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Abstract. Molecular-morphological signs of oncogenesis can be linked to 

multiscale collective effects in molecular and cell ensembles. It was shown that 

nonlinear behavior of biological systems can be associated with the generation of 

characteristic collective modes representing the open states in molecular and cell 

organization as the mechanism of the coherent expression dynamics. The 

mechanical DNA model is developed to study the nonlinear dynamics of the 

helicoidal geometry DNA molecule. To construct the model of DNA the Peyrard–

Bishop–Barbi approach has been applied. The analytical small localized solutions 

as the discrete breather and the antikink have been obtained by multiple scale 

expansion method for multicomponent lattices. The set of collective open states 

(breathers) in the molecular ensembles provides the collective expression dynamics 

to attract cells toward a few preferred global states. This result allows the 

formulation of the experimental strategy to analyze the qualitative changes in cell 

dynamics induced by mentioned collective modes. The biomechanical changes 

have been shown experimentally using the original data of Coherent Phase 

Microscopy analyzing the time series of phase thickness fluctuations. Study of the 

mechanical aspects of the behavior of single cells is a prerequisite for the 

understanding of cell functions in the case of qualitative changes in diseases 

affecting the properties of cells and tissues morphology to develop diagnostic and 

treatment design methodology.  

 

Key words: DNA, Peyrard–Bishop, helicoidal model, open states, modulation 

interference microscopy. 

 

1. INTRODUCTION 

Along with the application of research, taking into account the change in the mechanical 

properties of biological objects (e.g., vascular cardiology), currently, considerable attention is 

attracted to the study of changes in the mechanical behavior of bio-molecules and cells in the 

development of cancer, in which qualitative differences are installed in the mechanical 

properties of normal and cancer cells manifested at the tissue level, including the development 

of tumors. 

Changing the mechanical responses of cells and tissues are potentially reflects the degree 

of damage of the biological system and can be used as a new diagnostic tool to complement 

traditional biochemical and molecular genetic methods currently used in clinical practice. The 

prospect of using the results of mechanobiology for classification of diseases related to 

mechanical changes of cells and tissues, suggests study of well-defined and standardized 

methods and protocols for data collection and processing. Direct research of mechanobiology 
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responses of cells by coherent phase microscopy, tissue by the analyzing temperature 

fluctuations with the following definition of meaningful collective degrees of freedom allows 

the determination of dynamic stability of biological systems and their qualitative changes with 

damage accumulation. 

Study of nonlinear dynamics of DNA molecule attracted interest of biologists and 

physicists as the key factor to link physical and biological properties of this biological crystal 

in the attempt to highlight the evolution of biological systems including the levels of cells and 

tissue. DNA belongs to the class of biopolymers and has an important biological function, 

which is the ability to store and transmit genetic information. It is a complex dynamic system 

consisting of many atoms and has a quasi-one-dimensional structure with specific symmetry, 

multiple degrees of freedom, and many types of movements and a special distribution of 

internal interactions [1]. These functions of DNA are discussed in some DNA models to 

investigate the relationship of structural-dynamic and functional properties of the molecule 

[2–13]. A comprehensive review on the DNA properties can be found in the work [14]. 

Various nonlinear excitations have been analyzed in DNA [8–17] in relation to charge transfer 

[8–12] or discrete breather excitation by external factors [13]. However, most of these studies 

do not take into account simultaneously the helicoidal geometry of DNA, damping effect and 

influence of external force. 

Numerous researches have been devoted to the study of both the viscous dissipation effect 

and external force acting on DNA or the topological constraints to the helicoidal structure of 

the molecule. For instance, research by Sulaiman et al. [18] has used the Caldirola–Kanai 

approach [19] for the Peyrard–Bishop model [20] to consider the damping effect and external 

force. It was shown that the presence of viscosity is decelerated DNA breathing and on other 

hand the external force accelerates the breather propagation. Barbi et al. [21, 22] modified the 

Peyrard–Bishop model to take into account helicoidal geometry of DNA molecule. The 

solitonic solution was obtained for the system consisting of nucleotides with two degrees of 

freedom (for radial one it was the breather, for angular one it was the kink). 

New model of DNA is presented, which considers the helicoidal shape of DNA molecule 

taking into account the damping effect and external force. It is based on applying the 

Caldirola–Kanai approach for the Peyrard–Bishop–Barbi model to develop the motion 

equations for nucleotides. 

