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Abstract. In this work, amodel is proposed to analyze the effect of wild plant species
on biologically-based technologies for pest control. It is assumed that the pest
species have a second food source (wild host plants) except crops. Analytical results
prove that the model is well-posed as the system variables are non-negative and
uniformly bounded. The permanence of the system has been verified. Equilibrium
points and corresponding stability analysis have also been performed. Numerical
figures have supported the fact that the interior steady state if it exists, remains stable
for any transmission rate. Henceforth biological control has a stabilizing effect.
Furthermore, the results prove that biological control is beneficial not only for wild
plants but for crops too.
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INTRODUCTION

Theoretical and applied ecologists, these days, give attention to biologically-based
technologies to control the pest population. It is assumed that these technologies do not have such
harmful effects on human health or on the environment [1, 2]. Use of microbial pesticides is one
of the important methods of bio-control. It is relatively stable formulations of micro-organisms
which extinguish pests by producing poisons, causing disease, preventing the establishment of
other microorganisms and etc. [3, 4, 5]

Many experimental and theoretical experiments have been done on biological control based
on microbial pathogens of the pest population. Anderson and May [6, 7], in their work, have
shown that pathogen can regulate insect population. Insect-pathogen interactions model is
mainly classified on the basis of population dynamics of the host species as well as transmission
dynamics of the disease. Some studies consider that the insect population grows exponentially in
absence of any disease [5, 8, 9]. This assumption is quite justifiable in the agricultural system as
one seeks to control the insect below the crop-damage threshold there. Some studies [10, 11, 12]
reveal that, in the forestry systems and also in field populations, self-mechanism of the insect
species affect the dynamics of the insect-pathogen interaction. Begon et al. in their work [12]
indicates that inclusion of density dependence makes a situation of coexistence of host species.
Other studies are based on the assumptions of stage-dependent susceptibility which occurs in
the insect population [8]. Moerbeek and Van Den Bosch [13] comes to the conclusion (based on
experiment) that the dynamics of insect-pathogen systems depend mainly on that stage which is
preferable (susceptible) to the disease.

In disease transmission models, it is known that the susceptible population becomes
infectious either through direct contact between susceptible and infective individuals [9, 10, 14]
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or through encountering with the free-living infective stage in the environment [15, 16, 17]. All
these models assume that the insect pest has only crop as its food resource and their birth rates
depend on the amount of crop growth.

It is observed that many insect pest species do not feed only on crop but they also choose
more wild host plant species as their food resource. This additional food resource effects the
insect-pathogen models for biological control. This work, therefore, is formulated in such a way
that the bio-control of a pest can be studied who live mainly on a crop species but have a second
host plant species occurring in the environment. Here we have studied the effect of the wild
host plant (using pathogen as biotic insecticides) on insect population in a bio-control program.
Also, the effect of a bio-control program on the dynamics of a wild host plant species has been
analyzed.

There are already some research papers published on eco-epidemiological systems [18, 19,
20, 21, 22, 23]. Xiao and Chen [24, 25] and others in their work consider only those systems
where disease spreads only in the prey species and the predator has a unique food resource. On
the other hand, Venturino [23] analyzes a prey-predator model where the predator is effected
with a disease. Compare with that model, an eco-epidemiological model has been considered
here and the herbivore pest species is affected by a disease. The pests usually live on crop and on
wild plant species. So it is logical to assume that pest species declines with density dependence
and hence an eco-epidemiological model can be proposed concerning biological control.

This work is categorized as follows: section 2 describes the mathematical formulation
with positive initial conditions. Section 3 proves that the model is well-posed. Extinction
conditions for all species have been analysed in section 4. Section 5 contributes to the nature of
possible equilibria with corresponding feasibility conditions and the persistence of the system
has been shown in Section 6. Section 7 gives local stability analysis of the equilibria. Locally
stable equilibria change their stability behaviour through transcritical bifurcation under some
restrictions which have been analysed in section 8. The subsequent section gives the global
stability of the equilibrium points. In Section 10, numerical results are obtained by varying
some of the vital system parameters. In the final discussion section, a brief conclusion has been
provided where we have interpreted our results in terms of their ecological implications.

2. MATHEMATICAL MODEL: BASIC EQUATIONS

Formulating a biological system in mathematical terms is essential to analyse the dynamical
nature of the system with time. But any ecological system is not so easy to describe as there are
many controlling factors present in the system. So before presenting a system mathematically,
we need to make some assumptions to make it simple.

Let Y (T ) be the biomass of insect pest at time T which lives on the crop and also on wild
plant species. First, it is assumed that the herbivore pest grows according to logistic curve with
carrying capacityK2 and growth rate r2. So, we have

dY

dT
= r2

(
1− Y

K2

)
Y. (1)

Insect population lives among a various range of potential food sources. Let, X(T ) be the
density of wild plant species at time T. It can be assumed as the most preferred food sources to
herbivore pest. In absence of pest population, let the wild plant grows logistically with carrying
capacityK1 and growth rate r1.Moreover, most of the time, carrying capacity of pest population
depends on plant’s biomass, i.e., the carrying capacity of herbivore species is proportional to the
biomass of wild plants. In case of severe scarcity, the insect pests can choose other food source
for surviving. But as the wild plants are taken as the most favourite food source and they are
limited, so, the growth of pest population is also limited. In order to make the model more
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realistic, let us assume that the herbivore pests grow with modified Leslie-Gower scheme [26]
and the plant-herbivore model takes the form:

dX

dT
= r1X

(
1− X

K1

)
−B1XY,

dY

dT
= r2

(
1− Y

K2 + AX

)
Y.

(2)

Here B1 denotes the maximum per capita reduction rate of plant species. A is the conversion
fraction of plants into pests and K2 is the extent to which environment provides protection to
the herbivores by providing alternative food source. Hence K2 + AX represents the carrying
capacity set by environmental resources and wild plant. It is noted that crop species has
no dynamics of its own, i.e., it is always available in constant amounts. This assumption is
considerable as crop number does not increase due to reproduction and it is completely under
control of farmer. The farmer saws and harvests the crop according to his demand. So, there is
no need to model the crop species explicitly, but its effect on insect biomass is explicit in the
model which is considered in original carrying capacity of herbivores.

Sometimes pest pathogen is introduced in pest species which acts as a biotic insecticide. In
this situation, the pest population is divided into two sub-population: susceptible pest population
(Y1) and infected pest population (Y2). So, at time T , overall pest population become Y (T ) =
Y1(T ) + Y2(T ).

In this work, it is assumed that only healthy pest species (Y1) can reproduce. However, the
infective pest Y2 still contributes with Y1 to population growth toward the carrying capacity
of healthy pest. M is the transmission rate where incidence is taken to be followed simple
mass action rule. Let N be the mortality rate of infected pest population. Summing up all the
assumptions, plant-insect-pathogen model is as follows:

dX

dT
= r1X

(
1− X

K1

)
−B1XY1 −B2XY2, X(0) = X0 > 0,

dY1

dT
= r2

(
1− Y1 + Y2

K2 + AX

)
Y1 −MY1Y2, Y1(0) = Y1,0 > 0,

dY2

dT
= MY1Y2 −NY2, Y2(0) = Y2,0 > 0,

(3)

where B1, B2 denote the attack rate of healthy and infected pest on plant species respectively.
All the system parameters are assumed to be positive.

