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Abstract. The paper studies dynamic modes of discrete-time model of structured 

predator-prey community like “arctic fox – rodent” and changing its dynamic 

modes due to interspecific interaction. Possibility of shifting dynamic modes is 

analyzed. In particularly, 3-cycle emerging in prey population can result in 

predator extinction. Moreover, this solution corresponding to an incomplete 

community simultaneously coexists with the solution describing dynamics of 

complete community, which can be both stable and unstable. The anthropogenic 

impact on the community dynamics is studied. Anthropogenic impact is realized as 

a harvest of some part of predator or prey population. It is shown prey harvesting 

leads to expansion of parameter space domain with non-trivial stable numbers of 

community populations. In this case, the prey harvest has little effect on the 

predator dynamics; changes are mainly associated with multistability areas. In 

particular, the multistability domain narrows, in which changing initial conditions 

leads to different dynamic regimes, such as the transition to a stable state or 

periodic oscillations. As a result, community dynamics becomes more predictable. 

It is shown that the dynamics of prey population is sensitive to its harvesting. Even 

a small harvest rate results in disappearance of population size fluctuations: the 

stable state captures the entire phase space in multistability areas. In the case of the 

predator population harvest, stability domain of the nontrivial fixed point expands 

along the parameter of the predator birth rate. Accordingly, a case where predator 

determines the prey population dynamics is possible only at high values of predator 

reproductive potential. It is shown that in the case of predator harvest, a change in 

the community dynamic mode is possible as a result of a shifting dynamic regime 

in the prey population initiating the same nature fluctuations in the predator 

population. The dynamic regimes emerging in the community models with and 

without harvesting are compared. 

 

Key words: discrete-time mathematical model, community, predator-prey, stability, 

dynamic modes, age structure, harvest. 

INTRODUCTION 

Modeling the dynamics of «predator-prey» community is a popular and interesting task: 

every year the number of articles on this topic is increasing. Figure 1 presents number 

dynamics of papers dealing with «predator-prey community» in Scopus. Searching by key-
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words ( prey AND predator  AND model ) gives hundreds of papers, at that research interest 

to prey-predator models has significantly increased in the recent decades. Note, that the vast 

majority of them uses continuous-time models traditionally. 

 

 

Fig. 1. Dynamics of paper number in the citation indexing service Scopus by the key-words (prey AND 

predator AND model) (a), among them the articles mentioning “harvest” (b), discrete time and age 

structure (c). 

 

In our opinion, this is due to the fact that the first model proposed by Lotka and Volterra 

[1, 2] to describe the interaction between a predator and its prey uses differential equations. 

Consequently, many researchers continue developing on the basis of the founder’s ideas. The 

development of this model by introducing additional terms and searching for new trophic 

functions ([3], e.g., Holing [4, 5], Bazykin [6]) provided it the capability of describing 

periodic oscillations in the population sizes caused by trophic interactions between species. 

Further development of these models followed the path of complication and generalization. 

There are stochastic [7–10], continuous [6, 11], algebraic and discrete time [12] modifications 

of the Lotka-Volterra model, and each of the modifications describes and takes into account 

specific features of interspecies interaction and a biological community development [13].  

Equations with delay are often used to take into account the age structure of a 

community’s populations in continuous time [14–19], where stage is described as a delay that 

corresponds to the time during which individuals of a predator [14–16] or a prey [16, 19] 

achieve maturity. As a rule, the age structure of the predator population is considered, since it 

is assumed that juvenile predators cannot feed themselves. Some papers describe age structure 

of community’s populations using separate equations for each development stage of a prey 

[20, 21] or a predator [18, 22]. There are studies examining the influence of factors not related 

to the interaction of predator and prey on the community dynamics, for example, cannibalism 

[22] or a prey's refuge [21]. 

The main subjects of study of these models are the system stability [16, 18, 19], the hydra 

effect [20], bifurcations [16, 18, 19], the influence of optimal [18] and/or selective harvesting 

of prey or predator [18, 22–26]. Note that paper [18] studies the “prey – predator” model with 

stage-structured predator, while the selective harvesting of the predator is considered as a 

control parameter. In addition, the series of works [27, 28] merits attention, here differential-

algebraic model of a “predator-prey” community with age structured prey under predator 

harvesting is investigated. The authors use a delay to separate in time the processes of feeding 

and reproduction in the predator population. They showed that increasing delay results in 

destabilizing dynamics of the model and emerging Hopf bifurcation. 