The paper is organized as follows. In Section 2 DNA structure and the stabilizing forces 

are described. Description of the DNA helicoidal model is given in Section 3. Mathematical 

formulation of the model and an approximate solution to this model are presented in 

Section 4. The Hamilton function of the model under consideration is explained in Section 4. 

The role of breather modes is described in Section 5. In Section 6 we talk about expression 

domains as coherent open states. The results of laser modulation interference microscopy are 

presented in Section 7. Section 8 concludes the paper. 

2. DNA STRUCTURE AND STABILIZING FORCES 

DNA consists of two polymer chains twisted around a common axis to form a double 

helix. The polymer chain is formed from monomers that are called nucleotides. A nucleotide 

consists of a phosphate group, a sugar ring and a nitrogenous base (adenine, thymine, 

guanine, and cytosine). Nucleotides connect either with the sugar phosphate backbone or a 

nitrogen base. 

Two polynucleotide chains are held together by hydrogen bonds between the bases. The 

hydrogen bases combined in pairs according to complementary principle. The forces 

stabilizing the structure of DNA include stacking interactions between adjacent bases along 

the DNA axis and provide long-range interactions inside and outside the sugar phosphate 

backbone (in particular covalent bonds). 
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3. HELICOIDAL MODEL OF DNA WITH DAMPING AND EXTERNAL FORCE 

The helicoidal model has been proposed by Barbi et al. [21] to consider the helicoidal 

structure of the DNA molecule, base-base interactions in a pair and along the sugar-phosphate 

backbone coupling. Denaturation [21] and melting transition [22] have been investigated by 

the model. 

We propose a modification of the helicoidal model of the DNA molecule, taking into 

account the effect of energy dissipation and external force. It is assumed that DNA consists of 

a sequence of N nucleotide pairs. The group consisting of a sugar ring and the associated base 

is treated as a point mass (without distinction between different types of bases). The 

phosphate backbone between the two base pairs is modeled as an elastic rod. The point 

masses within the pair move symmetrically about the axis of the molecule. Each point mass 

has two degrees of freedom: radial and angular. The radial degree of freedom is determined 

by the parameter rn (distance between the center of symmetry and the point mass). Angular 

degree of freedom – angle φn, which is defined as the angle formed between the axis 

connecting the point masses inside the pair and the reference direction. Pairs of point masses 

move in parallel planes, the distance between them is fixed h = 3.4 Å (Fig. 1). Rotation is 

defined as the difference between the angles of adjacent point masses θn = φn – φn–1 (Fig. 1). It 

is assumed that the DNA molecule is in-form, with the following geometric parameters 

R0 = 10 Å, θ0 = 36° (Fig. 1). The object of modeling is considered in the framework of 

nonlinear dynamics, because DNA is a dynamic object. The energy of the system is 

determined by the Hamiltonian. As the potential describing the interaction between point 

masses within the pair (which corresponds to the hydrogen bond between the bases), the 

Morse potential is chosen because it describes the interaction between atoms and molecules 

quite accurately. It is assumed that the relationship between adjacent point masses can be 

described by an elastic potential that considers the relationship between the radial and angular 

degrees of freedom. In the considered model dissipation is taken into account in a specific 

way that allows Hamiltonian formulation. This enables the use of various techniques 

developed for the Hamiltonian systems even though the considered model includes the 

viscosity and external force. This is achieved through the energy balance between the kinetic 

energy, potential energy and the energy from the external force in a way that the kinetic 

energy of the system decreases with time due to dissipation, while the potential energy and 

the energy from internal force increase accordingly. The rate of decrease and increase 

depends on the dissipation factor γ [18]. The system operates in an external conservative force 

F which can mimic forces of mechanical or chemical origin. Other external influences on the 

system are neglected. 

 
Fig. 1. Schematic view of the mechanical analogue of the DNA molecule [23]. 
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Thus, the parameters describing the simulated system are the distance between the center 

of symmetry and the n-th point mass rn and the rotation of the n-th point mass relative to 

(n–1)-th θn. To determine the parameters of the model at any time it is necessary to solve the 

system of equations of motion of point masses, determined from the Hamilton function. 

4. EQUATIONS OF MOTION OF THE DNA NUCLEOTIDES AND THEIR 

APPROXIMATE SOLUTION 

The behavior of the modeling object is described by the Hamilton function 

      kin, , , , , ,t t t

r n n r n n FH p p r e E p p e U r e E  

       (1) 

where Ekin is the kinetic energy of the system, U is the potential energy of the system, EF is 

the energy entering the system from an external source, pr is the momentum of the point mass 

in a radial direction, pφ the angular momentum of a point mass in the angular direction, γ is 

the damping constant. 

