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Abstract. The goal of the study is the analytical design of the full asymmetric human 

bronchial tree (irregular dichotomy) for healthy patients and patients with 

obstructive pulmonary diseases. For this purpose, the author has derived the special 

analytical formulas. All surfaces of the bronchial tree are matched with the second-

order smoothness (there are no acute angles or ribs). The geometric characteristics 

of the human bronchial tree in the pathological case are modeled by a “starry” shape 

of the inner structure of the bronchus; a level of the pathology is defined by two 

parameters: bronchus constriction level and level of distortion of the cylindrical 

shape of the bronchus. Closed analytical formulas allow a researcher to construct the 

human bronchial tree of an arbitrary complexity (up to alveoli); moreover, the 

parametric dependences make it possible to specify any desirable level of airway 

obstruction.  

 

Key words: bronchial tree, simulation, human lungs, respiratory system, bifurcation, lung 

disease. 

 

INTRODUCTION 

The human respiratory system consists of the upper (nose, nasal pharynx, and larynx) and 

lower (trachea, bronchial tree, and alveoli) air passages. The tree-like structure of the human 

bronchial tree has 24 branching points (bifurcations). There are approximately 223 = 8,388,608 

alveoli at the end of the bronchial tree branches.  

To model respiratory processes in human lungs, it is necessary first of all to design a three-

dimensional model of the bronchial tree. As was noted in [1], the regular dichotomy model is 

suitable for many cases of the general behavior of the human respiratory system. Regular 

dichotomy is a symmetric model of the bronchial tree where all elements (branches) in one 

generation of bifurcations have identical sizes and bronchus deflection angles. Such a method 

of symmetric bronchial tree design was proposed in [2]. 

To describe real (or close to real) human lungs, it is necessary to use irregular 

dichotomy [1], where the symmetry of bronchus branches in one generation of bifurcations is 

violated.  

The upper part of the bronchial tree with well-described morphometric data is reviewed in 

several papers [3–15]. An advanced review of these investigations can be found in [2]. It should 

be only noted here that it is difficult to replicate the bronchial tree design of these researchers 

because: (1) not all morphometric data are provided in publications, (2) the algorithm of 

bifurcation design in the 3D simulation code used by researchers is not described in sufficient 

detail, and (3) the algorithm of construction of an individual bifurcation is too complicated (a 

detailed description of construction of an individual bifurcation in [5] takes eight pages).  

The listed complications claim for a method based on simple analytical formulas to design 

an individual bifurcation and assemble several bifurcations into a tree. This method does not 
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require manual operations to design a bronchial tree and can be readily reproduced by other 

researchers. An algorithmic method of constructing regular dichotomy on the basis of simple 

analytical formulas was proposed in [2]. This method is extended below to the case of irregular 

dichotomy for an asymmetric bronchial tree. This method allows a researcher to construct a 

bronchial tree of any complexity. The bottleneck of this method is the lack of detailed 

morphometric data for small bronchi and constraints in the possibility of machine presentation 

of a three-dimensional model of such a tremendous size.  

BRONCHIAL TREE DESIGN AND CONSTRUCTION 

To design the full human bronchial tree, the author constructed an individual asymmetric 

bifurcation. The full set of the bronchi can be obtained by changing of the number of this 

bifurcation. The bronchus position in the bronchial tree is also defined analytically using the 

coordinate transformation in accordance with the bronchus position in the tree.  

Change in the bronchus shape 

The internal cross section of the bronchi is not rigorously circular even in the non-

pathological case [16, 17]. A brief review of the histological structure of the bronchi can be 

found in [2]. It should be only noted that the internal cross section of the bronchi has a “starry” 

shape.  

The function that describes the cross-sectional shape of the bronchi of healthy patients and 

patients with obstructive pulmonary diseases can be written in the following form [2]: 

   2 ed
ob bronchsin

2

n
f C s A

  
     

  
, (1) 

where bronchA  is the degree of decreasing of the cross-sectional area of the obstructed bronchus 

as compared to that of the healthy bronchus  bronch0 1A  , obs  is the normalized height of the 

rays of the “star” of the internal shape of the bronchus  ob0 1s  , and edn  is the number of 

rays in the “star” representing a bronchus internal shape. The parameter С  is chosen from the 

condition that the cross-sectional area of the bronchus remains constant as the values of obs  and 

edn  change: 
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  1f   .  

