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Abstract. The study is aimed at the analytical design of the full human bronchial tree 

for healthy patients and patients with obstructive pulmonary diseases. Analytical 

formulas for design of the full bronchial tree are derived. All surfaces of the 

bronchial tree are matched with the second-order smoothness (there are no acute 

angles or ribs). The geometric characteristics of the human bronchial tree in the 

pathological case are modeled by a “starry” shape of the inner structure of the 

bronchus; the pathology degree is defined by two parameters: bronchus constriction 

level and degree of distortion of the cylindrical shape of the bronchus. Closed 

analytical formulas allow the human bronchial tree of an arbitrary complexity (up to 

alveoli) to be designed; moreover, the parametric dependences make it possible to 

specify any desirable degree of airway obstruction.  
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INTRODUCTION 

The human respiratory system consists of the upper (nose, nasal pharynx, and larynx) and 

lower (trachea, bronchial tree, and alveoli) air passages. The human bronchial tree has a 

complicated tree-like structure. There are 24 branching points (bifurcations) from the trachea 

to alveoli in the bronchial tree. Generally speaking, the cross-sectional shapes of individual 

bronchi differ from circumferences. In pathological situations (e.g., asthma), the bronchi are 

constricted, and their cross-sectional shapes change.  

One of the main difficulties arising in lung simulations is an appropriate description of the 

lung geometry. For simulating the air flow in the human bronchial tree, it is necessary to design 

its three-dimensional model with bifurcations. The main difficulty in design of the bronchial 

tree bifurcation is a correct description of the carinal rounding of the diverging bronchi. Non-

algorithmic construction of the carinal rounding (e.g., simple smoothing of sharp ribs) requires 

many manual operations and careful design of a branching bronchial tree. The quality of the 

designed bronchial tree affects the computation accuracy and speed. Because of the presence 

of ribs and non-smooth matching of bifurcations and bronchi in the model, the air flow in 

computations becomes turbulent. As a result, the drag force generated by the air flow passing 

through the bronchial tree increases, which affects the results.  

The second difficulty in computer simulations of lungs is the geometric growth of the 

number of bronchi: the bronchial tree begins from one trachea and ends approximately with 
23 83886082 =  alveoli, while the bronchus scale decreases approximately by a factor of 240. 

The third difficulty in modeling human lungs is the constriction of the cross section of 

pathological bronchi. The cross section of healthy bronchi is close to a circle, whereas the cross-
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sectional area of pathological bronchi decreases, and the bronchus cross section acquires a 

“starry” shape.  

In most studies, the bronchial tree design is based on the model [1], which describes the 

basic geometric parameters of the human bronchial tree.  

The flow in a large bifurcation was studied in [2, 3], where a bifurcation model was 

developed (Fig. 1). Detailed formulas for geometric construction of bifurcations were derived 

in [2]. The overall view of this bifurcation is appreciably different from the anatomic structure 

of the bronchial tree bifurcations. The output bronchi enter the bifurcation system at an acute 

angle [2, 3], and there are sharp ribs, which contradicts the smooth contours of real bronchi.  

 

  

Fig. 1. Bifurcation of the bronchial tree from [2, 3]. 

 

A detailed mathematical description of the bifurcation geometry was given in [4] (Fig. 2), 

where eight pages were devoted to the description of the algorithm used to construct an 

individual bifurcation. An advantage of that paper is the design of an asymmetric bifurcation. 

An individual branch of the bronchial tree up to 11 generations was constructed. This model is 

based on physiologically realistic geometry of the bronchial tree bifurcation [5]. The 

algorithmic method of constructing a smooth bifurcation and bronchial tree as a whole, which 

was proposed in [4] and further developed in [5], was fitted to a particular computer code for 

constructing three-dimensional objects (GAMBIT preprocessor for the FLUENT software 

system and UNIGRAHICS computer simulation code). 

 

  
  

Fig. 2. Bronchial tree bifurcation from [4]. 

 

Based on statistical processing of tomography data, a model of the human bronchial tree 

was developed in [6] (Fig. 3). The resultant graph of the bronchial tree contains up to seven 

generations.  
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Fig. 3. Bronchial tree bifurcation from [6]. 

 

Two torus configurations were used to design an individual bifurcation in [7–9] (Fig. 4). 