The potential energy of the system is given as 

 hyd cov backboneU U U U   , (2) 

where Uhyd is the energy of hydrogen bonds between bases within one pair of nucleotides, 

Ucov is the energy of covalent bonds of nucleotides stacked one above the other, Ubackbone is 

the energy of sugar phosphate bonds responsible for the preservation of the helicoidal shape 

of the DNA molecule. 

The energy of hydrogen bonds between the bases within one pair of nucleotides is 

described by the Morse potential, which has the following form 

 
  0

2

hyd 1
2

nr R

n

D
U e

 
  , (3) 

where D and α are the depth and the width of the potential hole respectively. 

We introduce a relation describing the covalent bond arising in the sugar phosphate 

backbone. Since the covalent bond is much stronger than the hydrogen bond, it can be taken 

as a harmonic approximation 

  
2

cov 1, 0
2

n n
n

K
U l l  , (4) 

where K is the stiffness coefficient of the covalent bonds, ln–1,n is the actual distance between 

n – 1 and n points mass, l0 is the equilibrium distance between n – 1 and n points mass. 

Since the energy of covalent bonds (4) tends to a minimum for arbitrarily oriented pairs of 

point masses, it is necessary to introduce an additional potential that determines the correct 

helix geometry of the simulated system 

  
20

backbone 1 1 2
2

n n n
n

G
U       , (5) 

where G0 is the stiffness coefficient of the sugar phosphate backbone. This potential does not 

contribute to the total energy of the system (vanishes) only when the base pairs form a spiral. 

Substituting (2), (3), (4) and (5) into (1) yields the final Hamiltonian 
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 (6) 

where m is the nucleotide mass, Fn(t) is an external stochastic force. 

For the convenience of studying the model, the dimensionless Hamilton function is 

obtained. To do this, we introduce the parameters Yn and Φn denoting the displacement of the 

point mass relative to the equilibrium state in the radial and angular directions, respectively 

 0n nY r R  , (7) 

 0n n n    . (8) 

A limit is introduced on the amplitude of displacements of point masses in the radial 

Yn << 1 and the angular Фn << 1 directions. Then the Morse potential of Uhyd and the potential 

of Ucov can be written for small displacements in the following form 
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We introduce the dimensionless quantities 
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As result we have the dimensionless Hamiltonian 
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where 
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From the Hamiltonian in (12), one can obtain the canonical coordinates, 
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Substituting (14) and (15) into (16) and (17), respectively, yields a system of differential 

equations with the initial conditions 
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.            (18) 

In order to look for approximate localized solution of the equations of motion of the DNA 

nucleotides, we use the multiple scale technique for multicomponent lattices [21]. The method 

amounts to looking for wave-packet like solution. At the first step of the method, we 

determine the carrier vector as a phonon mode of the linearized system, increasing 

progressively the space and time scales. Next, we deduce the partial differential equation that 

identifies the envelope velocity with the wave-packet group velocity. Finally, we derive the 

nonlinear Schrodinger equation for the envelope, whose diffusion coefficient is in fact the 

wave packet group velocity dispersion. 

Figure 2 shows analytical solution of the system (18) in displacement and time variable, as 

function of base pairs and time, obtained by the multiple scale technique for multicomponent 

lattices. The approximate localized solution of the equations of motion of the DNA 

nucleotides derived with the following model parameters D = 0.04 eV, α = 4.45 Å
–1

, 
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K = 0.04 eVÅ
–2

, G0 =
2

00.5KR , m = 300 a.m.u., γ = 0.05 kg/s, F = 15 pN. The radial motion 

has the shape of discrete breather (Fig. 2,a) and angular motion exhibits an antikink structure 

(Fig. 2,b). Also, according to the results, we can conclude that the presence of viscosity 

decelerated DNA breathing, and the influence of the external force accelerates the breather 

propagation. This result is consistent with the study [8]. 

  
(a) (b) 

Fig. 2. Analytical solution of the DNA helicoidal model with the damping and constant external force. 

The radial displacement rn(t) – R0 (a). The corresponding angular displacement (b). The chain length is of 

1024 cites. The total time is 4096 t.u. 

