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Abstract. The goal of the study is the analytical design of the full asymmetric human
bronchial tree (irregular dichotomy) for healthy patients and patients with
obstructive pulmonary diseases. For this purpose, the author has derived the special
analytical formulas. All surfaces of the bronchial tree are matched with the second-
order smoothness (there are no acute angles or ribs). The geometric characteristics
of the human bronchial tree in the pathological case are modeled by a “starry” shape
of the inner structure of the bronchus; a level of the pathology is defined by two
parameters: bronchus constriction level and level of distortion of the cylindrical
shape of the bronchus. Closed analytical formulas allow a researcher to construct the
human bronchial tree of an arbitrary complexity (up to alveoli); moreover, the
parametric dependences make it possible to specify any desirable level of airway
obstruction.
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INTRODUCTION

The human respiratory system consists of the upper (nose, nasal pharynx, and larynx) and
lower (trachea, bronchial tree, and alveoli) air passages. The tree-like structure of the human
bronchial tree has 24 branching points (bifurcations). There are approximately 223 = 8,388,608
alveoli at the end of the bronchial tree branches.

To model respiratory processes in human lungs, it is necessary first of all to design a three-
dimensional model of the bronchial tree. As was noted in [1], the regular dichotomy model is
suitable for many cases of the general behavior of the human respiratory system. Regular
dichotomy is a symmetric model of the bronchial tree where all elements (branches) in one
generation of bifurcations have identical sizes and bronchus deflection angles. Such a method
of symmetric bronchial tree design was proposed in [2].

To describe real (or close to real) human lungs, it is necessary to use irregular
dichotomy [1], where the symmetry of bronchus branches in one generation of bifurcations is
violated.

The upper part of the bronchial tree with well-described morphometric data is reviewed in
several papers [3—-15]. An advanced review of these investigations can be found in [2]. It should
be only noted here that it is difficult to replicate the bronchial tree design of these researchers
because: (1) not all morphometric data are provided in publications, (2) the algorithm of
bifurcation design in the 3D simulation code used by researchers is not described in sufficient
detail, and (3) the algorithm of construction of an individual bifurcation is too complicated (a
detailed description of construction of an individual bifurcation in [5] takes eight pages).

The listed complications claim for a method based on simple analytical formulas to design
an individual bifurcation and assemble several bifurcations into a tree. This method does not
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require manual operations to design a bronchial tree and can be readily reproduced by other
researchers. An algorithmic method of constructing regular dichotomy on the basis of simple
analytical formulas was proposed in [2]. This method is extended below to the case of irregular
dichotomy for an asymmetric bronchial tree. This method allows a researcher to construct a
bronchial tree of any complexity. The bottleneck of this method is the lack of detailed
morphometric data for small bronchi and constraints in the possibility of machine presentation
of a three-dimensional model of such a tremendous size.

BRONCHIAL TREE DESIGN AND CONSTRUCTION

To design the full human bronchial tree, the author constructed an individual asymmetric
bifurcation. The full set of the bronchi can be obtained by changing of the number of this
bifurcation. The bronchus position in the bronchial tree is also defined analytically using the
coordinate transformation in accordance with the bronchus position in the tree.

Change in the bronchus shape

The internal cross section of the bronchi is not rigorously circular even in the non-
pathological case [16, 17]. A brief review of the histological structure of the bronchi can be
found in [2]. It should be only noted that the internal cross section of the bronchi has a “starry”
shape.

The function that describes the cross-sectional shape of the bronchi of healthy patients and
patients with obstructive pulmonary diseases can be written in the following form [2]:

f(cp):[C—sobsinz(n?d(pﬂM, 1)

where A, iSthe degree of decreasing of the cross-sectional area of the obstructed bronchus
as compared to that of the healthy bronchus (0 < A, <1), s, is the normalized height of the

rays of the “star” of the internal shape of the bronchus (0<s, <1), and n,, is the number of

rays in the “star” representing a bronchus internal shape. The parameter C is chosen from the
condition that the cross-sectional area of the bronchus remains constant as the values of s, and

n.; change:
S [27n,, —sin(2mn,,) [+ VA @
4nn,,
(A =2mn,s5, sin (270, )sin® (mny, )+ 2°ngy (8- 55, ) — 55, (1- 7N, )sin(2mn, ). At s, =0,
f(p)=1.
The equations of the cross section of the bronchus with obstructive constriction (1) are
X®(9)=R®cos(¢)- f (¢),
Y®(9)=R®sin(¢)- f (¢),

where @ <[0,2n], and R® is the bronchus radius.