Geometric construction of the upper and lower torus configurations was shown in [8], but no 

formulas were provided. The issue of the surface covering the gap between the torus 

configurations remained open (most probably, a smoothing surface in a 3D simulation code 

was constructed). The bifurcation design in [8] was based on manual algorithmic construction 

of the bifurcation in a some code for 3D simulations. One branch of the bronchial tree up to the 

16-th generation was designed.  

 

  
  

Fig. 4. Design of the bronchial tree bifurcation from [7, 8]. 

 

Based on the anatomic diagram [6], an asymmetric bronchial tree up to the 17-th generation 

was constructed in [10, 11]. The air flow in this tree was numerically studied. Simulations were 

performed with the use of the ANSYS Fluent software system (https://www.ansys.com/). The 

computational model of the bronchial tree contained 1453 bronchi, and the grid included 

6.744·106 unstructured four-sided elements. Air was considered as a viscous incompressible 

fluid. The air flow rate was 28.3 liters per minute, and the computations were performed within 

the framework of the turbulent flow model. A typical time of one computation on computers of 

the supercomputer center was 50 hours. 

Some part of the asymmetric human bronchial tree was constructed in [12, 13] (the left and 

right lungs consist of three and two lobes, respectively). The bronchial tree geometry was based 

https://www.ansys.com/
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on the model [1] corrected on the basis of information derived from medical reference books 

and consultations with specialists (practicing physicians). The three-dimensiona geometry was 

designed by using a universal CAD-editor AnsysDesignModeler (Fig. 5). There were no other 

details of bifurcation construction in [12, 13]. 

 

 
  

Fig. 5. Three-dimensional geometry of an asymmetric bronchial tree from [12]. 

 

In [14], the three-dimensional structure of large airways up to the 16-th generation was 

reconstructed on the basis of tomography data on human lungs. A one-dimensional model was 

used for simulating smaller airways. The proposed model was applied to study the flow 

parameters of the inhaled and expired air under normal breathing conditions.  

In the above-cited publications, the main aspect of design of the 3D human bronchial tree 

was the algorithmic aspect of the process of bifurcation modeling in 3D simulation codes. 

Construction of an individual bifurcation requires significant time expenses and manual 

operations. The algorithm of matching of individual bifurcations was not described and requires 

manual fitting in 3D simulation codes. In all paper cited above, only bronchi with a circular 

cross section were considered. When a constriction of the circular cross section of a bronchus 

has to be described, the algorithmic design of the bronchi with new parameters has to be 

repeated. The full (up to the 23 generations) branch of the bronchial tree was constructed in 

none of the above-cited papers because of the large labor expenses of constructing an individual 

bifurcation.  

The goal of the present study is to develop an analytical model of the human lung, which 

ensures effective simulation of the air flow in the healthy and pathological bronchial trees from 

the input bronchus to alveoli. The analytical model of the bifurcation contains closed formulas 

for constructing the full human bronchial tree from the 0-th to 23-rd bifurcation inclusive. 

Analytical formulas allow easy modeling of lung system pathologies caused by the “starry” 

constriction of the bronchi. Moreover, analytical formulas allow one to avoid tedious manual 

operations of constructing each individual bifurcation in 3D simulation codes, their matching 

and smoothing (the procedure of manual design of the pathological bifurcation is especially 

complicated). The proposed analytical formulas of bronchial tree construction allow numerical 

simulations to be performed for bronchial trees with an arbitrary number of generation 

(provided that appropriate computational resources are available) for normal and pathological 

cases.  

HISTOLOGICAL STRUCTURE OF BRONCHI 

The cross-sectional shape of the bronchi differs from a circumference even if there are no 

pathological effects. Figure 6 shows the microphotographs of the bronchus cross section. The 
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inner boundary has a starry shape owing to the presence of epithelium cells. The epithelium 

covers the muscular fibers located underneath. The outer shape of the bronchi is supported by 

cartilaginous plates, which are closed for large bronchi and non-closed for small bronchi. 

Contraction of muscular fibers leads to constriction of the inner cross section of the bronchi, 

which is observed, in particular, in the case of an asthmatic attack (Fig. 7).  

 

   
a)    b)   c) 

Fig. 6. Microphorographs of the inner structure of the bronchi: (a) large bronchiole in a child’s lung [15]; 

(b) human bronchiole [16]; (c) bronchiole in the case of a chronic obstructive pulmonary disease [17]. 