5. BREATHER MODES AND GENE EXPRESSION CRITICALITY 

The formation of multiscale open states can be considered as the controlling factor for 

collective gene expression DNA modes. The living cells are considered as the ensemble of a 

large number of interacting molecular species (DNA, RNA, proteins, and metabolites) 

providing the precise response to environmental stimuli due to the selection of specific 

pathways (differentiation, immune response). This robust organization in cells can be linked 

to the open state expression mechanisms of thousands of genes coordinated by a few key 

transcription factors [24, 25]. These mechanisms are related to attractor states according to 

open complex (gene-expression) landscape [26, 27] providing the phenotypic states. The 

attractor concept envisages the system as evolving toward a preferred (minimal energy) state 

(called an attractor set) due to appearance of ‘globally convergent’ solutions. These solutions 

attract the system dynamics in the presence of stochastic fluctuations related to a gene-by-

gene interaction. Attractor states can be realized in the presence of a rugged non-equilibrium 

free energy landscape in the terms of corresponding variables. A fundamental question was 

articulated in [28] concerning the problem of cell dynamics controlling genome-wide 

expression: What is the driving force that attracts the entire system toward a few preferred 

global states, thus making the genome act as a single integrated system? 

6. EXPRESSION DOMAINS AS COHERENT OPEN STATES 

The criticality model of an early response to growth factors in a MCF-7 breast cancer cell 

population was proposed in [29], that characterizes distinct expression domains: dynamic, 

transit and static domains according to the degree of temporal variation in expression was 

analyzed in term of mean field (averaging) behavior of mRNAs based on the temporal 

expression changes. Self-similar unimodal-bimodal transition of the whole expression was 

established for the density profile of an ensemble of mRNA expression. These singular and 

scaling behaviors identify the transition as the expression phase transition driven by self-

organized criticality (SOC). It was found that temporal development of criticality leads to 

autonomous bistable switch for each domain providing the coherent expression states. 

Criticality of the whole expression of MCF-7 cell stimulated by heregulin (HRG) exhibits 
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three distinct response domains going from higher to lower normalized root-mean-square-

fluctuation (nrmsf): dynamic domain; unimodal profile, (middle) transit domain. The energy 

profiles correspond to free energy in terms of the symmetry argument of Landau. The 

temporal invariant flatness of energy profile suggests the existence of the critical point, where 

the change in expression between different time points is around zero. A critical (from 

unimodal to bimodal) behavior corresponds to a global phase transition in the whole gene 

expression profile with shift in the frequency profiles of the ensemble of stochastic mRNA 

expression due to flattening of the unimodal. According to these results the critical dynamics 

of gene expression show the singularity induced scaling, that is characteristic for self-

organized criticality (SOC). The single expression shows a scattered stochastic expression 

distribution [3]. It was concluded that a single gene level is not the correct scale where real 

global genome response corresponds to the SOC nature.  

The transformation landscape for both mRNA expression and open states has pronounced 

features of the free energy flattening corresponding to the transition from the unimodal-to-

bimodal free energy profiles at some critical points 
*  and δc for internal variable δ that 

represents the current susceptibility of the system to initiate the open modes. This internal 

variable δ is the ratio of the mean size of current open modes and the spacing between open 

modes [2]. The transitions over the critical points *  and δc lead to the qualitative change of 

the free energy metastability and the generation of collective open modes with breathers, 

solitary waves and blow-up dynamics. Transition from breather to solitary and blow-up 

dynamics is realized according to the universal scenario (structural-scaling transition) as the 

subjection of the open complex (gene expression) dynamics to the sequence of corresponding 

self-similar solutions – the eigen-forms of nonlinear out-of-equilibrium system. This 

transition can be considered as possible scenario of the DNA and cell localized plasticity 

leading to the anomalous DNA and cell softening (localized damage).  

These qualitative different eigen-forms (self-similar solutions) for open complex variables 

represent the set of collective order parameters, which subject the system dynamics to follow 

the δ kinetics with typical signs of SOC scenario. The δ kinetics could be considered as 

natural epigenetic driving force controlling DNA and cell dynamics. The presence in the 

DNA ensemble the qualitative different collective modes (attractor states) could be associated 

with fluctuations of some experimentally measured parameters (for instance, genome-wide 

expression) and interpreted as the morphological dynamic pattern with the signs of 

multifractality. Degeneration of this dynamics into the blow-up controlled dynamics can be 

recognized in fluctuation analysis as the transition from multi- to monofractality. 

