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Abstract. Calcium (Ca2+) and inositol 1,4,5-trisphosphate (IP3) is critically

important parameters for a vast array of cellular functions. One of themain functions

is communication in all parts of the body which is achieved through cell signaling.

Abnormalities in Ca2+ signaling have been implicated in clinically important

conditions such as heart failure and cardiac arrhythmias.We propose amathematical

model which systematically investigates complex Ca2+ and IP3 dynamics in cardiac

myocyte. This two dimensional model is based on calcium-induced calcium release

via inositol 1,4,5-trisphosphate receptors and includes calcium modulation of IP3
levels through feedback regulation of degradation and production. Forward-Time

Center-Space method has been used to solve the coupled equations. We were able

to reproduce the observed oscillatory patterns in Ca2+ as well as IP3 signals. The

model predicts that calcium-dependent production and degradation of IP3 is a key

mechanism for complex calcium oscillations in cardiac myocyte. The impact and

sensitivity of source, leak, diffusion coefficients on both Ca2+ and IP3 dynamics

have been investigated. The results show that the relationship between Ca2+ and

IP3 dynamics is nonlinear.

Key words: calcium and inositol 1,4,5-trisphosphate signaling; cardiac myocyte; finite

difference method; nonlinear coupled dynamics.

2. INTRODUCTION

In living systems, one of the universal and most versatile signaling mechanism is governed

by intracellular calcium (Ca2+) [1]. To fulfill its vital role for cellular processes, Ca2+ behaves

as an intracellular messenger giving information within cells [2]. Examples include contraction

of the heart, information processing in the brain, synaptic plasticity and the release of digestive

enzymes by the liver [3]. The growth phase of an organism, cell differentiation and proliferation

are controlled by Ca2+ signaling in the cell. Further the calcium is vital in the sustenance of

life but increased cytosolic calcium concentration ([Ca2+]C) for longer duration spell death

[4]. To coordinate all these cellular activities Ca2+ signals need to be flexible, yet precisely

regulated [2]. To be able to participate in the variety of cellular functions, Ca2+ signals within

cells exhibit diverse and complex spatio-temporal organization. Information is encoded in Ca2+

signals through variations in frequency, amplitude, duration and spatial profile of [Ca2+]C.
A cell has access to two sources of Ca2+: external and internal. Channels on the plasma

*nishasingh.maths@gmail.com

http://www.matbio.org/journal.php


NONLINEAR DYNAMIC MODELING OF 2−D INTERDEPENDENT Ca2+ AND IP3

membrane pass extracellular Ca2+ from the outside into the cell cytosol. Calcium can also be

released into the cytosol through channels on the membranes of internal Ca2+ rich sources like

the endoplasmic reticulum (ER) and the mitochondria. Calcium release from internal stores is

mediated by inositol 1,4,5-trisphosphate receptors (IP3Rs) present on the membrane of the ER.

The IP3R is a ligand operated channel. Closing and opening of these channels controls Ca2+

release into the cytosol. By the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) by

phospholipase C (PLC), two distinct second messengers, diacylglycerol and IP3 are produced

that binds with the IP3Rs to allow Ca2+ flow in cytosol from ER [5].

Fig. 1. Ca2+ and IP3 dynamics in the cytosol of cardiac myocyte including inositol

1,4,5-trisphosphate receptor (IP3R) channel, sarco/endoplasmic reticulumCa2+-ATPase (SERCA)

pump and leak.