Let us take the following scaling: x= X
K1

, y1= Y1

AK1
, y2= Y2

AK1
, t=r1T.

Then the system becomes:

dx(t)

dt
= x(1− x)− b1xy1 − b2xy2, x(0) = x0 > 0,

dy1(t)

dt
= r

(
1− y1 + y2

k + x

)
y1 −my1y2, y1(0) = y1,0 > 0,

dy2(t)

dt
= my1y2 − ny2, y2(0) = y2,0 > 0,

(4)

where r = r2
r1
, b1 =

AB1K1

r1
, b2 =

AB2K1

r1
, k = K2

AK1
, m = AMK1

r1
and n = N

r1
.

3. NON-NEGATIVITY AND BOUNDEDNESS

Non-negativity and boundedness of system (4) ensure whether the model is well-posed.
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Th e o r em 1. All solutions of system (4) starting in R3
+ are non-negative for all time.

P r o o f. As the functions in right hand side of system (4) are continuous and locally
Lipschitzian on C (space of continuous functions), so the unique solution (x(t), y1(t), y2(t))
of the system exists on [0, κ), where 0 < κ ≤ +∞ [27].

Let us show that, x(t) ≥ 0, ∀ t ∈ [0, κ). If the statement does not hold, then ∃t1 ∈ [0, κ)
such that x(t1) = 0, ẋ(t1) < 0 and x(t) > 0, ∀ t ∈ [0, t1). Now the first equation of (4) gives

dx

dt

∣∣∣∣
t=t1

= x(t1)[1− x(t1)− b1y1(t1)− b2y2(t1)] = 0,

which is a contradiction to ẋ(t1) < 0. So, x(t) ≥ 0, ∀ t ∈ [0, κ).
Similarly, we have y1(t) ≥ 0 and y2(t) ≥ 0, for all t ∈ [0, κ), where 0 < κ ≤ +∞. Hence

the theorem.
Th e o r em 2. All solutions of system (4) which start in R3

+ are uniformly bounded for all
time.

P r o o f. From the first equation of (4):

dx(t)

dt
= x(1− x)− b1xy1 − b2xy2 ≤ x(1− x) ⇒ lim sup

t→∞
x(t) ≤ 1.

Again

dy1(t)

dt
= r

(
1− y1 + y2

k + x

)
y1 −my1y2 ≤ r

(
1− y1

k + 1

)
y1 ⇒ lim sup

t→∞
y1(t) ≤ (k + 1).

Let,W (t) = y1(t) + y2(t). So,

dW

dt
=

dy1
dt

+
dy2
dt

= r

(
1− y1 + y2

k + x

)
y1−ny2 ≤ ry1

(
1− y1

k + 1

)
−ny2 ≤ ry1

(
2− y1

k + 1

)
−τW,

where, τ = min{r, n} ≤ 2r(k + 1)− τW. Then

W (t) ≤ 2r(k + 1)

τ
(1− exp(−τt)) +W (x0, y1,0, y2,0) exp(−τt),

as t → ∞, 0 < W (t) ≤ 2r(1+k)
τ

.
So, all the solutions of system (4) will enter into the region:

Ω =

{
(x, y1, y2) ∈ R3

+ : 0 < x(t) ≤ 1; 0 < y1(t) ≤ (k + 1); 0 < W (t) <
2r(k + 1)

τ
+ ϵ, ϵ > 0

}
.

4. EXTINCTION SCENARIOS

It may happen that under some certain parametric restrictions, the population will tend to
extinction with time. In this section we try to obtain those restrictions for which one or more
species will be washed out from the system in long run.

Let us denote the following notations: x = lim sup
t→∞

x(t); y1 = lim sup
t→∞

y1(t); y2 =

lim sup
t→∞

y2(t). Similarly, x = lim inf
t→∞

x(t); y
1
= lim inf

t→∞
y1(t); y

2
= lim inf

t→∞
y2(t).

Here we use the following facts:
(i) x ≤ 1;

271
Mathematical Biology and Bioinformatics. 2020. V. 15.№ 2. doi: 10.17537/2020.15.268



SAHA, SAMANTA

(ii) y1, y2 ≤ M (say), as all solutions are uniformly bounded.
The first two theorems will give us the extinction criterion of plant species while later two
will show the extinction of susceptible pest population and the last theorem will give us the
condition for extinction of infected pest population.

Th e o r em 3. If b1y1 > 1, then lim
t→∞

x = 0.

P r o o f. Choose 0 < ϵ < y
1
− 1

b1
, ∃ T > 0, s.t. y1 > y

1
− ϵ, ∀ t > T .

For t > T :
dx(t)

dt
= x(1− x)− b1xy1 − b2xy2,

< x(1− x)− b1x(y1 − ϵ),

< x[1− b1(y1 − ϵ)]

= −µx

[
where, µ = b1

{
y
1
− 1

b1
− ϵ

}
> 0

]
⇒ limt→∞ x(t) = 0.

Remark: If the consumption of plant by healthy pest (b1y1) become higher than growth rate
of plant species, then automatically the plant species will be washed out from the system.

Th e o r em 4. If b2y2 > 1, then lim
t→∞

x = 0.

P r o o f. Choose 0 < ϵ < y
2
− 1

b2
, ∃ T > 0, s.t. y2 > y

2
− ϵ, ∀ t > T .

For t > T :
dx(t)

dt
= x(1− x)− b1xy1 − b2xy2,

< x(1− x)− b2x(y2 − ϵ),

< x[1− b2(y2 − ϵ)]

= −µx

[
where, µ = b2

{
y
2
− 1

b2
− ϵ

}
> 0

]
⇒ limt→∞ x(t) = 0.

Remark: If the infected pest consumes the plant species at a higher rate, then plant
population will be going to extinct from the system in long run.

Th e o r em 5. Ifmy
2
> r, then lim

t→∞
y1(t) = 0.

P r o o f. Choose 0 < ϵ < y
2
− r

m
, ∃ T > 0, s.t. y2 > y

2
− ϵ, ∀ t > T .

For t > T :
dy1(t)

dt
= r

(
1− y1 + y2

k + x

)
y1 −my1y2,

< ry1 −my1y2,

< {r −m(y
2
− ϵ)}y1,

= −µy1

[
where, µ = m

{
y
2
− r

m
− ϵ

}
> 0

]
⇒ limt→∞ y1(t) = 0.

Remark: If the infected pest start to dominate the healthy pest population, then ultimately
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susceptible pest will be washed out from the system.

Th e o r em 6. If y
1
> k + 2, then lim

t→∞
y1 = 0.

P r o o f. Choose 0 < ϵ < 1, ∃ T1 > 0, s.t. x(t) < 1 + ϵ, ∀ t > T1.
Also, for 0 < ϵ1 < y

1
− k − 2, ∃ T2 > 0, s.t. y1 > y

1
− ϵ1, ∀ t > T2.