 

 
a)     b) 

Fig. 7. Cross section of the normal bronchus (a) and of the bronchus of a patient with asthma (b). Schematic 

pattern from [18]. 

 

In constructing the bronchial tree model, one has to take into account the real (or close to 

real) shape of the inner structure of the bronchi because the inner shape of the bronchus 

significantly affects the air flow characteristics in the bronchi.  

BRONCHIAL TREE PARAMETERS 

Design of the mathematical model of the human bronchial tree is a complicated and labor-

consuming task. The human bronchial tree has a complicated structure consisting of bronchi 

and connecting bifurcations (structures where the input bronchus branches into two output 

bronchi). The three-dimensional geometry of the bronchial tree is generated on the basis of the 

morphometric data on human lungs [1]. Generally speaking, the bronchial tree is asymmetric, 

and the airway sizes of different people can be significantly different. A brief review of the 

human bronchial tree characteristics from various studies can be found in [12].  

As the initial morphometric data for constructing the analytical model of the bronchial tree, 

we use a simple model of a symmetric bronchial tree [1]. It will be demonstrated that the 

resultant bronchial tree can be easily extended to other morphometric data of human lungs. 

According to [1], the human bronchial tree has 24 generations of bifurcations. The bifurcation 

number n (or the number of the bronchial tree generation) varies from 0 to 23. The parameters 
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of symmetric dichotomy (symmetric bronchial tree model [1]) are defined by the following 

formulas [9]: 

• input bronchus radius (in mm) 
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• input bronchus length (in mm)  
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Functions (1) and (2) are plotted in Figure 8. 

 

 
Fig. 8. Radius nR  and length nL  of the bronchi versus the bifurcation number n  for the symmetric 

bronchial tree model (1), (2). 

 

The air density is 1.23 =  kg/m3, and the dynamic viscosity coefficient is 1.79 =  Pa·s. 

The air flow rate for an adult at rest is 5Q =  l/min and increases to 140 l/min in a middle-

distance race. The maximum decrease in pressure in the human lungs is 

35p   mm H2O 343  Pa [12, 13]. Thus, the maximum difference in pressure in the human 

lungs is 0.338%  of atmospheric pressure. 

The Reynolds number of the air flow in the bronchus of the n-th generation is calculated by 

the formula 

 
1

2
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n n
n n

n

U R Q
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 
= =
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, (3) 

where 
22

n n

n

Q
U

R
=


 is the mean velocity at the output of the n-th bronchus. The calculated 

values of the Reynolds number are shown in Figure 9. The critical Reynolds number for a 

circular tube with smooth walls is 2300. Figure 9 shows that the Reynolds numbers are higher 

than the critical value only in some large bronchi with large flow rates. Thus, the flow in the 

bronchial tree is laminar, except for several large bronchi with large flow rates. The flow in the 

human bronchial tree for a person at rest is laminar in terms of the criterion of the critical 

Reynolds number.  
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The turbulent and laminar flows generate different levels of resistance in the tube flow, 

which are described by the following formulas (the Blasius formula is given for the turbulent 

flow):  

 0.25

lam turb64 Re, 0.3164 Re =  = . (4) 

The pressure difference in the tube with the turbulent flow is greater than that in the laminar 

flow (with an identical flow rate):  

 turb lam turb lamp p  =   . (5) 

For the critical Reynolds number, the ratio of the pressure differences is equal to 1.64. Thus, a 

greater pressure difference is required for the turbulent flow to ensure an identical air flow rate 

in the human lungs with the laminar flow. Most probably, for the long years of evolution, the 

human organism generated the bronchial tree structure that ensures a laminar flow of air in the 

bronchi. Therefore, in our opinion, the air flow in the human bronchial tree has a laminar 

character.  

 

 
Fig. 9. Reynolds number Ren  at the output of the n-th bifurcation for three values of the air flow rate. 

Re 2300=  is the critical Reynolds number for a circular tube.  