Note that the number of studies analyzing the dynamics of “predator-prey” system with 

harvesting has increased in the last decade (Fig. 1). The harvest process in models with 

differential equations is assumed continuous. However, as a rule, harvesting is discrete in time 

and is confined to a certain season. Often harvest focuses on catching individuals of a specific 

age, which gives the greatest economic benefit [29–32]. Moreover, as a rule, models based on 

differential equations describe the processes of feeding and reproduction as interrelated and 

continuous ones, i.e. there is a continuous transition of the prey population biomass to the 

predator population one. However, many natural species have a pronounced seasonal 

breeding. Use of discrete–time models is seemed to be more adequate for describing 

dynamics of such populations. In addition, the description of development stages of 
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individuals by discrete-time models is also more preferable [5]. However, as Figure 1 shows, 

a few papers investigate the dynamics of the predator-prey community with harvest using 

recurrent equations. Only the last decade has demonstrated an increasing interest to this 

approach.  

Note that a number of very interesting papers among the modern studies consider 

temporal [33–35] and spatial [36–39] dynamics of prey-predator communities which are 

described by discrete-time equations. In particular, methods of the dynamic chaos theory were 

used to investigate fluctuations in discrete-time prey–predator systems considering either 

various biological effects [36, 39–41] as example «prey switching» [40, 41]. The paper [40] 

studies the community “polar bears and ringed seals” with switching between prey stages 

within the seal population, using matrix models. Prey switching is a phenomenon in which a 

predator disproportionately consumes the most abundant prey type, and switches to consume 

another prey type preferentially if the first becomes relatively rare [40]. There is also a very 

interesting paper [42], which studies the influence of different predation strategies on the 

response of age-structured prey populations to a changing climate. In particular, the study 

shows that the changing climate results in prey population fluctuations, while predator 

suppresses them. At the same time, ambush predators such as lions are more effective at 

suppressing fluctuations in their prey than cursorial predators such as wolves, which chase 

down prey over long distances [42].  

The dynamics of specific communities is studied, such as host-parasitoid [43, 44] and 

plant-herbivore communities [45, 46], a community with age-structured prey [42, 44, 47]. The 

work [47] investigates a discrete-time model of a “predator-prey” community with an age-

structured prey. This study showed that if the prey demonstrates chaotic fluctuations, then the 

increase in skill of predation can stabilize the prey dynamics, and in the case of large 

predation pressure, can transfer the population to another chaotic regime. This is true if the 

prey population reproduces, offspring once in a lifetime and its individuals are characterized 

by rapid maturation. 

In the studies with community under harvesting, we note the following papers [48, 49] 

that focus on emerging bifurcations. Thus, [49] shows that a discrete-time "predator-prey" 

model with age-structured predator reveals Neimark-Sacker bifurcation and period doubling 

one, while the prey harvest stabilizes the community dynamics. The analysis of papers 

studying the harvest influence on a structured predator-prey community using discrete-time 

equations shows the importance of this field development, since the application of discrete-

time models allows taking into account and describing a number of biological system 

features.  

This paper continues the study of the discrete-time model of age-structured community of 

“predator-prey” describing dynamics of community like “arctic fox-mouse-like rodents” [50–

52]. Given research focuses on analyzing the influence of interaction between species on the 

community dynamics. Harvesting impact on the community dynamics modes is also studied. 

Dynamic modes of a community model with and without specific harvest of a prey or a 

predator are compared. 

MATHEMATICAL MODEL OF PREY-PREDATOR COMMUNITY  

The community of “arctic fox – rodents” is evident natural example of prey-predator 

interaction. Natural populations of arctic foxes (Alopex lagopus) inhabit inland areas depend 

on small rodents, mainly voles whose populations are characterized by cyclic fluctuation [53]. 