For t > max{T1, T2} :

dy1(t)

dt
= r

(
1− y1 + y2

k + x

)
y1 −my1y2,

< ry1

(
1− y1

k + x

)
,

< ry1

(
1−

y
1
− ϵ1

k + 1 + ϵ

)
,

< ry1

(
1−

y
1
− ϵ1

k + 2

)
,

= −µy1

[
where, µ =

r

k + 2

{
y
1
− k − 2− ϵ

}
> 0

]
⇒ limt→∞ y1(t) = 0.

Remark: If the amount of susceptible pest become high enough, then due to lack of food it
will be going to extinct.

Th e o r em 7. Ifmy1 < n, then lim
t→∞

y2 = 0.

P r o o f. Choose 0 < ϵ < n
m
− y1, ∃ T > 0, s.t. y1 < y1 + ϵ, ∀ t > T .

For t > T :
dy2(t)

dt
= my1y2 − ny2,

< {m(y1 + ϵ)− n}y2,

= −µy2

[
where, µ = m

{ n

m
− y

1
− ϵ

}
> 0

]
⇒ limt→∞ y2(t) = 0.

Remark: If the transmission rate (my1) fails to overcome the mortality rate of infected pest,
then there will be no more infected pest present in the system in long run.

5. EQUILIBRIUM POINTS

To obtain the equilibrium points we need to solve the nullclines of a model. System (4) gives
the equilibrium points as follows:

1. Trivial Equilibrium Point: E0(0, 0, 0).

2. Axial Equilibrium Points: E1(1, 0, 0), E2(0, k, 0).

3. Planar Equilibrium Points: E3(x̃, ỹ1, 0) =

(
1− kb1
1 + b1

,
1 + k

1 + b1
, 0

)
and E4(0, y1, y2) =(

0,
n

m
,
r(km− n)

m(km+ r)

)
. E3 is feasible when kb1 < 1 and E4 is feasible when km > n.
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4. Interior Equilibrium Point E∗(x∗, y∗1, y
∗
2) satisfies the equations:

1− x− b1y1 − b2y2 = 0,

r

(
1− y1 + y2

k + x

)
−my2 = 0,

and my1 − n = 0.

Solving: E∗(x∗, y∗1, y
∗
2) ≡

(
(1−k)m−b1n−(b2+1)r∓

√
A

2m
, n
m
, (1+k)m−b1n+(b2+1)r±

√
A

2b2m

)
, where A =

{m(1 + k) + (b2 + 1)r − b1n}2 − 4rb2{m(1 + k) − n(1 + b1)}. So, we may get two interior
equilibrium points: E∗

L(x
∗
L, y

∗
1L, y

∗
2L) and E∗

R(x
∗
R, y

∗
1R, y

∗
2R), where

E∗
L =

(
(1−k)m−b1n−(b2+1)r−

√
A

2m
, n
m
, (1+k)m−b1n+(b2+1)r+

√
A

2b2m

)
and

E∗
R =

(
(1−k)m−b1n−(b2+1)r+

√
A

2m
, n
m
, (1+k)m−b1n+(b2+1)r−

√
A

2b2m

)
.

Two feasible interior equilibrium points can be obtained only if (1 − k)m − b1n − (b2 +
1)r −

√
A > 0 hold simultaneously along with A > 0. Otherwise, the system have only one

feasible interior equilibrium.

6. PERSISTENCE

An ecological system is persistent (permanence) means all the populations in the system
survive in long run, no matter what the initial populations are. Mathematically, it implies that
strictly positive solutions do not have omega limit points on the boundary of the non-negative
cone. Usually, average Lyapunov function is used to show the permanence of a system [28].

Th e o r em 8. System (4) is permanent if the following conditions hold
(i) 1− b1k > 0 and/ormk > n;

(ii)m(1 + k) > n(1 + b1);
(iii)m(km+ r) > b1n(km+ r) + b2r(km− n).

P r o o f. Let the average Lyapunov function is V (x, y1, y2) = xθ1yθ21 yθ32 where each θi for
i = 1, 2, 3 are assumed to be positive. In the interior of R3

+, we have

V̇

V
= ϕ(x, y1, y2) = θ1[1− x− b1y1 − b2y2] + θ2

[
r

(
1− y1 + y2

k + x

)
−my2

]
+ θ3[my1 − n].

To prove the permanence, we need to show ϕ(x, y1, y2) > 0 for all boundary equilibria of
the system. The values of ϕ(x, y1, y2) at the boundary equilibria E0, E1, E2, E3 and E4 are as
follows:
E0 : ϕ(0, 0, 0) = θ1 + θ2r − θ3n.
E1 : ϕ(1, 0, 0) = θ2r − θ3n.
E2 : ϕ(0, k, 0) = θ1(1− kb1) + θ3(mk − n).

E3 : ϕ(x̃, ỹ1, 0) = θ3

[
m(1 + k)

1 + b1
− n

]
.

E4 : ϕ(0, y1, y2) = θ1

[
m(km+ r)− b1n(km+ r)− b2r(km− n)

m(km+ r)

]
.

Now, ϕ(0, 0, 0) and ϕ(1, 0, 0) are positive for some positive θi for i = 1, 2, 3. And if the
inequalities stated in (i)−(iii) hold, thenϕ is positive atE0, E1, E2, E3 andE4 for some θi > 0
for i = 1, 2, 3. So, system (4) is permanent [29] if the conditions (i)− (iii) are fulfilled.
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7. LOCAL STABILITY ANALYSIS

Now we look for the local stability conditions of the equilibrium points with the help of
corresponding Jacobian matrices and Routh-Hurwitz criterion. The Jacobian matrix of system
(4) is

J =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 , (5)

where a11 = 1 − 2x − b1y1 − b2y2; a12 = −b1x; a13 = −b2x; a21 = ry1(y1+y2)
(k+x)2

; a22 =

r − r(2y1+y2)
k+x

−my2; a23 = −
(

r
k+x

+m
)
y1; a31 = 0; a32 = my2; a33 = my1 − n.

For E0 = (0, 0, 0):

J |E0 =

 1 0 0

0 r 0

0 0 −n

 .

So, λ1 = 1, λ2 = r, λ3 = −n.Here λ1, λ2 are always positive and hence we have the following
theorem:

Th e o r em 9. E0 is always an unstable equilibrium point.
For E1 = (1, 0, 0):

J |E1 =

 −1 −b1 −b2

0 r 0

0 0 −n

 .

So, λ1 = −1, λ2 = r, λ3 = −n. Here λ1, λ3 are always negative but λ2 is positive.
So we have the following theorem:

Th e o r em 10. E1 is an unstable equilibrium point.
For E2 = (0, k, 0):

J |E2 =

 1− b1k 0 0

r −r −k
(
m+ r

k

)
0 0 mk − n

 .