 

MODELING OF THE HEALTHY AND PATHOLOGICAL BRONCHUS SHAPES  

The function that describes the cross-sectional shape of the bronchus shape of a healthy 

person and a patient with obstructive pulmonary diseases is written as  

 ( ) 2 ed
ob bronchsin

2

n
f C s A

  
 = −   

  
, (6) 

where bronchA  is the degree of reduction of the cross-sectional area of the obstructive bronchus 

as compared to the healthy bronchus ( )bronch0 1A  , obs  is the normalized height of the rays 

of the starry inner shape of the bronchus ( )ob0 1s  , and ed ed4n i=  is the number of rays of 

the starry inner shape of the bronchus ( )ed 0i  . The number of rays should be multiple of four 

for the neighboring bronchi to be matched with each other after turning the structure by 2  

(as will be demonstrated below). The parameter С  is chosen from the condition that the cross-

sectional area of the bronchus remains unchanged regardless of the changes in the parameters 

obs  and edn : 
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, (7) 

where ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2

ed ob ed ed ed ob ob ed ed2 sin 2 sin 2 8 1 sin 2n s n n n s s n n =    +  − − −  . 

The equation for the bronchus cross section with obstructive constriction (6) has the form 

 
( ) ( ) ( )

( ) ( ) ( )
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sin ,

B

n n

B

n n

X R f

Y R f

 =   

 =   
 (8) 

where  0, 2   and 
nR  is the radius of the bronchus (1) of the n-th generation. 

Figure 10 shows the shapes of the starry inner cross section of the bronchi (solid curves) 

and the circular cross section of the bronchi (dashed curves). The circular and starry bronchi 

have an identical cross-sectional area in Figure 10,а, whereas the cross-sectional area of the 

starry bronchus in Figure 10,b is smaller than that of the circular bronchus.  

 

  
a)    b) 

Fig. 10. Shape of the inner structure of the bronchi calculated by formulas (6)–(8). 

 

ANALYTICAL DESIGN OF THE BRONCHIAL TREE 

The main problem in constructing the bifurcation of the bronchial tree is to ensure a correct 

description of the carinal rounding of the bifurcating bronchi. The quality of carinal rounding 

construction affects the quality of grid generation and, finally, the solution accuracy. Non-

algorithmic construction of the carinal rounding (e.g., simple smoothing of sharp ribs) requires 

many manual operations and attention in design of a branching bronchial tree.  

An individual bifurcation was analytically designed for constructing the full human 

bronchial tree. Then, changing the bifurcation number, one can obtain the entire set of the 

bronchi. The bronchus position in the bronchial tree is also defined analytically with the use of 

coordinate transformations in accordance with the bronchus position in the tree.  

Construction of an individual bifurcation 

Design of an individual bifurcation is based on the idea [8] of using torus configurations. 

An individual n-th bifurcation of the bronchial tree is constructed from parts of two torus 

configurations and three-dimensional two-parameter surfaces smoothly connecting these 

configurations. The value of the bronchus deflection angle n  is not regulated in the bronchial 

tree model [1] (formulas (1), (2)); therefore, for certainty, we use a constant angle 35n = , as 

in [8]. 

The equation for a torus with the distance from the circumference center to the rotation axis 

R  and with the circumference radius r  is defined parametrically by the formula 
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( ) ( )

( ) ( )
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 (9) 

where the angles are  0, 2   and  , −  , and ( )f   is the function of the bronchus 

cross section shape (6) 

To construct torus (9) with a variable circumference radius R , we need the equation for the 

curve connecting two points ( )0 , 0R  and ( )1, nR   with the second order of smoothness  

 ( ) 0 1 0 1
0 1

1
; , sin

2 2 2

M

n

n
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  − +
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. (10) 

Figure 11 shows the general view (a) and the projection (b) of the right part of the 

bifurcation ( )0x   onto the plane 0y = . The upper torus ( )0, , ,a a cx f f  has the input radius 

( )0, a nx R=  and the output radius ( ) ( ) 1, ,b c c a nf f f f R += = , and is bounded by the angle 
n . 