Indeed, in years with low food supply, inland fox population demonstrates a very low rate of 

reproduction, by contrast, in years when prey species are abundant, number of pups in their 

litters is some-fold higher. At that, each species from the community at hand is age-

structured, which is necessary to consider for modeling of the community dynamics. 
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A four-component model of prey-predator community dynamics describing the dynamics 

of the community “arctic fox – mouse-like rodents” and taking into account seasonality of the 

life cycle has been proposed in our previous paper [50]. It takes the form,  
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where n is the reproductive season number. X1 and X2 denote the number of first-time 

participants in the reproductive process (or underyearlings) and the number of last year’s 

participants in reproduction that have survived the winter, respectively (in the prey 

population).The variables a1 and a2 are their reproductive potentials, s and v are their survival 

rates; β1 and β2  are the coefficients of limitation characterizing influence of competition 

between mature individuals of different ages on the birth rate; 0∙Y2(n) / (X* + X1(n)) is the 

share of the underyearlings’ number consumed by the predator, 0 is average number of prey 

consumed by unit of predator per an year. Thus, the predator influences the processes of 

reproduction, competition and survival in the prey population. Y1 and Y2 are the numbers of 

individuals in the juvenile and reproductive part of the predator population, respectively; M is 

the carrying capacity or the maximum population number of predator that is sustainable, if it 

being exceeded the predator population becomes extinct; с is the survival rate of the mature 

individuals of the predator; w is maximal value of predator’s reproductive potential, that is 

attainable with unlimited number of the prey. The function X1(n)/(X*+X1(n)) describes a 

dependence of the predator reproductive potential on its satiation defined by the feeding 

quality. X* is half saturation constant. Here we use the Holling type II functional response: 

X1(n) / (X* + X1(n)) 

A substitution of the variables and coefficients, 
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transforms model (1) to a more simple form: 
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.   (3) 

Model (3) has three fixed points: 

1. A trivial fixed point that corresponds to the extinction of both populations: 

 0,0,0,0 2121  yyxx . 
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2. A semi-trivial solution that corresponds to the prey population existence in the absence 

of a predator: 
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3. A non-trivial fixed point corresponding to the sustainable existence of a predator-prey 

community is defined as solving a transcendental equation for 1x : 
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Our previous studies [51, 52] present conditions for existence and stability of these fixed 

points. The papers show system (3) reveals transcritical, period doubling and Neimark-Saker 

bifurcations. Consequently, the model trajectories can be periodic, quasiperiodic, and chaotic 

oscillations. Studies [51, 52] consider changes in bifurcation boundaries forming the model 

stability domains with variation of the parameter values. Changes in community dynamics 

due to interaction of prey and predator are analyzed based on the model trajectories [50–52]. 

This paper analyzes the influence of interspecies interaction on the dynamics of predator-prey 

community using dynamic mode maps [54], which has allowed obtaining new biologically 

meaningful conclusions. 

INTERSPECIFIC INTERACTION INFLUENCE  

ON THE COMMUNITY DYNAMICS  

To understand the mechanisms of interspecific interaction influence on each species 

dynamics in a community it is necessary to compare cases with and without interspecific 

interaction. Indeed, if food abundance does not change from year to year, then the 

reproductive potential can be considered as a constant value. This situation is observed in 

natural populations of Arctic foxes inhabiting coastal areas. Animals eat seabirds, fish, seals 

and marine invertebrates; the availability of these feed resources remains almost unchanged 

from year to year [55]. As a result, coastal arctic foxes produce small litter each reproductive 

season, and their birth rate is around constant. In terms of model (1), this is true when 

α(x1(n)) = 1, which is equivalent to x1(n) / (x* + x1(n)) = 1 for system (3). The equality of 

coefficient u to zero in system (1) (for equations (3): ∙y2(n)/(x* + x1(n)) = 0) indicates that the 

prey population is local and not affected by predator. Note that if x1(n) / (x* + x1(n)) = 1 and 

∙y2(n) / (x* + x1(n)) = 0, then model (3) is a set of two uncoupled systems, each of which may 

be considered separately. The case corresponds to a situation without interaction between 

species. 