The equations of the cross section of the bronchus with obstructive constriction (1) are  
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where  0,2  , and BR  is the bronchus radius. 

Construction of an asymmetric bifurcation  

The equation for a torus with the distance between the circumference center and the rotation 

axis , and the circumference radius  is defined parametrically by the formulas  R r
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where the angles are  0,2   and  ,   , and  f φ  is the function of the bronchus cross 

section shape (1). 

To construct torus (4) with a variable circumference radius , we need the equation for the 

curve connecting two points  0 0,R  and  1 1, R :  
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where the parameter    0 1  controls the slope of curve (5) at the end points  0 0,R  and 

 1 1, R . For 0    and 1   , the slope of curve (5) is   1 0

1 0

1
R R


 

.  

The design of an individual bifurcation in the projection onto the plane 0y   is 

schematically shown in Figure 1.  

 

 
 

Fig. 1. Construction of the n-th bifurcation of the bronchial tree (the figure illustrates the construction of a 

circular bifurcation, and the output bronchi are not shown). General view of the three-dimensional 

bifurcation in the projection onto the plane y = 0. Here  0, , ,a a cx f f    is the upper torus,  , , ,a c b bz f f z   

is the lower torus,  0, ,c az z  is the upper surface, and  , ,a c cz z f   is the lower surface. 

 

The upper torus  0, , ,a a cx f f    has the input radius of the generatrix (radius r  in formula 

(4))   in0, ax R   and the output radius     out, ,c a c bf f f f R      , the torus is bounded by the 

angle n

 . The distance along the arc  0, ,c cz f   (radius R  in formula (4)) between the center 

of the circumference generatrix and the rotation axis (point bx ) changes from G  for 0   to 

H  for n

   .  

The distance is  0, bx G  . The parameter G  is defined by the relations 

R
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. The output radius is  out out out inmax ,R R R R    , 

where the parameter 0 1    is chosen arbitrarily. 

The upper torus  0, ,a a cx f f    is described by the relations 
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where   outcos nH G R      and  2, 3 2   , 0, n

    . 

The lower torus  , , ,a c b bz f f z   has the input radius of the generatrix   out,с bf f R    and 

the output radius   out,a bz z R , the torus is bounded by the angle  b d bz z f  . The distance 

along the arc  ,a cz f   between the center of the circumference generatrix and the rotation axis 

(point dz ) is outR . The right and left halves of the lower torus are matched on the line 

  out,a dz z R . The parameter 
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 determines 

the radius of the lower rounding of the bronchus bifurcation. The parameters for a symmetric 

bronchial tree in [2] are 1.5   and 0  .  

The lower torus  , , ,a c b bz f f z   is described by the relations 
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where  2,3 2    and ,z n

      . 

The function  B   recalculates the angle with the point dz  as center for design of lower 

torus to the angle   with the point bx  as center 
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The upper two-parameter surface  0, ,c az z  is defined by the equations 
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where  0, 2,Us X j       and 0, z
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The function     in out, , , ;0, , ,M
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

          yields the equation for the line 

 0, az  (see Fig. 1) in the plane 0x  . The parameter    1   controls the curvature of the 

line  0, az : for 1  , the line is straight  0  or sinusoidal  1  ; for 1  , it is a convex 

line  0  or a convex sinusoid  1  . 

The lower two-parameter surface  0, ,e az z  is defined by the equations 
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where    2, , 2,D Us X j X j           and ,z n

      , 1,1j   . 

The parameter   in the formulas for the two-parameter surfaces (10) and (11) controls the 

smoothness of matching of these surfaces with the upper and lower torus configurations (7) and 

(8). For 1  , matching has the second order of smoothness (without discontinuities of 

derivatives); for 0  , surfaces (10) and (11) are constructed as flat as possible, but the angles 

of their matching with the torus configurations (5) is not equal to zero. As a result, the 

bifurcation design in acute curvilinear angles  b a cf z f   and  0a cz z  is simplified to the 

greatest possible extent (see Fig. 1). 

The general view of the resultant three-dimensional bifurcation with circular and starry 

cross sections of the bronchi is shown in Figure 2. 