The lower torus ( ), , ,a c b cz f f z  has the input and output radii ( ) ( ) 1, ,a b c b nz z f f R += = . The 

inner radius of the lower torus is ( ) ( ) 1, , 2d b d b nz z z f R += = . The distance is ( )0, b nx G= . The 

parameter nG  is defined by the relation 

 ( )1

cos
2.5

1 cos

n
n n n

n

G R R+


= −

− 
. (11) 

 

 

 
a) b) 

Fig. 11. Construction of the n-th bifurcation of the bronchial tree (the picture illustrates the construction of 

a circular bifurcation, and the output bronchi are not shown). General view of the three-dimensional 

bifurcation (а). Projection in the plane 0y =  (b). Here ( )0, , ,a a cx f f  is the upper torus, ( ), , ,a c b cz f f z  is 

the lower torus, ( )0, ,e az z  is the upper surface, and ( ), ,a ez z f  is the lower surface. 

 

The upper torus ( )0, , ,a a cx f f  is described by the relations 
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where  2, 3 2   ,  0, n  . 

The lower torus ( ), , ,a c b cz f f z  is described by the relations 

 

( ) ( )

( ) ( )( )( )
( ) ( )

1 1

1

1 1

, , ,1.5 , ,

, , ; , ,

, tan , ,1.5 , ,

D

n n n

D M

n n n n n

D

n n n n n

X X R R

Y Y R A R R

Z G Z R R

+ +

+

+ +

  =   

  =  

  = −  +  

 (13) 

where  2,3 2   ,  , 2n   . 

The upper two-parameter surface ( )0, ,e az z  is defined by the equations 
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where ( )0, 2,U

ns X     ,  0, n  . Here the angle 
n  bounding the second parameter is 
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The lower two-parameter surface ( )0, ,e az z  is defined by the equations 
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where ( ) ( )( )2, , 2,D U

n n ns X X A       ,  , 2n   . 

The function ( )nA   determines the relationship between the angles   and  : 

 ( )
( )

( )

1

1

1.5 sin
arctan

1.5 cos
cos

n n

n n
n

n n

n

R
A

G
R

+

+

 
  −
  =  −
 −  −  

. (17) 

The coordinates of the point cf  (center of the output bronchi) are 
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The surface ( ), ,a c bf f f  is adjacent to the output cylindrical or starry bronchus of length 

1nL +
 (not shown in Fig. 11). The equations of the output bronchi are 
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where the plus and minus signs refer to the right and left output bronchi, respectively, the 

parameter is 
1[0, ]ns L + , and the angle is  0, 2  . 

Equations (9)–(19) provide an analytical description of the construction of the n-th 

bifurcation of the bronchial tree with the output bronchi. Each bifurcation consists of the 

following 3D surfaces: 1) two upper toroidal surfaces (right and left surfaces indicated by the 

plus and minus signs, respectively) (formulas (12)); 2) two lower toroidal surfaces (right and 

left surfaces indicated by the plus and minus signs, respectively (formulas (13)); two upper two-

parameter surfaces (right and left surfaces indicated by the plus and minus signs, respectively) 

(formulas (14)); two lower two-parameter surfaces (right and left surfaces indicated by the plus 

and minus signs, respectively (formulas (16)); output cylindrical or starry bronchi (right and 

left bronchi indicated by the plus and minus signs, respectively) (formulas (19)). 

Bronchial tree construction 

The next bifurcation is constructed in a similar manner. The design of the following 

bifurcations of the bronchial tree begins from the transformation of the coordinate system with 

the origin in the middle of the right or left output bronchus of the previous bifurcation. The Z 

axis is directed along the axis of the left or right output bronchus of the previous bifurcation. 

This transformation of coordinates allows one to transfer the bifurcation to a needed point of 

the tree without changing the formulas for bronchus design (the only changes is in the 

bifurcation number n ). 

We pass to a new coordinate system from the current bifurcation when the origin of the 

coordinate axes is shifted to the point ( )new new new

1 1 1, ,n n nx y z+ + + : 

 

( )

( )

new

1 1 1

new

1

new

1 1 1

1.5 cos sin ,

0,

sin cos

n n n n n

n

n n n n n n n

x R L

y

z G R R L

+ + +

+

+ + +

=   + 

=

= − − −  −   

 (20) 

and rotated around the Y  axis by the angle n . 