The extracellular calcium concentration ([Ca2+]) is on the order of 1 mM while cytosolic

calcium concentrations ([Ca2+]C) are on the order of 0.1 µM. Internal stores within the cell,

like the endoplasmic reticulum (ER), have calcium concentrations ([Ca2+]E) of the order of

500 µM. Since, the [Ca2+]C are low, a steep gradient exists from the outside to the inside of

a cell [6]. Similarly, a steep gradient exists across the ER membrane-cytosol interface. These

steep gradients ensure a quick flow of Ca2+ to the cytosol once a channel opens. Sustained

high [Ca2+]C spell death for the cell [7]. Therefore, the cell expends energy to pump out excess
[Ca2+]C and reloads the ER, in order to maintain low [Ca2+]C. Thus, a finely tuned mechanism
operates to control the influx and removal of [Ca2+]C. Despite a great deal of experimental data,
the exact mechanism underlying Ca2+ dynamics in a cardiac myocyte remains unclear, as do the

interactions between the IP3 and Ca
2+ in coupled dynamics.

For the better understanding and insight of cytosolic Ca2+ dynamics a number of theoretical

models have been developed earlier. A model proposed by Dupont et al. [8] predicts that

5-phosphatase primarily controls the levels of IP3 and, thereby, the occurrence and frequency of

Ca2+ dynamics. Dawson et al. [9] have discussed the importance of IP3 in Ca
2+ signaling. They

have discussed various experimental works in support of role of IP3 [10]. Dupont et al. [11] have

shown that sustained dynamics can still occur in a one-pool model, provided that the same Ca2+
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channels are sensitive to both Ca2+ and IP3 behaving as co-agonists. Sneyd et al. [12] have

reported that muscarinic receptor-mediated, long-period Ca2+ dynamics in pancreatic acinar

cells depend on IP3 dynamics, whereas short-period Ca2+ dynamics in airway smooth muscle

do not. Politi et al. [13] have proposed mathematical models of the interaction of both second

messengers. These models incorporates both positive and negative feedbacks of Ca2+ on IP3

metabolism mediated by calcium activation of PLC and IP3 3-kinase, respectively. Hund et al.

[14] have reported the importance and role of “the other” calcium-release channel i.e., IP3 in

cardiac myocyte. Wagner et al. [15] have worked on a wave of IP3 production accompanies the

fertilization Ca2+ wave in the egg of the frog, Xenopus laevis. Their work is experimental as

well as theoretical. Also, their are few studies [16, 17] on this coupled dynamics but none is

on cardiac myocyte. Pathak et al. [18] have developed a two dimensional mathematical model

to understand Ca2+ signaling process in cardiac myocyte but they have not considered the

impact of IP3 dynamics in their model. There are other studies of different cells in literature

like hepatocytes [19], neurons [20, 21], astrocytes [22, 23], fibroblasts [24, 25], pancreatic

acinar [26, 27] and oocytes [28]. But in the existing literature, many mathematical work on

Ca2+ signaling in cardiac myocyte have not paid attention on the role of IP3 signaling in their

mathematical model [29] while those works which state about the impact of IP3 signaling on

Ca2+ signaling are experimental [30, 31, 32].

These models are Class 1 models, as they assume that Ca2+ dynamics are caused by

sequential positive and negative feedback of Ca2+ on the IP3R; and that Ca
2+ dynamics occur

at a constant value of IP3 concentration ([IP3]). Class 2 models assume instead that Ca2+

modulation of IP3 levels, through feedback regulation of production and/or degradation, is the

cause of calcium dynamics [26]. Ca2+ modulation of IP3 production and degradation occurs in

two principal ways: (i) the activity of PLC, and thus the rate of production, is an increasing

function of cytoplasmic calcium; (ii) the activity of the 3-kinase that degrades IP3 to IP4 is

an increasing function of Ca2+ [26]. Many experimental works [8, 9, 10] have proposed that

in cardiac myocyte, Ca2+-dependent IP3 metabolism is the underlying mechanism driving the

calcium dynamics, and thus the calcium dynamics in cardiac myocyte are of Class 2. However,

yet there has been no detailed analysis of a Class 2 model for calcium dynamics in cardiac

myocyte. In view of the above, the main aim of the present study is to develop and analyse

a model that can help, to understand the Ca2+ dynamics in cardiac myocyte by taking into

account Ca2+ stimulated production and degradation of IP3 and also give a better insight to

the relationship between these two signaling processes.