©)

Construction of an asymmetric bifurcation

The equation for a torus with the distance between the circumference center and the rotation
axis R, and the circumference radius r is defined parametrically by the formulas
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X (g% R,r)=[R+r-f(¢p)cose]cosy,
Y(.r)=r-f(¢)sing, (4)
Z(@. 1. R,r)=[R+r-f(g)cose]siny,

where the angles are ¢ €[0,2n] and y e[, =], and f () is the function of the bronchus cross

section shape (1).
To construct torus (4) with a variable circumference radius R, we need the equation for the
curve connecting two points (,,R;) and (y;,R,):

S5 58]

LS )

X1~ %o

(5)

where the parameter  (0<p<1) controls the slope of curve (5) at the end points (,,R,) and
R1 — Ro
) 17 Ao
The design of an individual bifurcation in the projection onto the plane y=0 is
schematically shown in Figure 1.

(xl, Rl). For x =y, and y =¥, the slope of curve (5) is (1-p

Fig. 1. Construction of the n-th bifurcation of the bronchial tree (the figure illustrates the construction of a
circular bifurcation, and the output bronchi are not shown). General view of the three-dimensional

bifurcation in the projection onto the plane y = 0. Here (0,x;, f,", f.") is the upper torus, (z,, f.", f,",z, )

is the lower torus, (0,z;,z, ) is the upper surface, and (z,,z;, f.") is the lower surface.

The upper torus (0 x;, f., fj) has the input radius of the generatrix (radius r in formula
(4)) (0,x;)=R,, and the output radius (", f,")=(f.", f,") =R

c'! a

the torus is bounded by the

out ’

angle y. . The distance along the arc (O, z;, f ) (radius R in formula (4)) between the center
of the circumference generatrix and the rotation axis (point x; ) changes from G* for y =0 to
H* for y=7y:.

The distance is (0, xj) =G". The parameter G* is defined by the relations

150

Mathematical Biology and Bioinformatics. 2020. V. 15. Ne 2. doi: 10.17537/2020.15.148



METHOD OF CONSTRUCTING AN ASYMMETRIC HUMAN BRONCHIAL TREE IN NORMAL AND PATHOLOGICAL CASES

D if x>y o
. Xn Xn ~ D+ tan X/E If X:]’ 2 X;
G =y _tany,., ., .G = tany, ' 6)
D it xn <%, e 4
tan D if %, <%,
. o CoS %, N B
where D* =[(L+a)R,, ~R, |——=2. The output radius is R, =max(R,,, R}, )+1oR,,

1-cosy:
where the parameter 0 <t <1 is chosen arbitrarily.
The upper torus (0,x; f,%, f.*) is described by the relations

X (9.) = G*+ X (@7 —mR" (120,25, 6" H* ), R" (110,25, Ro Ry )) |
Y (0.%)=Y (. R" (L0, Ry RE ). (7
Z* (9.0)=Z (0. —mR" (Lx;0.%:,G*, H),R" (L:0,%5, Ry R ).

where H* =G*/cos(x; )-aR,, and 9e[n/2, 31/2], x €[ 0,x; |.

The lower torus (z,, f*, f,", z,) has the input radius of the generatrix ( f.*, f,") =R, and

out

the output radius (z,,z,)=R

out ?

the torus is bounded by the angle £(z,z, f,"). The distance
along the arc (za, fj) between the center of the circumference generatrix and the rotation axis
(point z,) is aR,,. The right and left halves of the lower torus are matched on the line
1-| max (Roy, Ry ) /Ry + 7
[min(R‘ R’ )/Rm+r]-min(cosx;,cosxg)

out? " “out

determines

(z,,24)=0R,,. The parameter a >

the radius of the lower rounding of the bronchus bifurcation. The parameters for a symmetric
bronchial tree in [2] are oo =1.5 and t=0.