Beginning from the second bifurcation ( )2n = , even bifurcations are rotated around the Z  

axis (here we mean the local coordinate system in which the bifurcation is constructed) by the 

angle 2 . As a result, the matrix of the coordinate transformations for the next bifurcation 

with the number 1n+  has the form: 

• for odd numbers n  

 

( ) ( )

( ) ( )
1

new new new

1 1 1

cos 0 sin 0

0 1 0 0

sin 0 cos 0

1

n n

n

n n

n n n

S

x y z

+

+ + +

   
 
 =
   
 

 

; (21) 

• for even numbers 2n   
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( ) ( )

( ) ( )
1

new new new

1 1 1

0 cos sin 0

1 0 0 0

0 sin cos 0

1

n n

n

n n

n n n

S

y x z

+

+ + +

   
 
− =

   
 
−  

. (22) 

Figure 12,а shows the bronchial tree constructed up to the generation 5n =  with the starry 

cross-sectional shape of the bronchi. Bifurcations of the same generation are marked by an 

identical color. It is impossible to show the full bronchial tree up to the 23-rd generation because 

there are too many bifurcations of versatile scales. As an example, Figure 12,b shows one 

branch of the bronchial tree (only bifurcations adjacent to the right output bronchi) up to the 

23-rd generation inclusive.  

 

   
а)       b) 

Fig. 12. Patterns of the human bronchial tree with starry bronchi designed on the basis of the proposed 

model (9)–(22). (а) Bronchial tree up to the generation 5n =  (branches of one generation are marked by 

the same color). (b) One branch of the bronchial tree with generations from 0 to 23.  

 

CONCLUSIONS 

The paper describes the analytical design of the full human bronchial tree for healthy 

persons and patients with obstructive pulmonary diseases. The existing methods of bronchial 

tree design have an empirical character and are restricted by the capabilities of complex 

geometry construction by a particular commercial CDF software system. The available models 

of the bronchial tree do not describe the starry internal structure of bronchioles; thus, they fail 

to describe lungs with pathological effects.  

An analytical model is developed for constructing lungs with an arbitrary number of 

generations (up to alveoli). The analytical model of the bifurcation contains closed formulas for 

constructing the full human bronchial tree from the 0-th to 23-rd bifurcation inclusive. 

Analytical formulas allow easy modeling of lung system pathologies caused by starry 

constriction of the bronchi. The geometric characteristics of the human bronchial tree in 

pathological cases are modeled by a starry internal structure of the bronchus, and the degree of 

pathology is defined by two parameters: degree of bronchus constriction and degree of 

distortion of the cylindrical shape of the bronchus. All surfaces of the bronchial tree are matched 

with the second order of smoothness (have no acute angles or sharp ribs). Moreover, analytical 

formulas allow one to avoid tedious manual operations of constructing each individual 

bifurcation in 3D simulation codes, their matching and smoothing (the procedure of manual 

design of the pathological bifurcation is especially complicated). The proposed analytical 
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formulas of bronchial tree construction allow numerical simulations to be performed for 

bronchial trees with an arbitrary number of generation (provided that appropriate computational 

resources are available) for normal and pathological cases.  

 
The study was supported by the Russian Foundation for Basic Research and the Subject of the 

Russian Federation (Novosibirsk Region) within the framework of the research project 

No. 19-41-540003 r_a. 

REFERENCES 

1. Weibel E.R. Morphometry of the Human Lung. Berlin: Springer Verlag, 1963. 

2. Zhao Y., Lieber B.B. Steady inspiratory flow in a model symmetric bifurcation. Journal 

of Biomechanical Engineering. 1994. V. 116. P. 488–496. doi: 10.1115/1.2895800. 

3. Zhao Y., Brunskill C.T., Lieber B.B. Inspiratory and expiratory steady flow analysis in a 

model symmetrically bifurcating airway. Journal of Biomechanical Engineering. 1997. 

V. 119. P. 52–58. doi: 10.1115/1.2796064. 

4. Hegedűs C.J., Balásházy I., Farkas Á. Detailed mathematical description of the geometry 

of airway bifurcations. Respiratory Physiology & Neurobiology. 2004. V. 141. No. 1. P. 

99–114. doi: 10.1016/j.resp.2004.03.004. 

5. Heistracher T., Hofmann W. Physiologically realistic models of bronchial airway 

bifurcations. J. Aerosol Sci. 1995. V. 26. No. 3. P. 497–509. doi: 10.1016/0021-

8502(94)00113-D. 

6. Ertbruggen C., Hirsch C., Paiva M. Anatomically based three-dimensional model of 

airways to simulate flow and particle transport using computational fluid dynamics. 

