increase in transport

of calcium ions from source channel to basal part of cell leading to decrease in calcium

concentration in the cell.

Fig. 9. The effect of diffusion coefficient on calcium profile in the presence of EGTA buffer.

CONCLUSION

The finite volume model is proposed and successfully implemented to study buffered

advection diffusion in hepatocyte cell. The results obtained by simulation gives better insight of

interrelationships among different physical transport mechanisms like, advection and diffusion

in the presence of varieties of buffers. From the obtained results, it can be concluded that the

advection mechanism greatly affects calcium concentration in the presence of EGTA buffer

and endogenous buffer having small association rate constant, in the comparison with BAPTA

buffer which has large association rate constant. The increase in cross flow velocity increases

calcium concentration.While in contrast, increase in diffusion coefficient, decreases the calcium

concentration in hepatocyte cell. Thus for high requirement of calcium concentration for specific

activity, the advection mechanism is triggered by the cell to raise calcium concentration levels

in the cell. Thereafter when activity is over the diffusion, buffering mechanism comes into play
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to reduce the calcium concentration in the cell to acceptable tolerable limits of cell. The finite

volume method is proved to be a versatile tool in the present study. The proposed model is able

to provide us the patterns of different combinations of transport mechanisms leading to specific

spatial and temporal calcium patterns which are results of fine tuning and coordination of three

transport mechanisms in response to requirements of the specific activity of the cell. Suchmodels

can be developed further to generate the spatial and temporal patterns of calcium concentration

in the cell formed by fine coordination among transport mechanisms in response to specific

activity. The information generated from such models will be of great use to understand the fine

coordination of processes in the cell and disturbance in these physical coordination leading to

diseases of liver.
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