  

    
a)        b) 

Fig. 2. General view of the three-dimensional asymmetric bifurcation with circular (a) and starry (b) cross 

sections of the bronchi.  
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The output bronchi are adjacent to the bifurcation at the points cf
 , which are the centers 

of the output bronchi. The coordinates of the points cf
  are defined as 
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The surface  , ,a c bf f f    is adjacent to the output cylindrical or starry bronchus of length 

outL  (not shown in Fig. 1). The equations of the output bronchi are  
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where the plus and minus signs refer to the right and left output bronchi, respectively, the 

parameter is out[0, ]s L , and the angle is  0,2  .  

Equations (4)–(13) provide an analytical description of the construction of the bronchial 

tree bifurcation with the output bronchi. Each bifurcation consists of the following 3D surfaces: 

(1) two upper toroidal surfaces (formulas (7)); (2) two lower toroidal surfaces (formulas (8)); 

(3) four upper two-parameter surfaces (formulas (10)); four lower two-parameter surfaces 

(formulas (11)); two output cylindrical or starry bronchi (formulas (13)). Here the plus and 

minus signs refer to the right half  0x   and left half  0x  , respectively. The subscripts are 

1j   for the coordinates 0y   and 1j    for the coordinate 0y  . 

Construction of bronchus bending 

The first stage of a close-to-real bronchial tree construction, is the design of the region of 

an individual bronchus bending.  

This process uses modified formulas (7) to design the upper torus 
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  (14) 

where  2, 5 2    and 0, n

    . 

Only one of the branches (right or left branch indicated by the plus or minus sign, 

respectively) becomes bent; correspondingly, only one sign (plus or minus) is used in formulas 

(14). Bronchus bending is considered as a half-bifurcation with one branch. To have formulas 

of the same form, it is formally assumed that out outR R  , n n

    , etc.  

Construction of the bronchial tree 

Bronchial tree construction starts from the upper bifurcation, followed by consecutive 

branching of the bronchial tree. To construct the bronchial tree as a sequence of bifurcations, 

one shall transform the coordinate system, and design bifurcations in the new coordinate system 

by formulas (6)–(14). Construction of the following bifurcations of the bronchial tree starts 

from the transformation of the coordinate system with the origin at the center of the right or left 

output bronchus of the previous bifurcation. The Z  axis is directed along the axis of the left 
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(for the left sub-branch of the tree) or right (for the right sub-branch) output bronchus of the 

previous bifurcation. This transformation of coordinates allows a researcher to transfer the 

bifurcation to an appropriate place in the tree without changing the formulas for bronchus 

design.  

Let us progress to the new coordinate system from the current bifurcation when the origin 

of the coordinate axes is shifted to the point  new new new, ,x y z   : 

 

 new

out out

new

new

out

cos sin ,

0,

sin cos .

n n

n n

x R L

y

z H L

  



   

     



    

 (15) 

Then the coordinate system is rotated by the angle n

  around the Y  axis and by the angle n  

around the Z  axis. All rotations are performed in the clockwise direction.  

In starry bronchus design, the angle of rotation around the Z axis is subjected to the 

condition ed2n k n    (see the formulas for the star (1) and (2)), where 0k   is an arbitrary 

integer number. When this requirement is fulfilled, the rays of the input bifurcation star after 

its rotation coincide with the rays of the star of the output bronchus of the previous bifurcation. 

For example, if the rotation angle is 2n   , the number of rays should be multiple of four (

ed 4n k ) as in [2]. 

The matrix of the coordinate transformation for the next bifurcation has the form 

 

         

         

   
new

new new new

cos cos sin cos sin 0

sin cos cos sin sin 0

sin 0 cos 0

1

n n n n n

n n n n n

n n

S

x y z

 

 



 

  

         
 
        

  
  
 
  

. (16) 

 

 
 

а)        b) 

Fig. 3. Example of design of an asymmetric bronchial tree (а). Setting the initial parameters of the 

bifurcation (b). 

 

Figure 3а is an example of an asymmetric bronchial tree construction. Here different 

bifurcations are indicated by different colors. The scheme of the input parameters of the 

bifurcation is shown in Figure 3b. The parameters of bifurcations from Figure 3а are listed in 

Table 1. The designed bronchial tree consists of the input bronchus C of 100 mm length and 
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15 mm radius. It is convenient to denote the bifurcations by 0A, 0B, etc., where A refers to the 

right branch  1i   and B refers to the left branch  1i   . 