3. MATHEMATICAL FORMULATION

The Ca2+ and IP3 dynamics in a cardiac myocyte for a two dimensional unsteady state case

in polar cylindrical coordinates is given by [15],
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where diffusion coefficients of Ca2+ and IP3 are represented by DC and DI respectively, r is
the radial position variable, θ is the angle and t is the time variable. In this formulation, FC is

the fractions of the volume of cytosol to the total volume of cell, λ is the rate scaling factor of

IP3 production and the various flux terms involved are as follows [15],
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JIR = VIRa
3b3([Ca2+]E − [Ca2+]C), (3)

JL = VL([Ca
2+]E − [Ca2+]C), (4)

JS = VS
[Ca2+]2C

K2
S + [Ca2+]2C

, (5)

JPr = VPr
[Ca2+]2C

[Ca2+]2C +K2
Pr

, (6)

JK = (1− θ′)VK1
[IP3]

[IP3] + 2.5
+ θ′VK2

[IP3]

[IP3] + 0.5
, (7)

JPs = VPs
[IP3]

[IP3] + 30
, (8)

where JIR, JL, JS , JPr, JK and JPs are fluxes of IP3 receptor, leak, SERCA pump, production,

kinase and phosphatase respectively. VIR and VL are flux rate constants of IP3R and leak

respectively. VS and VPr are maximum rate of SERCA pump and IP3 production. VK1, VK2 and

VPs are maximum rate constant at low Ca2+ (3-kinase), at high Ca2+ (3-kinase) and phosphatase
respectively.

Here, the equilibrium equation is given by [15],

a =
[IP3]

[IP3] +KI

[Ca2+]C

[Ca2+]C +KAc

, (9)

where KS and KPr are Michaelis constant for SERCA pump and Ca2+ activation respectively.

KI and KAc are dissociation constant of binding site of activating IP3 and activating Ca2+

respectively.

The variable b is the fraction of subunits not yet inactivated by Ca2+. It is defined as

follows [15],

db

dt
=

b∞ − b

w
, (10)

where w is the inactivation time scale (2 s) and equilibrium value, i.e., b∞ is defined as

follows [15],

b∞ =
KIh

KIh + [Ca2+]C
. (11)

Here, KIh is dissociation constant of inhibiting Ca
2+ and Hill function is given by [15],

θ′ =
[Ca2+]

[Ca2+] + 0.39
. (12)

The analysis of the complete model is not possible using basic phase plane techniques.

However, in a whole-cell model (i.e. where the diffusion terms are eliminated), the [Ca2+]E
equation can be eliminated using the conservation relation for the total cellular Ca2+

concentration, [Ca2+] = FC [Ca
2+]C + FE[Ca

2+]E.
This allows the model to be reduced to the three variables [Ca2+]C, [IP3], and b [15]. Here,

it is assumed that all the calcium buffers are fast, immobile and unsaturated [33, 34]. Thus, the
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calcium buffering is included implicitly in this model by treating all calcium fluxes as explicit

fluxes. The initial and boundary conditions governing the Ca2+ and IP3 diffusion process are

given by [35, 36, 37],

(i) Initial condition,

[Ca2+]Ct=0 = 0.1 µM, (13)

[IP3]t=0 = 0.16 µM. (14)

(ii) Boundary condition,

lim
r→4,θ→π

(
−2πrDc

∂[Ca2+]C
∂r

)
= σ, (15)

∂[Ca2+]C
∂r r→4,θ6=π

= 0, (16)

∂[Ca2+]C
∂r r→0, 0≤θ≤2π

= 0, (17)

lim
r→4,θ→0

[Ca2+]C = 0.1 µM. (18)

Brown et al. [35] experimentally derived 3-D geometry displayed time-dependent behavior

of the IP3, therefore following boundary condition used was the polynomial fit,

lim
r→4,θ→0

[IP3] = 0.1882(t)6 + 1.3121(t)5 + 3.5391(t)4 + 4.5312(t)3+

+ 2.5893(t)2 + 0.3648(t) + 0.1691 ≤ 3, (19)

∂[IP3]

∂r r→4, θ6=0
= 0, (20)

∂[IP3]

∂r r→0,0≤θ≤2π
= 0, (21)

lim
r→4,θ→π

[IP3] = 3 µM, (22)

where t > 0 denotes time.