Figure 2,a shows possible dynamic modes that occur in a rodent population without 

predator pressure. The selected parameter values correspond to the case when stability loss 

occurs via both the Feigenbaum scenario and the Neimark-Sacker one. With the selected 

values of initial condition the local rodent population can demonstrate two-year, three-year 

oscillations or stationary state under the different reproductive potential values (Fig. 2,a). At 

the same time, multistability is observed in a wide region of parametric space: the 3-year 

cycle area overlies the stability domain of the non-trivial fixed point and its bifurcation 

according to the Neimark-Saker scenario. The proposed model describing dynamics of age-

structured predator population with food abundance demonstrates the emergence of quasi-

periodic oscillations with growth of birth rate parameter. In the case when the coefficient 

values are located into periodic windows of quasi-periodic dynamics area, regular oscillations 

are observed (Fig. 2,b).  
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Fig. 2. Dynamic mode maps of model (3) a) the dynamics of prey population  with x1(n)/(x* + x1(n)) = 1 

and ∙y2(n) / (x* + x1(n)) = 0; b) the dynamics of predator population with x1(n) / (x* + x1(n)) = 1 and 

∙y2(n) / (x* + x1(n)) = 0; c–d) community dynamics with interspecific interaction under different initial 

conditions. The figures correspond to the period of observed cycles, Q is quasiperiodic dynamics, IV is 

infeasible parameter value area where the model loses its meaning. 0 (index 0) is an area with the absence 

of a predator. 

 

The presence of interspecific interaction in the community leads to increasing variety of 

emerging dynamic modes of the predator population size. The Figure 2,c for fixed values of 

interaction parameters allows studying the evolution of dynamic modes in the prey population 

with increasing predator reproductive potential. Thus, the map 2,a for fixed value of r2 = 10 

with an increase in the r1 values shows the following shifts of dynamic modes along the 

dotted line: 2-cycle, stable state, 3-cycle. On the map 2,c, the ordinate axis corresponds to the 

dotted line (the same dynamic modes are observed). Consequently, by increasing the 

reproductive potential of the predator, we can analyze possible changes in dynamic modes of 

both the prey population and the community. 

In particular, the predator population goes extinct with low values of its reproductive 

potential. At the same time, the prey population demonstrates various dynamic modes, whose 

nature depends on its birth rate and self-regulation processes. Increasing in parameter w 

values leads to emerging dynamic modes in the predator population of the community, the 

nature of which is similar to the dynamic modes of the prey population in the absence of the 

predator. That pattern remains until the Neimark-Sacker bifurcation occurrence that forms a 

closed invariant curve. As a result, quasiperiodic oscillations appear and they are caused by 

the interaction between the predator and prey, and therefore the predator impact on the prey 

population results in quasiperiodic dynamics in the prey population of community (Fig. 2,c–

d). 

Figures 2,c,d show dynamic mode maps with multistability areas in which initial 

condition variation changes the 3-cycle domain that overlaps the stability area of non-zero 

fixed point and the regimes emerging due to its stability loss via the Neimark-Sacker scenario. 

Initially the 3-cycle occurs in rodent population without predator. Figures 2,c–d allows one to 

conclude that into the domain A the 3-cycle of the prey population in the community with 

extinct predator coexists with the community showing stable dynamics or quasiperiodic 

fluctuations of interacting populations. Accordingly, the initial condition variation can result 

in two opposite scenarios for the community development. The first one is the prey 

population size fluctuates with 3-year period, which results in predator extinction due to drops 

in prey number. The second scenario corresponds to the coexistence of predator and prey: the 

community stabilizes or quasiperiodically fluctuates, which depends on the demographic 

parameter values of the both species. In the case of species coexistence, the community 

dynamics suits to the prey dynamics. At the same time, there is a possibility of dynamic mode 

shift in the prey population. Therefore, if a change in the dynamics regime occurs in the prey 

population, then corresponding changes will occur in the dynamics of the predator population.  

Figure 3,a shows the attraction basins, demonstrating coexistence of alternative attractors: 

the predator population extinction and the sustainable community. The model trajectories 
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constructed for the initial conditions from different attraction basins demonstrate that at the 

same parameter values the community stabilizes under some initial conditions, and the 

predator population goes extinct under others ones (Fig. 3,a). 

 

 

Fig. 3. Attraction basins of coexisting dynamic modes with corresponding trajectories of model (3). The 

figures correspond to the period of observed cycles, Q is quasiperiodic dynamics, 0 (index 0) is a case of 

a predator extinction. 