So, λ1 = 1−b1k, λ2 = −r, λ3 = mk−n.Here λ2 is always negative. So we have the following
theorem:

Th e o r em 11. E2 is a stable equilibrium point if b1k > 1 along withmk < n hold.
For E3 = (x̃, ỹ1, 0) :

J |E3 =

 a11 a12 a13

a21 a22 a23

0 0 a33

 ,

where a11 = −x̃; a12 = −b1x̃; a13 = −b2x̃; a21 =
rỹ21

(k+x̃)2
; a22 = − rỹ1

k+x̃
; a23 =

−
(

r
k+x̃

+m
)
ỹ1; a33 = mỹ1 − n. One eigenvalue will be

λ1 = mỹ1 − n (6)
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and other two will be the roots of the quadratic equation:

λ2 + P1λ+ P2 = 0,

where P1 = −(a11 + a22) > 0, P2 = −a21a12 > 0.
Therefore,E3 is stable if λ1 < 0, i.e.,m(1+k) < n(1+b1). So, we have the following theorem:

Th e o r em 12. E3 is locally asymptotically stable (LAS) ifm(1 + k) < n(1 + b1) holds.
For E4 = (0, y1, y2) :

J |E4 =

 a11 0 0

a21 a22 a23

0 a32 0

 ,

where a11 = 1− b1y1 − b2y2; a21 =
ry1(y1+y2)

k2
; a22 = − ry1

k
; a23 = −

(
r
k
+m

)
y1; a32 = my2.

One eigenvalue will be
λ1 = 1− b1y1 − b2y2 (7)

and other two will be the roots of the quadratic equation:

λ2 +Q1λ+Q2 = 0,

where Q1 = −a22 > 0, Q2 = −a23a32 > 0.
Therefore, E4 is stable if λ1 < 0, i.e., (m − b1n)(km + r) < b2r(km − n). So, we have the
following theorem:

Th e o r em 13. E4 is locally asymptotically stable (LAS) if (m−b1n)(km+r) < b2r(km−
n) holds.

Now, for E∗(x∗, y∗1, y
∗
2):

J |E∗ =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 ,

where a11 = −x∗; a12 = −b1x
∗; a13 = −b2x

∗; a21 =
ry∗1(y

∗
1+y∗2)

(k+x∗)2
; a22 = − ry∗1

k+x∗ ; a23 =

−
(

r
k+x∗ +m

)
y∗1; a31 = 0; a32 = my∗2; a33 = 0. Characteristic equation for E∗(x∗, y∗1, y

∗
2)

will be
λ3 +B1λ

2 +B2λ+B3 = 0, (8)

where B1 = −(a11 + a22) B2 = a11a22 − a12a21 − a23a32, B3 = −a32(a13a21 − a11a23). Here
B1, B2, B3 > 0. Let, ∆ = B1B2 −B3.

According to Routh-Hurwitz criterion, all roots of equation (8) have negative real parts if
B1 > 0, B3 > 0 and B3(B1B2 −B3) > 0. So, we have the following theorem:

Th e o r em 14. E∗(x∗, y∗1, y
∗
2) will be LAS if ∆ = B1B2 −B3 > 0.

8. BIFURCATION ANALYSIS

Here we have analysed under which conditions the equilibrium points will change their
stability and for this we have used Sotomayor’s Theorem [30] and the Hopf Bifurcation
Theorem [31]. In order to apply Sotomayor’s Theorem, one of the eigenvalues of the Jacobian
matrix at the equilibrium point needs to be zero.

Let V = (v1, v2, v3)
T and W = (w1, w2, w3)

T be the eigenvectors of J |(eq. point) and
J |T(eq. point) corresponding to zero eigenvalue of the equilibrium point respectively.

Let f = (f (1), f (2), f (3))T , where
276
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f (1) = x(1− x)− b1xy1 − b2xy2,
f (2) = r

(
1− y1+y2

k+x

)
y1 −my1y2,

f (3) = my1y2 − ny2.

Th e o r em 15. The system undergoes a transcritical bifurcation with respect to the
bifurcation parameter b1 around E2(0, k, 0) if kb1 = 1 along withmk < n.

P r o o f.

J |E2 =

 1− b1k 0 0

r −r −k
(
m+ r

k

)
0 0 mk − n

 .

Let, b1[TC1] be the value of b1 s.t J |E2 has a simple zero eigenvalue at b1 = b1[TC1].
So, at b1 = b1[TC1] = k−1 :

J |E2 =

 0 0 0

r −r −(r +mk)

0 0 mk − n

 .

Here, λ1 = −r < 0 and λ2 = mk − n < 0.
After some calculations: V = (1, 1, 0)T andW = (1, 0, 0)T .

Therefore,
Ω1 = W T .fb1(E2, b1[TC1]) = −(xy1)|E2 = 0,

Ω2 = W T
[
Dfb1(E2, b1[TC1])V

]
= −k ̸= 0

and Ω3 = W T
[
D2f(E2, b1[TC1])(V, V )

]
= −2(1 + b1) ̸= 0.

By Sotomayor’s Theorem, the system undergoes a transcritical bifurcation [32, 33] around E2

at b1 = b1[TC1] = k−1.

Th e o r em 16. The system undergoes a transcritical bifurcation with respect to the
bifurcation parameterm around E2(0, k, 0) ifmk = n along with kb1 > 1.

P r o o f.

J |E2 =

 1− b1k 0 0

r −r −k
(
m+ r

k

)
0 0 mk − n

 .

Let,m[TC2] be the value ofm s.t J |E2 has a simple zero eigenvalue atm = m[TC2].
So, atm = m[TC2] =

n
k
:

J |E2 =

 1− b1k 0 0

r −r −(r +mk)

0 0 0

 .

Here, λ1 = 1− b1k < 0 and λ2 = −r < 0.
After some calculations: V = (0, (n+ r),−r)T andW = (0, 0, 1)T .

Therefore,
Ω1 = W T .fm(E2,m[TC2]) = (y1y2)|E2 = 0,

Ω2 = W T
[
Dfm(E2,m[TC2])V

]
= −kr ̸= 0
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and Ω3 = W T
[
D2f(E2,m[TC2])(V, V )

]
= −2nr

k
(r + n) ̸= 0.

By Sotomayor’s Theorem, the system undergoes a transcritical bifurcation around E2 at
m = m[TC2] =

n
k
.

Th e o r em 17. The system undergoes a transcritical bifurcation with respect to the
bifurcation parameterm around E3(x̃, ỹ1, 0) ifm(1 + k) = n(1 + b1).

P r o o f.

J |E3 =

 a11 a12 a13

a21 a22 a23

0 0 a33

 ,

where a11 = −x̃; a12 = −b1x̃; a13 = −b2x̃; a21 =
rỹ21

(k+x̃)2
; a22 = − rỹ1

k+x̃
; a23 =

−
(

r
k+x̃

+m
)
ỹ1; a33 = mỹ1 − n.

Let,m[TC3] be the value ofm s.t J |E3 has a simple zero eigenvalue and two eigenvalues with
negative real parts atm = m[TC3].

So, atm = m[TC3] =
n(1+b1)
1+k

:

J |E3 =

 −x̃ −b1x̃ −b2x̃
rỹ21

(k+x̃)2
− rỹ1

k+x̃
−
(

r
k+x̃

+m
)
ỹ1

0 0 0

 .

Calculations give:
V = (b1{r(1+ b1)(1+ b2)+m(1+k)}− rb2(1+ b1)

2,−{r(1+ b1)(1+ b2)+m(1+k)}, r(1+
b1)

2)T andW = (0, 0, 1)T .
Therefore,

Ω1 = W T .fm(E3,m[TC3]) = −(y1y2)|E3 = 0,

Ω2 = W T
[
Dfm(E3,m[TC3])V

]
= r(1 + k)(1 + b1) ̸= 0

and Ω3 = W T
[
D2f(E3,m[TC3])(V, V )

]
= −2mr(1 + b1)

2{r(1 + b1)(1 + b2) +m(1 + k)}
̸= 0.