4. SOLUTION

The model equations (1)–(22) are solved numerically using Forward-Time Centered-Space

method (FTCS).

Using FTCS approach, the equations (1) and (2) takes the following form,
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Fig. 2. Discretization of the cytosol of cell, where the bigger dark black and red shade on the left

hand side and right hand side denotes the point source of Ca2+ and IP3, respectively.
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where u denotes the [Ca2+]C and p denotes the [IP3], both are a function of (r, θ, t). Also, uE

denotes [Ca2+]E. Here, h denotes the radial step, whereas l represents angular step. The time step
is denoted by k. Also, i and j represents the index of space and n represents the index of time.

The initial and boundary conditions governing the Ca2+ and IP3 diffusion process are given by

equations (13)–(22), which are rewritten as given below:

(i) Initial condition,

u0
i,j = 0.1 µM, (25)

p0i,j = 0.16 µM. (26)

(ii) Boundary condition.

Since, the above equations are not valid at origin (r = 0 µm, θ = 0), near the Ca2+ source

(r = 4 µm, θ = π) and far away from the Ca2+ source (r = 4 µm, θ = 0), therefore the
approximation at these nodes is given by,

un
i+1,j − un

i−1,j

2h
=

−σ

2πrDc
, at r = 4 µm, θ = π; (27)

un
i+1,j − un

i−1,j

2h
= 0, at r = 0 µm, 0 ≤ θ ≤ 2π; (28)
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un
i+1,j − un

i−1,j

2h
= 0, at r = 4 µm, θ 6= π; (29)

un
4,0 = 0.1 µM; (30)

pn4,0 = 0.1882(kn)6 + 1.3121(kn)5 + 3.5391(kn)4 + 4.5312(kn)3+ (31)

+2.5893(kn)2 + 0.3648(kn) + 0.1691 ≤ 3;

pni+1,j − pni−1,j

2h
= 0, at r = 0 µm, 0 ≤ θ ≤ 2π; (32)

pni+1,j − pni−1,j

2h
= 0, at r = 4 µm, θ 6= 0; (33)

pn4,π = 3 µM; n > 0. (34)

The resulting system (23)–(34) provides simultaneous algebraic equations in the terms of

un
i,j, and pni,j . The resulting equations are solved using Gaussian elimination method to obtain

the nodal concentrations.

5. RESULTS AND DISCUSSION

In this investigations, we have used some important parameters for cardiac myocyte in our

mathematical model as presented in Table 1 [15]. The variation of [Ca2+]C at different radius r
and θwith respect to time is shown in Fig. 3. Initially, the variation of [Ca2+]C increases linearly.
From Fig. 3 it is observed that [Ca2+]C increases rapidly with increasing time but it reaches

constant concentration states beyond 0.2 s at different radius and angle. Also, it is confirm that,

the [Ca2+]C will decrease as we move from the source of IP3 (which is located at r = 4 µm

and θ = 0) to source of Ca2+ (which is located at r = 4 µm and θ = π), which is shown in

Fig. 3. Initially, [Ca2+]C across the cell will be steady concentration (0.1 µM). As source channel

opens and starts releasing Ca2+, [Ca2+]C increases very fast and then it approaches steady state

as SERCA pump comes into picture. SERCA pump starts to pump out excess Ca2+ from cytosol

to ER to maintain the concentration of Ca2+ in cytosol. And this whole cycle of processes takes

place again and again.