 

The predator dynamics is adjusted to the prey dynamics until bifurcation value of the 

predator reproductive potential, at which a transition from stable state to quasi-periodic 

oscillations occurs (Fig. 2,a–b). In the case of multistability, if the current values of 

community population sizes are into the attraction basins of 3-cycle, which initially arises in 

the prey population, then the predator dynamics also begins to fluctuate with three-year 

period. As a result, if this multistability domain overlies the parametric area with the predator 

dynamics impacted on the prey, then current sizes of community populations will determine 

the species, who initiates the same dynamic behavior in the rest part of community. The maps 

of Figure 2,c–d show domain B that is a fragment of the area with such an "overlapping". 

Figure 3,b depicts the attraction basins corresponding to the phase space division by various 

attractive states that give various scenarios of community development, which depend on the 

"leading" species. Therefore, in the area with Figure 3, three-year fluctuations are observed, 

and the predator dynamics follows the prey dynamics. In the area of quasiperiodic dynamics, 

the predator initiates fluctuations in the prey population. 

We use dynamic mode maps to study changes in the stability areas of System (3) fixed 

points and fluctuation emergence scenarios in the populations of predator and prey due to 

stability loss with an increase in values of both the community parameter that determine the 

interacting species dynamics and the interaction coefficient (half saturation constants х*). 

Figure 4 shows dynamic mode maps demonstrating the “predator-prey” community evolution 

with variations in the parameters describing the species interaction (Fig. 4). 

Consuming part of prey by a predator with a high reproductive potential can lead to 

irregular (quasi-periodic) fluctuations in community. The smaller the coefficient x* value, the 

faster the prey population dynamics turns into irregular fluctuations with growth of the 

predator reproductive potential. A similar situation is observed with increasing values of 

parameter α. Note that dynamics of a predator with low reproductive potential values adjusts 

to the prey population dynamics. However, with a higher birth rate of the predator the 

community turns into irregular fluctuations that are initiated by the predator. 
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Fig. 4. Dynamic mode maps of model (3) with different values of parameters describing interspecific 

interaction. The figures correspond to the period of observed cycles, 0 (index 0) is an area with the 

absence of a predator, Q is quasiperiodic dynamics, C is chaotic dynamics, IV is infeasible parameter 

value area where the model loses its meaning. Initial conditions are x1(0) = 0.015, 

x2(0) = y1(0) = y2(0) = 0.1. 

 

Harvest influence on the community dynamics  

Anthropogenic impact involving deratization, and some types of removal such as surveys 

or hunting can influence on the dynamics of predator – prey community. To consider this 

effect, we propose the following model modification of the community like “arctic fox – 

rodent” assuming removal to be proportional to the size of harvested species. 
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where h1 and h2 denote harvest rates of prey and predator, respectively. The meaning of the 

other variables and parameters does not change. Model (4) with substitution (2) takes the 

form: 
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This paper considers the following two cases: (i) the harvest of predator (h1 = 0), and (ii) 

the harvest of prey (h2 = 0). Each of the models has thee fixed points: a trivial, a semi-trivial, 

and a nontrivial solutions. Similar to the case without harvesting, the considered systems 

demonstrate periodic, quasiperiodic, and chaotic fluctuations as well as multimodality [30, 31, 

51, 52] depending on population parameters values. Therefore, a variation of current 
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population size can shift the dynamic mode of the community. Let us proceed with 

considering each case dynamics in more detail. 

Harvest of prey population 

The semi-trivial and non-trivial fixed points of Model (5) in the case of prey population 

harvest (h2 = 0) take the form: 
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Figure 5 shows dynamic modes of Model (5) and their shifts because of changing value of 

prey’s harvest rate. In addition, figure 5 illustrates the typical forms of stability domains of 

the semi-trivial and non-trivial solutions of Model (5) as well as their changes with growth of 

the parameter h1.  

 

 

Fig. 5. Dynamic mode maps of model (5) with h2 = 0, and different values of harvest rate of prey and 

initial conditions. The figures correspond to the period of observed cycles, Q is quasiperiodic dynamics, 

IV is infeasible parameter value area where Model (5) loses its meaning. Index 0 is an area with the 

absence of a predator. 

 

One can see that stability domains of fixed points (6) and (7) are formed by bifurcation 

lines giving emergence of two-year fluctuations or quasiperiodic dynamics when crossed 

(Fig. 5, upper row). Harvest of a prey affects predator dynamics slightly, but changes a 

multistability area (Fig. 5, bottom row) where community dynamics depends on initial 

population sizes. In particular, multistability region with coexisting stable dynamics and 
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periodic oscillations narrows, thus community behavior becomes more predictable (Fig. 5). 