The lower torus (z,, f.*, f,",2,) is described by the relations

a’ 'c''b
XiD ((p’X)ZiX ((P! Bi(X)’aﬁout’Roiut)’
YiD(cP,x)=Y(<P,RM (1, B*(x):xﬁ,g,RM (L0, Res i) Row ] (8)

2= (¢,x)=-G* tany, +Z (qx B* (%), aRyys R" (1, B* (x):xﬁ,g, Rt ﬁoutn,

where g e[n/2,3/2] and x | ;. %, |
The function B* (X) recalculates the angle with the point z, as center for design of lower
torus to the angle y with the point x; as center

aR ©

out

tan (xﬁ ) —tan (X)J |

B*(X)=X+arcsin[G+ cos(y) -

15c ' "a

The upper two-parameter surface (0 2,z ) is defined by the equations
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XY (s) = s,
y* (i.s.x)=R" (B,s;o,iX*U [ngj j-C*(Boyix). Y (ngD (10)
zi”(s,x)z(s—Gi)tanx,

where SEI:O,iXiU(j-TC/Z,X)] and xe[O,xf], j=-11.

The function C; (B,v,%x)=R" (B,XV;O,(XZ)Y,R. R

in? = “out

) yields the equation for the line
(0,z,) (see Fig. 1) in the plane x=0. The parameter y (y>1) controls the curvature of the
line (0,z,): for y=1, the line is straight (3=0) or sinusoidal (B=1); for y>1, it is a convex
line (B=0) or a convex sinusoid (B=1).

The lower two-parameter surface (O z.,z ) is defined by the equations

X0 (s)=4s,

Y (sx)=R" (B.si£X° (j-m/2,%), X (j-7/2,%),
YO (jm/2,%). Y™ (J-1/2,%)),

2*° (s,%)=(s-G*)tan(y),

where s e[iXiD(j /2,%), £X (] 'TE/Z,X):I and y e[xf,xﬂ, j=-11.
The parameter B in the formulas for the two-parameter surfaces (10) and (11) controls the

smoothness of matching of these surfaces with the upper and lower torus configurations (7) and
(8). For B=1, matching has the second order of smoothness (without discontinuities of

derivatives); for =0, surfaces (10) and (11) are constructed as flat as possible, but the angles
of their matching with the torus configurations (5) is not equal to zero. As a result, the
bifurcation design in acute curvilinear angles £( f,"z, f.") and £(z,0z; ) is simplified to the
greatest possible extent (see Fig. 1).

The general view of the resultant three-dimensional bifurcation with circular and starry
cross sections of the bronchi is shown in Figure 2.

(11)

Fig. 2. General view of the three-dimensional asymmetric bifurcation with circular (a) and starry (b) cross
sections of the bronchi.
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The output bronchi are adjacent to the bifurcation at the points f, which are the centers
of the output bronchi. The coordinates of the points f* are defined as

X" =+aR , COSy:,
y* =0, (12)

2" =—H"siny;.

The surface ( fr, £, fbi) is adjacent to the output cylindrical or starry bronchus of length

L:,. (notshown in Fig. 1). The equations of the output bronchi are

X*BO (@,5)=x" + Ry, f (¢)cos(p)cosy, £s-siny;,

out

YiB(out) ((P’ S) - R:ut f ((p)Sin ((P), (13)
7 +B(ou) ((P,S) — 75+ RE f ((p)COS((P)Sin Xﬁ —S-COSX;I,

out

where the plus and minus signs refer to the right and left output bronchi, respectively, the
parameter is s [0, L, ], and the angle is ¢ €[0, 2x].

Equations (4)—(13) provide an analytical description of the construction of the bronchial
tree bifurcation with the output bronchi. Each bifurcation consists of the following 3D surfaces:
(1) two upper toroidal surfaces (formulas (7)); (2) two lower toroidal surfaces (formulas (8));
(3) four upper two-parameter surfaces (formulas (10)); four lower two-parameter surfaces
(formulas (11)); two output cylindrical or starry bronchi (formulas (13)). Here the plus and

minus signs refer to the right half (x>0) and left half (x <0), respectively. The subscripts are
j =1 for the coordinates y >0 and j=-1 for the coordinate y <0.

Construction of bronchus bending

The first stage of a close-to-real bronchial tree construction, is the design of the region of
an individual bronchus bending.
This process uses modified formulas (7) to design the upper torus

X (0,0) =+ 6"+ X (@~ m R (L7065, 6" H' ). R™ (12025, Ry REy)) |
Y () =Y (@, R" (L0, Ry R2L ) ). (14)
2 (9,1)=Z (@ x—mR" (L7:0,%5,G%, H*),R" (L 0., Ro, Riy ).

where ¢ e[n/2, 51/2] and e[O,Xﬂ.