7. LASER MODULATION INTERFERENCE MICROSCOPY. CONVERGENT 

COHERENT STATES 

The biomechanical changes are important in the case of cancer, which has been shown 

experimentally that the change in the stiffness of cells is a hallmark of cancer. Thus, an 

understanding of the mechanical aspects of the behavior of single cells is a prerequisite for the 

understanding of cell functions in the case of qualitative changes in diseases affecting the 

properties of tissue morphology at the level of cells and tissues, which allow the use of 

diagnostic and treatment design methodology. Study of nonlinear dynamics of cell and 

cytoskeleton structures, objectification of cytological diagnosis of cancer (morphometry) were 

conducted using the original data of modulation interference microscopy analyzing the time 

series of phase thickness fluctuations [30–32] in the cross-sections of the nucleus, the 

nucleolus, cytoplasm. The method for the estimation of spatial temporal invariants (in terms 

of the Hurst scaling exponent) allowed the demonstration of the links of temporal correlations 

of finite-amplitude phase thickness fluctuation in terms of multi- and monofractality with the 

states of the normal and cancerous cells [33–35]. The MIM data correspond to three types of 
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patterns: cell phase image (Fig. 3,a), the track diagram as the image of equal phase thickness 

(Fig. 3,b) and the track diagram as the surface thickness image (Fig. 3,c). 

 

 
(a) 

  
(b) (c) 

Fig. 3. Modulation interference microscopy data: three types patterns of the cell image (a), 2D (b) and 3D 

(c) track diagram. 
 

Registration of MIM pattern high spatial and temporal resolution allowed the analysis of 

dynamic processes in living cells. Biomaterial for the MIM study was prepared by the Herzen 

Moscow Oncology Research Institute. 22 cancer cells and 22 healthy cells from intact organs 

were analyzed as MIM topograms (44 images) and 88 track diagrams (Fig. 4, 5). Optically 

dense area corresponds to the cell nuclei, and MIM data were used to study under the life 

dynamics of cell nucleolus. MIM data in the nucleolus area of cancer cell is presented as the 

phase thickness dynamics in time (Fig. 6). 

 

  
Fig. 4. Topogram (left) and the track diagram (right) of the drug culture of MCF-7 cancer cells. 
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Fig. 5. Topogram (top) and the track diagram (bottom) of the drug HEK 293 healthy cells. 

 

 
Fig. 6. Phase thickness dynamics in nucleolus area of cancer cell. 

 

The estimation of spatial temporal invariants (in terms the Hurst scaling exponent) 

allowed the demonstration of the links of temporal correlations of finite-amplitude phase 

thickness fluctuation with multi- and monofractal states of the normal and cancerous cells. 

8. CONCLUSIONS 

The main objective of the present work was to propose a new model of DNA which 

considers its helicoidal shape, the damping and external force. Current models take into 

account either the viscous dissipation effect and external force acting on DNA or the 

topological constraints to the helicoidal structure of the molecule. To solve this problem, two 

approaches were used together: the Peyrard–Bishop–Barbi model and the Caldirola–Kanai 

approach. 

We derived the dissipative term and the external force term of equations of motion of the 

DNA nucleotides directly from the Hamilton function. The main advantage of this approach is 

able to calculate the thermodynamic behaviors of the system under consideration for future 

studies. Future research will concentrate on the looking for approximate localized solution at 

different types of external force and different values of the damping constant and their 

following investigation. 

The mechanical response of biomolecules and cells is very complex due to non-linear, 

non-homogeneous, non-isotropic and viscous behavior. In most cases, models employed for 

describing mechanical behavior or analyzing mechanical data need to be sufficiently 

simplified to avoid many not well-defined or only phenomenological derived parameters. 

One of the key problems that will be improved to understand molecular, cellular, and 

architectural changes at the tissue level can be linked to the spatial-temporal analysis of 

signals extracted by molecular-genetic study. Molecular-morphological signs of oncogenesis 

could be linked to multiscale collective effects in molecular, cell and tissue dynamics, the 



DNA BREATHERS AND CELL DYNAMICS 

147 

Mathematical Biology and Bioinformatics. 2019. V. 14. № 1. doi: 10.17537/2019.14.137 

development of methods characterizing the mechanisms of transformation, development of 

experimental approaches based on the estimation of spatial-temporal invariants using 

quantitative morphology data. 
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