Therefore, a prey harvest regularizes the community dynamics. On the other hand, at high 

values of reproductive potentials, the population sizes determines the “leading” species, 

whose dynamics defines the behavior of the whole system. Growth of harvest coefficient 

value narrows this area and results in expanding parametric space region with fluctuations of 

rodent population size initiated by predator. Note, the parametric area with prey’s 3-year cycle 

and predator extinction narrows. 

Note, the more prey is harvested, the smaller is the parametric space region with two-year 

fluctuations of the community size, initiated by rodents (Fig. 6,b). The 2-cycle area decreases 

up to its disappearance, which results in extending stability region of the fixed point. On the 

other hand, along with narrowing the 2-cycle area, the quasiperiodic fluctuations region 

emerges that that is between stability domains of non-trivial fixed point and 2-cycle. This 

region goes up with intensity of harvest rate growth (Fig. 6), which indicates destabilization 

of the community dynamics.  

 

 

Fig. 6. Dynamic mode maps of model (5) with h2 = 0, and different values of harvest coefficient of prey 

and initial conditions. Parameter values are r2 = 10, ρ = 1.56, v = 0.15,  = 0.45, c = 0.33, x* = 0.15. Initial 

conditions are x1(0) = 0.015, x2(0) = y1(0) = y2(0) = 0.1. The maps are supplemented with examples of the 

model trajectories with long-period fluctuations. The figures correspond to the period of observed cycles, 

Q is quasiperiodic dynamics, IV is infeasible parameter value area where Model (5) loses its meaning. 

Index 0 is an area with the absence of a predator. 

 

In general, an increase in prey harvest intensity when reproductive potentials of both 

species are sufficiently low results in situations when prey dynamics adapts to that of 

predator. Note, these are the areas where long-period oscillations emerge (Fig. 6,b and 6,c) 

like in continuous time models. However, discrete-time models produce more variety of 

dynamic modes due to different quasiperiodic regimes, the type of which is determined by the 

traversal order of closed invariant curve. In particular, long-period fluctuations, which are 

similar to those demonstrated by continuous time models, emerge in the case when the phase 

trajectory points fill an invariant curve in sequence (Fig 6,d). When the invariant curve is 

filled “in random manner”, the model trajectory fluctuates with a small period and amplitude 

changing at each time, while the envelope dynamics is a long-period oscillation. Figure 6,e 

shows, the traversal order of limiting invariant curve on its various parts can differ. 
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Harvest of predator population 

Semi-trivial solution of System (5) at h1 = 0 coincides with semi-trivial one of Model (3). 

In case of predator harvest, non-trivial fixed point of System (5) takes the following form: 
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Figure 7 shows dynamic mode maps of Model (5) at h1 = 0 and their changing because of 

increase in predator harvest rate.  

 

 

Fig. 7. Dynamic mode maps of model (5) with h1 = 0, and different values of harvest rate of predator and 

initial conditions. The figures correspond to the period of observed cycles, Q is quasiperiodic dynamics, 

IV is infeasible parameter value area where Model (5) loses its meaning. Index 0 is an area with the 

absence of a predator. 

 

A growth of predator harvest rate that is proportional to the predator population size 

extends the stability area of non-trivial fixed point of Model (5) with an increase in 

reproductive potential of predator (Fig. 7), i.e. in the line of abscise. Dynamic mode maps 

show, with a moderate rate of prey population grow, harvest of predator population 

regularizes community dynamics because of Neimark-Sacker bifurcation occurs latter. 

Consequently, quasiperiodic fluctuations resulting from preypredator interaction with 

leading role of predator are observed only at high values of the predator reproductive 

potential. The area of quasiperiodic dynamics changes also demonstrating appearance of 

periodicity windows with different cycles. Similar to the previous case, at h1 = 0 Model (5) 

has multistability areas that extend with growth of harvest rate value. As shown on Figure 7, 

if the community demonstrates 3-year fluctuations, then harvest does not remove the system 

from the attraction region of 3-cycle, i.e. the community dynamics is defined by that of prey. 
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When dynamics of community is quasiperiodic, predator harvest stabilizes community 

dynamics, and it leaded by prey dynamics again. Note, growth of h2 changes slightly the 

parametric areas where a variation of current population numbers alters leading species. At 

that, the parametric region with predator extinction due to emergence of 3-year oscillation of 

prey extends. 