By Sotomayor’s Theorem, the system undergoes a transcritical bifurcation around E3 at
m = m[TC3] =

n(1+b1)
1+k

.

Th e o r em 18. The system undergoes a transcritical bifurcation with respect to the
bifurcation parameter b1 around E4(0, y1, y2) if b1n(km+ r) + b2r(km− n) = m(km+ r).

P r o o f.

J |E4 =

 a11 0 0

a21 a22 a23

0 a32 0

 ,

where a11 = 1− b1y1 − b2y2; a21 =
ry1(y1+y2)

k2
; a22 = − ry1

k
; a23 = −

(
r
k
+m

)
y1; a32 = my2.

Let, b1[TC4] be the value of b1 s.t J |E4 has a simple zero eigenvalue and two eigenvalues with
negative real parts at b1 = b1[TC3].
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So, at b1 = b1[TC4] :

J |E4 =

 0 0 0
ry1(y1+y2)

k2
− ry1

k
−
(
r
k
+m

)
y1

0 my2 0

 .

Calculations give:
V =

(
k(km+ r), 0, rk(r+n)

km+r

)T

andW = (1, 0, 0)T . Therefore,

Ω1 = W T .fb1(E4, b1[TC4]) = −(xy1)|E4 = 0,

Ω2 = W T
[
Dfb1(E4, b1[TC4])V

]
= −rk(km− n)

m
̸= 0

and Ω3 = W T
[
D2f(E4, b1[TC4])(V, V )

]
= −2k{k(km+ r)2 + rkb2(r + n)}
̸= 0.

By Sotomayor’s Theorem, the system undergoes a transcritical bifurcation around E4 at
b1 = b1[TC3].

9. GLOBAL STABILITY

Lyapunov function guarantees the global stability of those equilibrium points which are
locally asymptotically stable (LAS) under some certain conditions. This section contains such
conditions for which equilibrium points are globally asymptotically stable.

Th e o r em 19. The axial equilibrium E2(0, k, 0) is globally asymptotically stable if r −
b1k < 0, k + 1− rk < 0 and r + km < n.

P r o o f. Consider a suitable Lyapunov function as;

V1(x, y1, y2) = x+
[
y1 − k − k log

(y1
k

)]
+ y2.

Here, V1(x, y1, y2) is a positive definite function for all (x, y1, y2) other than (0, k, 0).
Now time derivative of V1 computed along the solutions of system (4) is given by:

V̇1 =
dx

dt
+

(
1− k

y1

)
dy1
dt

+
dy2
dt

= x(1− x)− b1xy1 − b2xy2 + (y1 − k)

{
r

(
1− y1 + y2

k + x

)
−my2

}
+my1y2 − ny2

= x(1− x− b1y1 − b2y2)−
ry2
k + x

(y1 − k) +mky2 + r(y1 − k)

[
1− y1

k + x

]
− ny2

< x(1− x− b1y1 − b2y2)−
ry1y2
k + x

+ (r +mk)y2 +
rx

k + x
(y1 − k)− ny2

≤ x(1− x− b2y2) +

(
r

k + x
− b1

)
xy1 + (r +mk)y2 −

rkx

k + x
− ry1y2

k + x
− ny2

< x

(
1− rk

k + 1

)
+
( r
k
− b1

)
xy1 + y2(r +mk − n).

So V̇1 < 0 if r − b1k < 0, k + 1 − rk < 0 and r + km < n. Also V̇1 = 0
when (x, y1, y2) = (0, k, 0). Therefore, E2 is globally asymptotically stable (under the stated
parametric restrictions) using LaSalle theorem [34].
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Th e o r em 20. The axial equilibrium E3(x̃, ỹ1, 0) is globally asymptotically stable if[
b21 +

r2

k2
− 2rb1

(k+1)

]
< 4r

k+1
along with b2x̃+mỹ1 +

rỹ1
k

< n.

P r o o f. Consider a suitable Lyapunov function as;

V2(x, y1, y2) =
[
x− x̃− x̃ log

(x
x̃

)]
+

[
y1 − ỹ1 − ỹ1 log

(
y1
ỹ1

)]
+ y2,

Here, V2(x, y1, y2) is a positive definite function for all (x, y1, y2) other than (x̃, ỹ1, 0).
Now time derivative of V2 computed along the solutions of the system (4) is given by;

V̇2 =

(
1− x̃

x

)
dx

dt
+

(
1− ỹ1

y1

)
dy1
dt

+
dy2
dt

= (x− x̃)[1− x− b1y1 − b2y2] + (y1 − ỹ1)

{
r

(
1− y1 + y2

k + x

)
−my2

}
+my1y2 − ny2

= −(x− x̃)2 − b1(x− x̃)(y1 − ỹ1)− b2y2(x− x̃) +my1y2 − ny2

+
r(y1 − ỹ1)

(k + x)(k + x̃)
[−k(y1 − ỹ1) + (xỹ1 − y1x̃)]−

(
m+

r

k + x

)
y2(y1 − ỹ1)

= −(x− x̃)2 +

[
−b1 +

rỹ1
(k + x)(k + x̃)

]
(x− x̃)(y1 − ỹ1)− b2y2(x− x̃)

− r

(k + x)
(y1 − ỹ1)

2 +mỹ1y2 −
ry1y2
k + x

+
rỹ1y2
k + x

− ny2

< −
[
(x− x̃)− 1

2

{
b1 −

rỹ1
(k + x)(k + x̃)

}
(y1 − ỹ1)

]2
+

(
b2x̃+mỹ1 +

rỹ1
k

− n

)
y2

+

[
1

4

{
b1 −

rỹ1
(k + x)(k + x̃)

}2

− r

k + x

]
(y1 − ỹ1)

2

< −
[
(x− x̃)− 1

2

{
b1 −

rỹ1
(k + x)(k + x̃)

}
(y1 − ỹ1)

]2
+

(
b2x̃+mỹ1 +

rỹ1
k

− n

)
y2

+

[
1

4

{
b21 +

r2ỹ21
k2(k + x̃)2

− 2rb1ỹ1
(k + 1)(k + x̃)

}
− r

k + 1

]
(y1 − ỹ1)

2.

So V̇2 < 0 if
[
b21 +

r2

k2
− 2rb1

(k+1)

]
< 4r

k+1
and b2x̃ + mỹ1 + rỹ1

k
< n. Also V̇2 = 0 when

(x, y1, y2) = (x̃, ỹ1, 0). Therefore, E3 is globally asymptotically stable (under the stated
parametric restrictions) using LaSalle theorem [34].