Table 1. The standard values of different biophysical parameters

Parameter Value [15] Parameter Value [15]

VIR 8.5 s−1 VK1 0.001 µM/s

VL 0.01 s−1 VK2 0.005 µM/s

VS 0.65 µM/s VPs 0.02 µM/s

KI 0.15 µM VPr 0.075 µM/s

KPr 0.4 µM FC 0.83
KAc 0.8 µM λ 30
KS 0.4 µM DC 16 µm2/s
KIh 1.9 µM DI 283 µm2/s

Variation of [Ca2+]C profile in a cardiac myocyte with increase in time with respect to radial
position (r) and angular position (θ) can be observed from Fig. 4. Initially [Ca2+]C is high at
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Fig. 3. [Ca2+]C profile in a cardiac myocyte with respect to time at different radius r and angle θ

for σ = 10 pA and VPr = 0.075 µM/s.

(a) (b)

(c) (d)

Fig. 4. [Ca2+]C profile in a cardiac myocyte at different points of time for σ = 10 pA:

t = 0.01 s (a), t = 0.02 s (b), t = 0.03 s (c), t = 0.04 s (d).

source of Ca2+ i.e., at (r = 4 µm,θ = π) because source channel of Ca2+ opens and starts

releasing Ca2+. With the increase in time, [Ca2+]C at the source of Ca
2+ also increases. [Ca2+]C

decreases as we go away from source of Ca2+ (r = 4 µm, θ = π) then it increase near (r =
2 µm, θ = π) . Again at center i.e. (r = 0 µm, θ = π), [Ca2+]C decreases. Then as we move

towards the source of IP3 i.e., at (r = 4 µm, θ = 0), [Ca2+]C increases near (r = 2 µm, θ = 0)
and then it decreases gradually till 0.1 µM as we reach source of IP3. This gradual increase and

decrease in [Ca2+]C verifies its wave nature as per the physiology of cardiac myocyte. Also, it

validates similar findings proved by experimental works [38, 39, 40].

The profile of [IP3] at different radial position r and angle θ is investigated in Fig. 5. As

time increases, [IP3] rises rapidly for few milliseconds and then attains constant concentration.

As we move from the source of IP3 (which is located at r = 4 µm and θ = 0) to source of Ca2+

(which is located at r = 4 µm and θ = π), IP3 steady state concentration increases. Initially,

[IP3] across the cell will be steady concentration (0.16 µM). As source channel opens and starts

releasing IP3, [IP3] in cytosol increases very fast and then it becomes steady after some time as it
binds to IP3Rs and reaches the steady state concentration in cytosol. At (r = 2 µm, θ = 0) and
(r = 0 µm, θ = 0), the [IP3] goes down slightly below the minimum value of [IP3] maintained
in the cell. This may be due to the fact that the initially available IP3 is moving out of the cell
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Fig. 5. [IP3] profile in a cardiac myocyte with respect to time at different radius r and angle θ at

σ = 10 pA and VPr = 0.075 µM/s.

by pump till the IP3 reaches from source to these locations by diffusion process.

(a) (b)

(c) (d)

Fig. 6. [IP3] profile in a cardiac myocyte at different points of time for σ = 10 pA: t = 0.01 s (a),

t = 0.02 s (b), t = 0.03 s (c), t = 0.04 s (d).

The study of the changes in [IP3] at different time intervals with respect to radial position (r)
and angular position (θ) is shown in Fig. 6. Here, the source of IP3 is assumed to be situated at

r = 4 µm and θ = 0. With the increase in time, [IP3] near the source of IP3 also increases. [IP3]
decreases as we go away from source of IP3 (r = 4µm, θ = 0) then it increase to achieve its

maximum peak concentration at (r = 2 µm, θ = 0). Again at center i.e., (r = 0 µm, θ = 0),
[IP3] decreases. Then as we move towards the source of Ca

2+ i.e., at (r = 4 µm, θ = π), [IP3]
increases and attains its maximum peak at (r = 2 µm, θ = π) and then it decreases gradually
till 0.16 µM as we reach source of Ca2+. This gradual increase and decrease in [IP3] verifies it
wave nature as per the physiology of cardiac myocyte. Also, it validates similar findings proved

by experimental works [15].