Let us consider the effect of harvest on the structure of the phase space Model (5) in the 

multistability regions. Figure 8 shows attraction basins from multistability area with predator 

population extinction (Fig. 8, row A) and where current population numbers of predator and 

prey defines the leading species that defines dynamics of community (Fig. 8, row B). 

 

 

Fig. 8. Attraction basins of dynamic modes for the community with and without harvest. The area 

dividing dynamic modes corresponds to 3-cycle in the case without harvest and fixed point (or 

quasiperiodic dynamics) in the community with harvest. The figures correspond to the period of observed 

cycles, Q is quasiperiodic dynamics, and index 0 is an area with the absence of a predator. 

 

One can see growth of prey harvest rate narrows attraction basin of 3-cycle, thus 

emergence probability of three-year fluctuations in rodent population followed by predator 

extinction goes down. Further increase in prey harvest rate results in the situation where 

attraction basin of fixed point captures the entire phase space. On the contrary, predator 

harvest slightly changes attraction basins, which allows to conclude the prey population 

defines the development scenario of predator population and of all community, as emergence 

of three-year fluctuations followed by predator extinction and prey dynamics stabilization do 

not depend on either predator population nor interaction. In multistability area where current 

population numbers define the leading species (i.e. the species which dynamics defines that of 

all community), prey harvest rapidly extends attraction basin of quasiperiodic dynamics up to 

its capture of all phase space. Accordingly, prey harvest leads to the fact that its dynamics 

adapts to the predator dynamics. In turn, predator harvest stabilizes the community dynamics 

and expands the attraction basin of the stationary state slightly. Thus, predator and, 

consequently, community dynamics adapts to that of prey in 3-cycle area as well as in the 

stationary state one.  
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CONCLUSION 

Basing on the discrete-time dynamics model of prey-predator community like “arctic 

fox – rodent” proposed earlier [50–52], the paper analyses interspecific interaction on the 

community dynamics by means of construction and study of dynamic mode maps. Periodic, 

quasiperiodic and chaotic fluctuations are shown to emerge in the system. The dynamic mode 

is also revealed to depend on the initial population numbers in the community. Types of 

dynamic modes of the proposed model and possibility of their change are investigated. 

Interspecific interaction in a community is shown to expand the variety of dynamic modes 

emerging in predator population essentially. Quasiperiodic oscillations emerging with high 

values of the predator reproductive potential turned out to be the result of interaction between 

predator and prey and thus, one could conclude the predator influence on prey population 

results in fluctuation appearance. Note, that dynamics of predator with low values of its 

reproductive potential adapts to that of prey, but higher birth rate of predator changes the 

situation essentially and then the community demonstrates irregular fluctuations initiated by 

predator. 

The model reveals multistability when a variation of initial condition changes a scenario 

of the community development. In particular, 3-cycle and modes emerged by its bifurcation 

coexist with both the equilibrium and the modes appeared due to its stability loss. Depending 

on the system parameter values and current population numbers in the community, various 

scenarios of community development are possible. The first one is that the prey population 

demonstrates three-year fluctuations, which results in extinction of the predator because of 

drops in prey number. The second scenario occurs with coexistence of predator and prey 

populations, and their current sizes determine the leading species whose dynamics defines 

that of community. The third case is also characterized by species coexistence, however, 

community dynamics always adapts to that of prey, and dynamics mode shift is possible in 

the prey population, which changes predator dynamics in the same way. 

To study an anthropogenic effect on the community dynamics we proposed a modification 

of discrete-time model describing populations’ number dynamics in the community like 

“arctic fox – rodent” that allows considering the anthropogenic effect as a harvest of prey or 

predator population. 