Th e o r em 21. The equilibrium point E4(0, y1, y2) exists and is globally asymptotically
stable if

b2
2

[
r

4(k + 1)

{
b1 −

r(r + n)

k(km+ r)

}
− rb2

2k

]
+

r

k + 1

[
b2
4

{
b1 −

r(r + n)

k(km+ r)

}
− r

2k

]
> 0, (9)

kb1(km+ r) > r(r + n) (10)

and
r

k + 1
− 1

4

[
b21 +

r2(r + n)2

k2(km+ r)2
− 2rb1(r + n)

(k + 1)(km+ r)

]
> 0. (11)

P r o o f. Consider a Lyapunov function as:

V3(x, y1, y2) = x+

[
y1 − y1 − y1 log

(
y1
y1

)]
+

[
y2 − y2 − y2 log

(
y2
y2

)]
.
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Here, V3(x, y1, y2) is a positive definite function for all (x, y1, y2) other than (0, y1, y2).
Now time derivative of V3 computed along the solutions of system (4) is given by:

V̇3 =
dx

dt
+

(
1− y1

y1

)
dy1
dt

+

(
1− y2

y2

)
dy2
dt

= [x(1− x)− b1xy1 − b2xy2] + (y1 − y1)

{
r

(
1− y1 + y2

k + x

)
−my2

}
+ (y2 − y2)(my1 − n)

= x[−x− b1(y1 − y1)− b2(y2 − y2)]−
r

k + x
(y1 − y1)

2 − r

k + x
(y1 − y1)(y2 − y2)

+
r(y1 + y2)

k(k + x)
x(y1 − y1) + [1− b1y1 − b2y2]x.

Adding these contributions, for U = (x, (y1 − y1), (y2 − y2))
T , we find

dV

dt
= Ax2 +B(y1 − y1)

2 + C(y2 − y2)
2 + 2Hx(y1 − y2) + 2F (y1 − y1)(y2 − y2)

+ 2Gx(y2 − y2) = −UTMU + [1− b1y1 − b2y2]x.
(12)

HereM is the symmetric quadratic form given by

M =

 A H G

H B F

G F C


with entries that are functions only of the variable x,
A = 1, B = r

k+x
, C = 0, H = 1

2

{
b1 − r(y1+y2)

k(k+x)

}
, F = r

2(k+x)
, G = b2

2
.

Local stability condition of E4 gives that 1− b1y1 − b2y2 < 0 and hence the last term of the
formula (12) is also negative. Thus, if the matrixM is positive definite, then dV

dt
< 0.We need

all of the principal minors of M , namely P1 ≡ A, P2 ≡ AB − H2, P3 ≡ ABC + 2FGH −
AF 2 −BG2 − CH2, to be positive, i.e., P1 = 1 > 0,

P2 =
r

k+x
− 1

4

{
b1 − r(y1+y2)

k(k+x)

}2

> 0,

P3 = C(AB −H2) +G(FH −BG) + F (GH − AF ) > 0.
For P2, using condition (11) we have

P2 =
r

k + x
− 1

4

{
b1 −

r(y1 + y2)

k(k + x)

}2

=
r

k + x
− 1

4

{
b1 −

r −my2
k + x

}2

>
r

k + 1
− 1

4

[
b21 +

r2(r + n)2

k2(km+ r)2
− 2rb1(r + n)

(k + 1)(km+ r)

]
> 0.

Now P3 = C(AB−H2)+G(FH−BG)+F (GH−AF ) = G(FH−BG)+F (GH−AF ).
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For P3, using conditions (9) and (10) we have

FH −BG =
r

4(k + x)

[
b1 −

r(y1 + y2)

k(k + x)

]
− rb2

2(k + x)

>
r

4(k + 1)

[
b1 −

r(y1 + y2)

k2

]
− rb2

2k

=
r

4(k + 1)

[
b1 −

r(r + n)

k(km+ r)

]
− rb2

2k

and GH − AF =
b2
4

[
b1 −

r(y1 + y2)

k(k + x)

]
− r

2(k + x)

>
b2
4

[
b1 −

r(y1 + y2)

k2

]
− r

2k

=
b2
4

[
b1 −

r(r + n)

k(km+ r)

]
− r

2k

So, P3 >
b2
2

[
r

4(k + 1)

{
b1 −

r(r + n)

k(km+ r)

}
− rb2

2k

]
+

r

k + 1

[
b2
4

{
b1 −

r(r + n)

k(km+ r)

}
− r

2k

]
> 0.

Hence, the symmetric matrixM is positive definite, implying dV
dt

< 0 along the trajectories. Also
V̇3 = 0 when (x, y1, y2) = (0, y1, y2). Therefore, E4 is globally asymptotically stable (under the
stated parametric restrictions) using LaSalle theorem [34].

Now, we shall check the global stability of the interior equilibrium point E∗.

Th e o r em 22. The interior equilibrium E∗ is globally asymptotically stable if

b1 −
r(y∗1 + y∗2)

k(k + x∗)
> max

{
2r

kb2
,
2(k + 1)b2

k

}
, (13)

kb1(k + x∗) > r(y∗1 + y∗2) (14)

and
[
b21 +

r2(y∗1 + y∗2)
2

k2(k + x∗)2
− 2rb1(y

∗
1 + y∗2)

(k + 1)(k + x∗)

]
<

4r

k + 1
. (15)

P r o o f. Consider a appropriate lyapunov function:

V (x, y, z) =
[
x− x∗ − x∗ log

( x

x∗

)]
+

[
y1 − y∗1 − y∗1 log

(
y1
y∗1

)]
+

[
y2 − y∗2 − y∗2 log

(
y2
y∗2

)]
,

Here, V (x, y1, y2) is a positive definite function for all (x, y1, y2) except (x∗, y∗1, y
∗
2).

The time derivative of V computed along the solutions of the system (4) is given by;
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V̇ =

(
1− x∗

x

)
dx

dt
+

(
1− y∗1

y1

)
dy1
dt

+

(
1− y∗2

y2

)
dy2
dt

= (x− x∗) [1− x− b1y1 − b2y2] + (y1 − y∗1)

[
r

(
1− y1 + y2

k + x

)
−my2

]
+ (y2 − y∗2) [my1 − n]

= −(x− x∗)2 − b1(x− x∗)(y1 − y∗1)− b2(x− x∗)(y2 − y∗2)

+
r(y1 − y∗1)

(k + x)(k + x∗)
[−(k + x∗)(y1 − y∗1)− (k + x∗)(y2 − y∗2) + (x− x∗)(y∗1 + y∗2)]

= −(x− x∗)2 − r

k + x
(y1 − y∗1)

2 − b2(x− x∗)(y2 − y∗2)

−
[
b1 −

r(y∗1 + y∗2)

(k + x)(k + x∗)

]
(x− x∗)(y1 − y∗1)−

r

k + x
(y1 − y∗1)(y2 − y∗2).

Adding these contributions, for U = ((x− x∗), (y1 − y∗1), (y2 − y∗2))
T , we find

dV

dt
= A(x− x∗)2 +B(y1 − y∗1)

2 + C(y2 − y∗2)
2 + 2H(x− x∗)(y1 − y∗1) + 2F (y1 − y∗1)(y2 − y∗2)

+ 2G(x− x∗)(y2 − y∗2) = −UTMU.
(16)

HereM is the symmetric quadratic form given by

M =

 A H G

H B F

G F C


with entries that are functions only of the variable x,
A = 1, B = r

k+x
, C = 0, H = 1

2

{
b1 − r(y∗1+y∗2)

(k+x)(k+x∗)

}
, F = r

2(k+x)
, G = b2

2
.