Fig. 7 shows the changes in [Ca2+]C for various values of source influx. It is observed that

the increase in source amplitude increases the peak [Ca2+]C. The relationship between them is

approximately proportional. This indicates that the influx of Ca2+ through calcium channel is

the mechanism by which cell can achieve the required level of peak [Ca2+]C by proportionally

increasing the influx.

The impact of leak on the concentration of Ca2+ in cytosol of a cardiac myocyte is studied in

Fig. 8. As we can observe that in Fig. 8,a and Fig. 8,b [Ca2+]C is not affected by presence of leak
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(a) (b)

(c) (d)

Fig. 7. [Ca2+]C profile in a cardiac myocyte for different values of source influx: σ = 5 pA (a),

σ = 10 pA (b), σ = 15 pA (c), σ = 20 pA (d).

(a) (b)

Fig. 8. [Ca2+]C profile in a cardiac myocyte: with leak (a) and without leak (b).

initially near the source i.e., r = 4 µm and θ = π, which is due to the fact that at source [Ca2+]C
is high due to source influx and the effect of presence of leak is negligible there but away from

the source the impact of leak can be observed. [Ca2+]C increases in the presence of leak.
The concentration of Ca2+ and IP3 decreases as their diffusion coefficient increases (see

Fig. 9). This shows that the relation between [Ca2+]C and [IP3] with their diffusion coefficient is
inversely proportional. This is due to the fact that as diffusion increases the accumulated Ca2+

or IP3 in cytosol decreases as the released Ca
2+ and IP3 from the source is diffused throughout

the cell. This increases in diffusion decreases the amount of [Ca2+]C or [IP3] accumulated in

cytosol.

The interdependence of Ca2+ and IP3 dynamics can be observed from the Fig. 10. It shows

the ratio of [Ca2+]C to [IP3] with respect to time at different positions in the cytosol of a cardiac
myocyte. After few milliseconds this ratio between [Ca2+]C and [IP3] at different positions in
cytosol of a cardiac myocyte, attains its equilibrium state which can be observed from Table 2.

It is observed from Table 2 that as moving away from the source of Ca2+ (moving towards

source of IP3), equilibrium ratio increases. This matches with the biological fact that IP3 ions
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(a) (b)

(c) (d)

Fig. 9. [Ca2+]C and [IP3] profile in a cardiac myocyte at different Ca2+ and IP3 diffusion

coefficient:DC = 16µm2/s (a),DC = 20µm2/s (b),DI = 283µm2/s (c),DI = 305µm2/s (d).

accumulate near IP3R which is near source of Ca2+, therefore the concentration of IP3 near the

source of Ca2+ is very high. This results in the decrease of ratio (u/p) near the source of Ca2+.
Similarly, moving towards the source of IP3, the ratio (u/p) increases as there is less amount of
IP3 ions available due to accumulating of IP3 ions near IP3R. Also, from Table 2 it is observed

that the time taken to reach the equilibrium state by the Ca2+ and IP3 dynamics is less near

the sources of Ca2+ and IP3 respectively as compared to the center of cytosol. This observation

implies that at the center of the cytosol impact of both the signaling (Ca2+ and IP3 signaling) is

very prominent. The center of the cytosol experiences the force [Ca2+]C and [IP3] from both the

sources which are placed opposite to each other, which leads to more disturbance in this region

of cytosol. Due to this disturbance, it takes more time to attain equilibrium state at the center of

the cytosol of a cardiac myocyte.