Harvest of prey population proportionally its size is shown to extend the stability area of 

fixed point corresponding to stable species coexistence. It is interesting that generally harvest 

of a prey population does not influence on predator dynamics considerably, the changes are 

mainly visible in areas of multistability, where the community dynamics depends on the 

initial values of the population numbers. In particular, one can observe narrowing the 

multistability region, where transition from stable dynamics to periodic fluctuations and vice 

versa is possible, thus, and the community behavior becomes more predictable. As a result, 

prey harvest regularizes the community dynamics. Dynamics of prey population is shown to 

be sensitive to its harvest. Even a small rate of harvest dampens fluctuations in its numbers; in 

multistability areas the equilibrium captures all phase space. Harvest is shown to stabilize the 

community dynamics in most cases. However, in some situations a high of prey harvest rate 

initiates fluctuations in a stable community. 

Predator harvest extends stability area of equilibrium along the parameter characterizing 

reproductive potential of predator. Accordingly, only predator having high values of its 

reproductive potential can determine prey dynamics. Consequently, at a medium growth rate 

of the prey population, harvest of the predator population regularizes the community 

dynamics, and multistability areas extending with harvest rate goes up continue to persist. A 

change of the community dynamics mode is possible as a result of shift in the dynamic mode 

of prey population, which initiates oscillations of the same type in the predator population. 

Note, the conducted study of selective harvest effect on the community dynamics 

confirms our concepts of the leading species that determines the community dynamics. In 
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particular, prey harvest dampens fluctuations in its numbers, and the more the harvest rate, the 

wider the stability area of system fixed point along the parameter characterizing reproductive 

potential of rodents. At that, fluctuation emergence in the community depends on the values 

of predator reproductive potential, and transition from stable  dynamics to quasi-periodic one 

depends on predator influence on the rodent population provided that predator has high birth 

rate. In turn, this fact also confirms the shift of Neimark-Sacker bifurcation line along the axis 

of the parameter w with an increase in predator harvest rate. Indeed, predator harvest reduces 

its population size, and, consequently, the pressure of the predator impact on the prey 

population decreases. As a result, dynamics of a community with a predator having high 

reproductive potential is stabilized by harvest, adapting to prey population dynamics. 

 
This work was partially supported by the Russian Foundation for Basic Research (No. 18-51-

45004 IND_a). 
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Динамические режимы структурированного 

сообщества «хищник-жертва» и их изменение  

в результате антропогенного изъятия особей 
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Аннотация. В работе изучаются режимы динамики, которые возникают в 

результате взаимодействия видов в дискретной во времени модели «хищник - 

жертва», ориентированной на описание динамики сообщества «мышевидные 

грызуны-песец» с учетом возрастной структуры. Особое внимание уделяется 

анализу ситуаций, при которых возможна смена динамического режима. В 

частности, оказалось, что 3-цикл, возникающий в динамике жертвы, может 

приводить к гибели хищника. При этом сценарий развития, соответствующий 

неполному сообществу, сосуществует с возможностью развития полного 

сообщества, которое может быть, как устойчивым, так и неустойчивым. 

Изучается влияние антропогенного изъятия особей на режимы динамики 

сообщества. Рассмотрено 2 случая, когда реализуется изъятие жертвы, и 

когда осуществляется избирательный промысел хищника. Показано, что 

изъятие жертвы приводит к расширению области значений параметров, при 

которых численности взаимодействующих видов стремятся к устойчивому 

нетривиальному равновесию. При этом изъятие жертвы практически не 

сказывается на характере динамики хищника, изменения преимущественно 

касаются областей мультистабильности. В частности, наблюдается сужение 

области мультистабильности, в которой в зависимости от начальных условий 

могут реализовываться разные динамические режимы: переход к 

устойчивому равновесию или установление периодических колебаний, т.е. 

поведение сообщества становится более предсказуемым. Показано, что 

динамика популяции жертвы чувствительна к ее изъятию: в областях 

мультистабильности устойчивое равновесие захватывает все фазовое 

пространство. В случае, изъятия хищника, наблюдается расширение области 

устойчивости равновесия, и как результат хищник определяет динамику 

жертвы только при высоких значениях его репродуктивного потенциала. 

Показано, что здесь смена динамического режима в сообществе возможна в 

результате смены динамического режима в популяции жертвы, которая 

инициирует колебания такого же характера в популяции хищника. Проведено 

сравнение динамических режимов, возникающих в модели сообщества, когда 

оно свободно от изъятия и когда оно подвергается избирательному изъятию. 
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