Thus, if the matrixM is positive definite, then dV
dt

< 0.We need all of the principal minors
ofM , namely P1 ≡ A, P2 ≡ AB −H2, P3 ≡ ABC + 2FGH − AF 2 − BG2 − CH2, to be
positive, i.e., P1 = 1 > 0,

P2 =
r

k+x
− 1

4

{
b1 − r(y∗1+y∗2)

(k+x)(k+x∗)

}2

> 0, P3 = C(AB−H2)+G(FH−BG)+F (GH−AF ) > 0.

For P2, using condition (15) we have

P2 =
r

k + x
− 1

4

{
b1 −

r(y∗1 + y∗2)

(k + x)(k + x∗)

}2

>
r

k + 1
− 1

4

[
b21 +

r2(y∗1 + y∗2)
2

k2(k + x∗)2
− 2rb1(y

∗
1 + y∗2)

(k + 1)(k + x∗)

]
> 0.

Now P3 = C(AB−H2)+G(FH−BG)+F (GH−AF ) = G(FH−BG)+F (GH−AF ).
As F,G > 0, then FH − BG,GH − AF > 0 implies P3 > 0. For P3, using conditions (13)

283
Mathematical Biology and Bioinformatics. 2020. V. 15.№ 2. doi: 10.17537/2020.15.268



SAHA, SAMANTA

and (14) we have

FH −BG =
r

4(k + x)

[
b1 −

r(y∗1 + y∗2)

(k + x)(k + x∗)

]
− rb2

2(k + x)

>
r

4(k + 1)

[
b1 −

r(y∗1 + y∗2)

k(k + x∗)

]
− rb2

2k
> 0

and GH − AF =
b2
4

[
b1 −

r(y∗1 + y∗2)

(k + x)(k + x∗)

]
− r

2(k + x)

>
b2
4

[
b1 −

r(y∗1 + y∗2)

k(k + x∗)

]
− r

2k
> 0.

Combining these results it follows that P3 > 0. Hence, the symmetric matrix M is positive
definite, implying dV

dt
< 0 along the trajectories. Thus, V is a Lyapunov function and global

stability for E∗ follows.

10. NUMERICAL SIMULATION

Now we shall analyze the proposed model with some numerical figures, focusing on the
effect of disease transmission rate,m and consumption rate of healthy pest, b1 of the system. The
values of the following parameters are stated in Table 1: attack rate of infected pest on plants (b2),
intrinsic growth rate of healthy plants (r), intake rate (for pest) of secondary food source (k) and
mortality rate of infected plants (n). These values imply that for b1 = 0.5, 1−kb1 > 0 and soE3

exists when the bio-control pathogen (infected pest) is not present in the system. The trajectories
of system (4) starting from (a) (0.5,2,0.3), (b) (0.1,0.8,0.1) and (c) (0.4,1.6,0.2) approach the
equilibriumE3 = (0.25, 1.5, 0) (see Figure 1). That means the healthy pest can coexist with wild
plant species and, in long run, population biomass of both species are approaching stationary
values.

Table 1. Parametric values for numerical simulation
Parameters Values

b2 0.07

r 0.125

k 1.25

n 0.125

For b1 = 1 (implies b1k > 1) and m = 0.01, we have a stable situation where infected
pests are going to extinct in absence of wild plants. For m < 0.1, the trajectories starting
in the neighborhood of E2 = (0, 1.25, 0) converge to E2 (see Figure 5). Introducing disease
(insecticide) into the herbivore pest species and choosing the attack rate of the healthy pest on
the plant b1 = 0.5,we calculate the equilibria asm increases: (i) equilibriumE3 = (0.25, 1.5, 0)
is stable if m < 0.0836 (ii) when m exceeds 0.0836, E∗ exists and is stable. For m = 0.1,
the trajectories converge to E∗ = (0.36, 1.25, 0.16) (see Figure 2). This means that with
comparatively large transmission rates above 0.084 the disease can invade andwe get an endemic
situation. So, it can be stated that biological control has a high stabilizing effect.

It is evident that in natural ecosystems the asymptotic behaviour of system trajectories are
rarely seen and their dynamics are essentially transient [35, 36, 37]. Transient dynamics mainly
occurs when the population dynamics mimic the asymptotic behaviour of one kind for a very
long time and suddenly convergence to a different attractor [38]. In this system, if we start to
increase the value of transmission rate coefficient (m), a transient dynamics can be observed:
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Fig. 1. Stable behaviour of E3.
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Fig. 2. Stable behaviour of E∗ form = 0.1.
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Fig. 3. Stable behaviour of E∗ = (0.86, 0.25, 0.20) form = 0.5.
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Fig. 4. Stable behaviour of the system around E∗ for higher disease transmission rate.
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Fig. 5. Stable behaviour of E2.

the trajectories start to oscillate first but after some time it converges to the steady-state (see
Figure 3). Further figure 4 depict that increased transmission rate (m = 20) can result in transient
oscillations of the populations where the final attractor is the stationary (steady) state. Depending
on the parameter value (m), the population size can exhibit oscillations around the unstable
equilibrium (E1) for a long time until it eventually settles to the interior steady state of the
system. Here for higher transmission rate, the system exhibits substantially different behaviour:
the population size shows oscillations around the unstable state E1 over a long time period but
then ultimately tends to the interior stationary state E∗. The dynamics implies of occurrence of
a transient limit cycle as the trajectory initially approaches the cycle, remains on it over a long
time and finally leaves the cycle and ultimately approaches to interior steady state. The duration
of such oscillations depends on the transmission rate coefficient.

Moreover, the values b1 = 1 and m = 0.01 along with other parametric values stated in
Table 1 imply thatmk < n and so the wild plant species going to extinct in absence of biological
control of the insect pest. It is already mentioned that the equilibrium E2 = (0, 1.25, 0) is stable
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Fig. 6. Stable behaviour of E4.

if m < 0.1 and trajectories of the system approach the equilibrium while starting from (a)
(0.5,3,0.3), (b) (0.2,2,0.15) and (c) (0.4,1,0.2) (see Figure 5). That means the herbivore pest
can survive with the help of other food sources in absence of wild plant species. Moreover, in
absence of wild plants, the pest species approaches to the steady state where both healthy and
pathogen infected pets live if km > n holds. The threshold parameterR0 =

m(r+mk)
rb2(mk−n)+nb1(r+mk)

determines the development of wild plant species. In absence of wild plants, the predator
population approaches to y1 = n

m
and y2 = r(mk−n)

m(r+mk)
, provided R0 < 1. If R0 > 1, then

1 − b1y1 − b2y2 > 0 implying the growth rate of prey (plant) species is an increasing function
at E4 = (0, y1, y2). So, the wild plant can successfully invade the pest equilibrium as a
result of coexistence state. If m increases above 0.1, the disease can invade and approach the
endemic level with the presence of wild plants in the system. The pest species approaches to
E4 = (0, 1.09, 0.08) while m = 0.115 and b1 = 1 (see Figure 6). Keeping the value of m as
0.1, if b1 decreases, E∗ exists. Figure 2 depicts that for b1 = 0.5, the system tends to the interior
equilibrium point E∗. Thus the disease can affect the healthy pest by reducing its biomass to
such a level that the predation pressure on the wild plant species is small and it can coexist with
pest.