Only one of the branches (right or left branch indicated by the plus or minus sign,
respectively) becomes bent; correspondingly, only one sign (plus or minus) is used in formulas
(14). Bronchus bending is considered as a half-bifurcation with one branch. To have formulas
of the same form, it is formally assumed that R,, =R_,, %, =%, , etc.

Construction of the bronchial tree

Bronchial tree construction starts from the upper bifurcation, followed by consecutive
branching of the bronchial tree. To construct the bronchial tree as a sequence of bifurcations,
one shall transform the coordinate system, and design bifurcations in the new coordinate system
by formulas (6)—(14). Construction of the following bifurcations of the bronchial tree starts
from the transformation of the coordinate system with the origin at the center of the right or left
output bronchus of the previous bifurcation. The Z axis is directed along the axis of the left
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(for the left sub-branch of the tree) or right (for the right sub-branch) output bronchus of the
previous bifurcation. This transformation of coordinates allows a researcher to transfer the
bifurcation to an appropriate place in the tree without changing the formulas for bronchus
design.

Let us progress to the new coordinate system from the current bifurcation when the origin

of the coordinate axes is shifted to the point (xi”ew, yEnew zi”ew) :

yEnew _ i(aRout cos X:‘L + Ly sin Xﬁ ),
ytnew -0, (15)
75w _ _ H*gin X;—’ — Lout COSXﬁ-

Then the coordinate system is rotated by the angle y; around the Y axis and by the angle o,
around the Z axis. All rotations are performed in the clockwise direction.

In starry bronchus design, the angle of rotation around the Z axis is subjected to the
condition o, = 2km/n,, (see the formulas for the star (1) and (2)), where k >0 is an arbitrary
integer number. When this requirement is fulfilled, the rays of the input bifurcation star after
its rotation coincide with the rays of the star of the output bronchus of the previous bifurcation.
For example, if the rotation angle is o, = /2, the number of rays should be multiple of four (
N, =4k)asin [2].

The matrix of the coordinate transformation for the next bifurcation has the form

cos(c, )-cos(x:) -sin(o,) *cos(s,)-sin(z:) O]
— sin(cn)-cos(xﬁ) cos(o, ) J_rsin(csn)-sin(xﬁ) 0 (16)

:Lsin(xﬁ) 0 cos(xﬁ) 0

i Xirnew yirnew ZineW l_

a) b)

Fig. 3. Example of design of an asymmetric bronchial tree (a). Setting the initial parameters of the
bifurcation (b).

Figure 3a is an example of an asymmetric bronchial tree construction. Here different
bifurcations are indicated by different colors. The scheme of the input parameters of the
bifurcation is shown in Figure 3b. The parameters of bifurcations from Figure 3a are listed in
Table 1. The designed bronchial tree consists of the input bronchus C of 100 mm length and
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15 mm radius. It is convenient to denote the bifurcations by 0A, 0B, etc., where A refers to the
right branch (i =1) and B refers to the left branch (i =-1).

Bronchus bending (with no bifurcation) is constructed by formulas (14) — half-bifurcation
(these are bifurcations OA and OB in Fig. 3a). When the next bronchus is constructed by the
coordinate transformation formulas (16), the Z axis of the new coordinate system passes along
the axis of the output bronchus. To turn and smoothly match the next bifurcation off the output
bronchus axis, a half-bifurcation with a zero length of the output bronchus is used (this is
bifurcation OB in Fig. 3a and Table 1). Such a method allows a researcher to construct a
bronchial tree of arbitrary complexity with the use of unified formulas.

Table 1. Parameters of the bronchial tree”

Bifurcation [ Rov | Lo | L | Ry | Roys | %50 | %y | o, | Bifurcation
MM | mm | mm | mm | mm | deg. | deg. | deg. e
0 +1,-1 | 15 35 35 14 14 50 30 0 Full
0A _+l 14 25 - 8 - 50 - 30 Half
0B -1 14 - 0 - 8 - 50 10 Half
0AA +1,-1 | 8 17 7 5 7 3 | 15 | 20 Full
0BB +1,-1 | 8 7 6 7 6 15 | 45 | 55 Full

“a=2, p=0, y=2, t=0.1.

CONCLUSIONS

The article presents a method designing the geometry of a morphologically realistic human
bronchial tree. The method is important because it provides a possibility to set parametrically
the bronchus constriction at a level maximally close to the real condition at the obstructive
pulmonary diseases.