Table 2. Equilibrium state in coupled dynamics

Radius Angle Time Equilibrium Ratio
r(µm) θ (radian) t (s) u/p

4 π 0.11 0.2016

2 π 0.21 0.2214

0 0 0.71 0.2612

2 0 0.73 0.3238

4 0 0.62 0.6250

These spatio-temporal model results are consistent with experimental studies [15, 41] that

suggest that on IP3 fluctuation the cell can evoke Ca2+ dynamics and vice-versa. Calcium

dynamics in a cardiac myocyte obtained is consistent qualitatively with mathematical modeling

studies [42, 37, 18]. Also, it is observed from Fig. 10 that the ratio of [Ca2+]C and [IP3] decreases
and increases again and again. And then, it shows fluctuation before attaining equilibrium state.
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(a) (b)

(c) (d)

(e)

Fig. 10. Ratio of [Ca2+]C and [IP3] with respect to time at different positions i.e., radius (r) and

angle (θ) in a cardiac myocyte: θ = π and r = 4 µm (a), θ = π and r = 2 µm (b), θ = 0 and

r = 0 µm (c), θ = 0 and r = 2 µm (d), θ = 0 and r = 4 µm (e).

This oscillatory pattern shows that these two signaling are non-linearly interdependent.

6. CONCLUSIONS

There has been increasing evidence in the literature that Ca2+ signaling can be accompanied

by dynamics of IP3 [43, 44, 45]. The experimental results raise the questions of the underlying

mechanisms of IP3 dynamics and their potential functional role in Ca2+ signaling. The

theoretical analysis presented in the present study provide understanding of both questions. In the

generation of IP3 signals, various processes could be involved. Feedbacks of IP3 and the second

product of the PLC reaction, diacylglycerol, on PLC and upstream agonist receptor/G-protein

could produce IP3 dynamics without involvement of Ca2+ [46, 47]. Alternatively, feedbacks

on IP3 metabolism may be mediated by Ca2+, resulting in coupled IP3-Ca
2+ dynamics [8,

31, 48, 49]. In this work, we have focused on the latter type of feedback oscillators because

they can naturally account for the experimental observations of i), Ca2+ signaling at clamped

[IP3] and ii), coupled IP3 and Ca
2+ dynamics. We considered prototypical positive and negative

feedbacks of Ca2+ ions on IP3 metabolism: Ca2+ activation of PLC and Ca2+ activation of

IP3 3-kinase, respectively. Also, we have systematically investigate the two dimensional coupled
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mathematical model of interdependent Ca2+ and IP3 dynamics in cardiac myocyte using finite

difference method. In which the reaction-diffusion equations for Ca2+ and IP3 were successfully

coupled to obtain the inter-relationship of Ca2+ and IP3 signaling in cardiac myocyte. The

investigated results shows that, ratio of [Ca2+]C and [IP3] has oscillatory patterns with respect

to time. Therefore, these two signaling processes are non-linearly interdependent and exhibit

a coordination in regulating [Ca2+]C and [IP3] levels in the cell required for maintaining the

structure and function of the cardiac myocyte. Also, the source channels, leak and diffusion

coefficients act as an important parameter in order to regulate the [Ca2+]C and [IP3] at appropriate
level required for initiation, sustenance and termination of various activities of the cardiac

myocyte. The Forward-Time Center-Space method has proved to be quite effective in obtaining

the results in the present study. Suchmodels can be developed further to generate the information

of Ca2+ and IP3 dynamics in cardiac myocytes which can be useful to biomedical scientists

for handling the general cause and developing protocols for diagnosis and treatment for heart

diseases. During heart disease various physiological changes in the heart occurs such as

increased chamber dimensions and thinning of ventricle walls, are accompanied by myocyte

morphological changes, including an increase in length/size [50]. These abnormalities often

stem from changes in calcium dynamics caused by altered expression or function of calcium

transporting [51]. Also, this changes in concentration of the Ca2+ is found to be affected by

change in IP3 signaling. Therefore, imbalance of this coupled dynamics are the major factors for

heart diseases. Abnormalities in calcium signaling have been implicated in clinically important

conditions such as heart failure and cardiac arrhythmias.

The authors are thankful to the Department of Biotechnology, NewDelhi, India for providing support

in the form of Bioinformatics Infrastructure Facility for carrying out this work.
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