From the coordinates of E3 and E∗, it is observed that susceptible pest’s biomass decreases
in the presence of insecticide. Also, it is noted that the biomass of wild plant increases compares
to E3. So, the disease into pest reduces the predation pressure on wild plant resulting in a larger
plant population. It indicates that biological control is beneficial to plant species. From Figure 7,
it is observed that the healthy pest population of the system (4) is decreased with the increasing
transmission rate. The healthy pest as well as total pest biomass ofE∗ is smaller than that ofE3.
Hence, the damages done by herbivore pest on the crop are reduced as densities of susceptible
pests decrease. It implies that biological control is also beneficial to crop species.

In the absence of any pathogen infection, if the healthy prey starts to consume the wild plants
with a higher rate, then gradually plant biomass starts to decrease. This situation can occur if the
secondary food source is scarce or if the biomass of pest become much higher. Continuation of
this situation leads to the extinction of plants gradually. In fact, after crossing a threshold value
of b1 we get a system without any wild plants and the pest have to live with the secondary food
source only. So, at b1 = 0.8, a transcritical bifurcation occurs around E2 and the equilibrium
point becomes stable when b1 exceeds 0.8 (see Figure 8).

Moreover, in absence of any plant species, if insecticide pathogen is transmitted in the system
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with a lower quantity, then a lesser number of pests get infected. Hence as time goes we get a
system where only healthy pest exists as a stable equilibrium and infected pests washout from
the system when the transmission rate crosses a threshold value. As a result, a transcritical
bifurcation occurs at m = 0.1 around E2 and the equilibrium point becomes stable when m
is less than 0.1 (see Figure 9).

In a system where all the species coexist, if the transmission rate starts to decrease due to
some unavoidable issues, then the biomass of infected pest starts to decrease. Continuation of
this situation leads to the extinction of pathogen-infected pests. It is observed that, whenm goes
below of 0.083, infected species wash out and we get a system consists of wild plants and healthy
prey as a stable equilibrium. So, a transcritical bifurcation occurs at m = 0.083 around E3 and
the equilibrium point becomes stable whenm is less than 0.083 (see Figure 10).

Further, if alternative prey is scarce, the pest prefers to have plants as their food source with
a higher rate resulting in an increased consumption rate of the healthy predator (pest). Now in
this situation, the biomass of plants starts to decrease and ultimately we shall reach to a system
consists of pest species (both healthy and infected) only. It is observed that, when b1 exceeds
0.88, plant species washout from the system and hence it can be concluded that a transcritical
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bifurcation occurs at b1 = 0.88 around E4 and the equilibrium point becomes stable when b1 is
greater than 0.88 (see Figure 11).

We have chosen different set of parameters to show the global stability of the equilibrium
points E2, E3 and E4 (see Figure 12). It can be observed from figure (12.a) that E2 is globally
asymptotic stable (GAS) for r = 2, b1 = 1, b2 = 0.07, n = 2.15, m = 0.01 and k = 2.25. In
fact, when n exceeds 2.04, E2 becomes GAS and it remains globally stable for increasing value
of n. Similarly, figure (12.b) depicts that E3 is globally asymptotic stable for r = 0.125, b1 =
0.5, b2 = 0.07, n = 0.5, m = 0.01 and k = 1.25. In fact, when n exceeds 0.19, E3 becomes
GAS and it remains globally stable for increasing value of n.Moreover, figure (12.c) shows that
E4 is globally asymptotic stable for r = 20, b1 = 0.5, b2 = 0.35, n = 0.5, m = 0.2 and
k = 15.25. In fact, when n lies in (0.3, 0.44), E4 remains GAS.

11. DISCUSSION

Tree and crops are often affected by several insects and mites. Herbivorous insects, per year,
destroy almost one-fifth of the world’s total crop production. Some of them affect the production
of crops whereas some others causing tree or crop deaths. Brown blight (Peronophythora
litchii) is a disease which infects leaves and fruits. On the other hand, there are some diseases
like Anthracnose (Colletotrichum gloeosporoides) etc. which attack trees in different countries
like China, India and Australia. Parasitic algae and nematodes affect some orchards. There
are other species such as different leaf-eating and flower-eating caterpillars and beetles, bark
borers, fruit-sucking bugs, leaf mites, fruit-piercing moths etc. Stem borers are one kind of
caterpillars which causes almost 10–48 % yield loss per year. Besides, there are more pests such
as bollworm, root borer, weevil, aphids etc. which reduce grain production by about 5–30 %
per year. In this paper, we have incorporated a plant-herbivore system where biologically-based
technologies have been applied to the herbivore population to control the pest. The proposed
model is biologically suitable. For example, it is quite obvious that due to the frequent or periodic
use of pesticides and insecticides pest population becomes infected. Also, the growth of the pest
population depends on plant abundance and so, carrying capacity of plant population is taken
as a function which is dependent on plant population. The crop species has no dynamics of its
own as it is always controlled by the farmer. The growth of the plants depends on the frequency
of plantation and its demand. The biomass of the wild plants is decreased by both healthy and
infected pest but it is considered that the digestion power of infected ones is too less to contribute
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to their growth. So, the consumption of plant can not contribute to the biomass conversion of
infected pest.

We have analyzed the local as well as global properties of the equilibrium points of this
model. The proposed model involves the dynamics of insect-pathogen interaction along with
the dynamics of a secondary host species (wild plant). From the results of system (4) it can be
concluded that when a secondary wild host present, the system exhibits a stable co-existent state
for any transmission rate higher than 0.086, i.e., wild plants have a stabilizing effect.

The effect of bio-control on the community has also been obtained from the results of system
(4). Numerical simulations indicate that bio-control has a highly stabilizing effect as the interior
equilibrium, if exists, remains stable for any transmission value. Moreover, biological control
can bring the wild plant species back to the system (by reducing the pest population) even after
it has gone to extinction in its absence. Thirdly, it follows from figure 7 that with increasing
transmission rate wild plant biomass increases and susceptible pest biomass decreases. This
happens because if the herbivore pest is affected with a disease, then the predation rate on wild
plant species becomes lower resulting increment in wild plant biomass. Also, lower biomass
of susceptible pest leads to lesser damage to the crop. Hence biological control strategy is
beneficial for wild plant species as well as crop. The work presented in this paper is an approach
to analyze the dynamics of the bio-control program where the pest consumes wild plant species
too. Analytical results show that the presence of wild host species has a significant impact on
the dynamics of a bio-control program.

The proposed model reveals rich dynamics but some other factors can be included further to
make the model more realistic to the environment. We can consider the predatory functions
for the pest population (both healthy and infected) as such functions which depend on the
plant biomass also. Moreover, the case should be taken into consideration where the plant
population is infected with some disease. As, the consumption procedure of pest population
is not instantaneous, so, ‘gestation delay’ can be introduced in the system to analyse the effect
of the delay parameter. Besides, environmental fluctuations can also be incorporated with the
help of white noise and the spatio-temporal model can also be taken with diffusion terms to
study the dynamics. So, in future, some models can be formulated with all these assumptions to
observe different dynamics and to analyse the impact of all such phenomenon in the model.

The first author (Sangeeta Saha) is thankful to the University Grants Commission, India for providing
SRF.
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