J. Appl. Physiol. 2005. V. 98. P. 970–980. doi: 10.1152/japplphysiol.00795.2004. 

7. Tena A.F., Casan P., Fernández J., Ferrera C., A. Marcos A. Characterization of particle 

deposition in a lung model using an individual path. EPJ Web of Conferences. 2013. 

V. 45. Article No. 01079. doi: 10.1051/epjconf/20134501079. 

8. Tena A.F., Fernández J., Álvarez E., Casan P., Walters D.K. Design of a numerical model 

of lung by means of a special boundary condition in the truncated branches. International 

Journal for Numerical Methods in Biomedical Engineering. 2017. V. 33. No. 6. Article 

No. e2830. doi: 10.1002/cnm.2830. 

9. Tena A.F., Francos J.F., Álvarez E., Casan P.A. A three dimensional in SILICO model 

for the simulation of inspiratory and expiratory airflow in humans. Engineering 

Applications of Computational Fluid Mechanics. 2015. V. 9. No. 1. P. 187–198. doi: 

10.1080/19942060.2015.1004819. 

10. Gemci T., Ponyavin V., Chen Y., Chen H., Collins R. CFD Simulation of Airflow in a 

17-Generation Digital Reference Model of the Human Bronchial Tree. Series on 

Biomechanics. 2007. V. 23. No. 1. P. 5–18. 

11. Gemci T., Ponyavin V., Chen Y., Chen H., Collins R. Computational model of airflow in 

upper 17 generations of human respiratory tract. Journal of Biomechanics. 2008. V. 41. 

P. 2047–2054. doi: 10.1016/j.jbiomech.2007.12.019. 

12. Trusov P.V., Zaitseva N.V., Tsinker M.Yu. Modeling of the human breathing process: 

conceptual and mathematical formulations. Mathematical Biology and Bioinformatics. 

2016. V. 11. No. 1. С. 64–80. doi: 10.17537/2016.11.64. 

13. Trusov P.V., Zaitseva N.V., Tsinker M.Yu., Babushkina A.V. Modelling dusty air flow 

in the human respiratory tract. Russian Journal of Biomechanics. 2018. V. 22. No. 3. 

P. 262–274.  

14. Choi J. Multiscale numerical analysis of airflow in CT-based subject specific breathing 

human lungs: PhD Dissertation (Doctor of Philosophy). Iowa: University of Iowa, 2011. 

259 p. doi: 10.17077/etd.n7qno7h9. 

15. Ham A.W., Cormack D.H. Ham’s Histology. Philadelphia: Lippencott, 1979.  

https://doi.org/10.1115/1.2895800
https://doi.org/10.1115/1.2796064
https://doi.org/10.1016/j.resp.2004.03.004
https://doi.org/10.1016/0021-8502(94)00113-D
https://doi.org/10.1016/0021-8502(94)00113-D
https://doi.org/10.1152/japplphysiol.00795.2004
https://doi.org/10.1051/epjconf/20134501079
https://doi.org/10.1002/cnm.2830
https://doi.org/10.1080/19942060.2015.1004819
https://doi.org/10.1016/j.jbiomech.2007.12.019
https://doi.org/10.17537/2016.11.64
https://doi.org/10.17077/etd.n7qno7h9


MEDVEDEV, GAFUROVA 

648 

Mathematical Biology and Bioinformatics. 2019. V. 14. № 2. doi: 10.17537/2019.14.635 

16. Mescher A.L. Junqueira's Basic Histology: Text and Atlas. New York: McGraw Hill 

Medical, 2013. 560 p. 

17. Chernyaev A.L., Samsonova M.V. Different types of chronic obstructive pulmonary 

disease in term of pathologist's view. Russian Pulmonology. 2013. No. 3. P. 93–96 (in 

Russ.). doi: 10.18093/0869-0189-2013-0-3-93-96. 

18. Solopov V.N. Astma. Kak vernut' zdorov'e (Asthma. How to be healthy again). 2002. 

240 p. (in Russ.). URL: http://health.astma.ru/ (accessed 18.12.2019).  
 

 

 

 

Received 05.09.2019 

Revised 06.12.2019 

Published 23.12.2019. 

 

https://doi.org/10.18093/0869-0189-2013-0-3-93-96
http://health.astma.ru/