The design of the bronchial tree bifurcation for different bronchus sizes and different angles
of bronchi branching is performed with the use of the developed analytical formulas. The degree
of bronchi pathology is defined by an analytical dependence, which describes close-to-real
starry constriction of the bronchi. Replacement of formula (1), which describes bronchus
constriction, by another analytical formula allows a researcher to model some other (not starry)
types of constriction of pathological bronchi.

The proposed method of bronchial tree design is based on a unified mathematical model of
bifurcation construction. Bronchus bending is described as a particular case of the bifurcation
(half-bifurcation), and the bronchi can be turned in space by an arbitrary angle. The transition
to the next bifurcation is performed by means of a simple transformation of the local coordinate
system.

One of the key features of the method is its usability without monotonic manual operations
for constructing each individual bifurcation and matching of these bifurcations in 3D simulation
codes. This property ensures repeatability of results, i.e., the bronchial tree designed by one
researcher can be easily repeated by other researchers. This repeatability was not possible
before because of the large labor effort necessary for a bronchial tree design and because of the
differences associated with using particular codes of 3D simulations. Different 3D codes have
their own rules of matching curves and surfaces, which finally affects the resultant bronchial
tree design. When the of bifurcation is large, the differences are summarized, resulting in error
accumulation at an attempt to repeat the bronchial tree design with another 3D code. To the
author’s knowledge, the bronchial tree with the starry pathology of the bronchi is not designed
up to now because it is extremely complicated.
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The proposed analytical formulas for bronchial tree design allow one to perform numerical
simulations of bronchial trees of an arbitrary generation (certainly, if appropriate computational
resources are available) for healthy and pathological bronchi.

The study was supported by the Russian Foundation for Basic Research and by the Subject of the
Russian Federation (Novosibirsk Region) within the framework of the research project No. 19-41-
540003 r_a.
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MeToanka nMocTpoeHnsi HECUHMMETPUYHOT 0
OpPOHXMAJILHOTO JiepeBa YeJI0BeKa B HOpMe U NpH
naToJ0ruu

Mensenes A.E.

Hnemumym meopemuueckou u npuxiaouou mexanuxu um. C.A. Xpucmuanoseuua CO PAH,
Hosocubupck, Poccus
Hosocubupcruii 2ocyoapcmeenusiii ynugepcumem, Hogocubupck, Poccus

Annomayua. Pabota TOCBSIIEHA AHAIUTHYECKOMY IIOCTPOCHUIO IOJIHOTO
HECHMMETPUYHOTO OpOHXHATIBLHOTO AepeBa (HeMpaBiIbHAsL TUXOTOMHS) YETIOBEKa B
HOpPME M TpU OOCTPYKTUBHOM Oone3nu nerkux. [IpuBeneHbl aHanuTHUECKHE
(dbopMynbl ST IOCTPOCHMS MOJIHOrO OpOHXHABHOrO AepeBa. Bee moBepxHoOCTH
OpOHXHMAJBHOTO JIEpeBa COCTHIKOBBIBAIOTCSI CO BTOPBIM MOPSIKOM TJIaaKOCTH (HE
MMEIOT OCTPHIX YTIIOB U pedep). [ eomeTprdueckre XxapakTepUCTHKH OPOHXHUATBHOTO
JepeBa dYeloBeKa TMpPHU TMATOJIIOTUH MOJENUpPYIOTCs “3Be3muaroil”  (opmoit
BHYTPEHHET0 CTpPOEHHUs OpOHXa, CTENEeHb MAaTOJIOTWM 3aJjaeTcd MapaMeTpaMu —
CTETICHBIO CY>KEHHSI OPOHXOB M CTETEHBI0 UCKAKEHMS IWIMHIPUYECKOH (HopMBbI
OponxoB. Koneunble aHamuTHdeckne  (GOpPMyNBl  TO3BOJSIIOT — [TOCTPOMT
OpOHXMATIBHOE JEPEBO YEI0BEKA JIF0OO0M CI0KHOCTH (BILIOTH 10 AJIbBEOJI) IIPH 3TOM
apaMeTpUUYecKre 3aBUCUMOCTH TO3BOJISIOT 3a/aTh JIIO0YI0 CTEHNEHb OOCTPYKIUH
JIETKUX.

Knrouesvle cnoea: oOpouxuanvroe 0epego, MamemMamuyeckoe MOOeIUposamue, neekue
yeno6eKa, OblxamenbHas cucmema, ougyprayus, O01e3Hb J1e2KUX.
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