Bronchus bending (with no bifurcation) is constructed by formulas (14) – half-bifurcation 

(these are bifurcations 0A and 0B in Fig. 3а). When the next bronchus is constructed by the 

coordinate transformation formulas (16), the Z axis of the new coordinate system passes along 

the axis of the output bronchus. To turn and smoothly match the next bifurcation off the output 

bronchus axis, a half-bifurcation with a zero length of the output bronchus is used (this is 

bifurcation 0B in Fig. 3а and Table 1). Such a method allows a researcher to construct a 

bronchial tree of arbitrary complexity with the use of unified formulas.  
 

Table 1. Parameters of the bronchial tree* 

Bifurcation i   
inR , 

mm  

outL
, 

mm 

outL
, 

mm 

outR
, 

mm  

outR
, 

mm  

n

 , 

deg.  

n

 , 

deg.  

n , 

deg. 

Bifurcation 

type 

0 +1, –1 15 35 35 14 14 50 30 0 Full 

0A _+1 14 25 – 8 – 50 – 30 Half 

0B –1 14 – 0 – 8 – 50 10 Half 

0AA +1, –1 8 17 7 5 7 35 15 20 Full 

0BB +1, –1 8 7 6 7 6 15 45 55 Full 

* 2  , 0 , 2  , 0.1  .  

CONCLUSIONS 

The article presents a method designing the geometry of a morphologically realistic human 

bronchial tree. The method is important because it provides a possibility to set parametrically 

the bronchus constriction at a level maximally close to the real condition at the obstructive 

pulmonary diseases. 

The design of the bronchial tree bifurcation for different bronchus sizes and different angles 

of bronchi branching is performed with the use of the developed analytical formulas. The degree 

of bronchi pathology is defined by an analytical dependence, which describes close-to-real 

starry constriction of the bronchi. Replacement of formula (1), which describes bronchus 

constriction, by another analytical formula allows a researcher to model some other (not starry) 

types of constriction of pathological bronchi.  

The proposed method of bronchial tree design is based on a unified mathematical model of 

bifurcation construction. Bronchus bending is described as a particular case of the bifurcation 

(half-bifurcation), and the bronchi can be turned in space by an arbitrary angle. The transition 

to the next bifurcation is performed by means of a simple transformation of the local coordinate 

system.  

One of the key features of the method is its usability without monotonic manual operations 

for constructing each individual bifurcation and matching of these bifurcations in 3D simulation 

codes. This property ensures repeatability of results, i.e., the bronchial tree designed by one 

researcher can be easily repeated by other researchers. This repeatability was not possible 

before because of the large labor effort necessary for a bronchial tree design and because of the 

differences associated with using particular codes of 3D simulations. Different 3D codes have 

their own rules of matching curves and surfaces, which finally affects the resultant bronchial 

tree design. When the of bifurcation is large, the differences are summarized, resulting in error 

accumulation at an attempt to repeat the bronchial tree design with another 3D code. To the 

author’s knowledge, the bronchial tree with the starry pathology of the bronchi is not designed 

up to now because it is extremely complicated.  
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The proposed analytical formulas for bronchial tree design allow one to perform numerical 

simulations of bronchial trees of an arbitrary generation (certainly, if appropriate computational 

resources are available) for healthy and pathological bronchi.  
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Аннотация. Работа посвящена аналитическому построению полного 

несимметричного бронхиального дерева (неправильная дихотомия) человека в 

норме и при обструктивной болезни легких. Приведены аналитические 

формулы для построения полного бронхиального дерева. Все поверхности 

бронхиального дерева состыковываются со вторым порядком гладкости (не 

имеют острых углов и ребер). Геометрические характеристики бронхиального 

дерева человека при патологии моделируются “звездчатой” формой 

внутреннего строения бронха, степень патологии задается параметрами – 

степенью сужения бронхов и степенью искажения цилиндрической формы 

бронхов. Конечные аналитические формулы позволяют построит 

бронхиальное дерево человека любой сложности (вплоть до альвеол) при этом 

параметрические зависимости позволяют задать любую степень обструкции 

легких. 

 

Ключевые слова: бронхиальное дерево, математическое моделирование, легкие 

человека, дыхательная система, бифуркация, болезнь легких. 

 

 


