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Аbstract. Stenosis, the abnormal narrowing of artery, significantly affects dynamics 

of blood flow due to increasing resistance to flow of blood. Velocity of blood flow, 

arterial pressure distribution, wall shear stress and resistance impedance factors are 

altered at different degree of stenosis. Prior knowledge of flow parameters such as 

velocity, flow rate, pressure drop in diseased artery is acknowledged to be crucial 

for preventive and curative medical intervention. The present paper develops the 

solution of Navier – Stokes equations for conservation of mass and momentum for 

axis-symmetric steady state case considering constitutive relation for Reiner – Rivlin 

fluid. Reiner – Rivlin constitutive relation renders the conservation equations non-

linear partial differential equations. Few semi-analytical and numerical solutions are 

found to be reported in literature but no analytical solution. This has motivated the 

present research to obtain a closed-form solution considering Reiner – Rivlin 

constitutive relation. Solution yields an expression for axial velocity, which is 

utilized to obtain pressure gradient, resistance impedance and wall shear stress by 

considering volumetric flow rate as initial condition. The effect of viscosity, cross 

viscosity, flow rate, taper angle of artery and degree of stenosis on axial velocity, 

resistance impedance and wall shear stress are studied. 
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INTRODUCTION 

Cardiovascular diseases (CVDs), disorders of heart and blood vessels are the leading cause 

of death worldwide [1]. Usually death occurs because of heart attacks and strokes along with 

ischaemia, atherosclerosis and thrombosis. Heart attacks and strokes are acute events mainly 

caused by blockages, depriving heart and other vital organs of blood. Gradual accumulation of 

fatty deposits along the inner walls of the blood vessels restricts supply of blood and eventually 

blocks causing death. The abnormal narrowing of blood vessels in various locations of 

cardiovascular system due to the deposition of the cholesterol and other fatty substances leads 

to a medical condition called stenosis [2] causing a disorder called atherosclerosis. From 

etiological studies on stenosis, it is observed that deposition of calcium; fatty components and 

cholesterol on the inner walls of the artery prevent the flowing of blood leading to rupture of 

the artery and thrombosis, occluding the smaller vessels. The dynamics of blood flow is 

significantly affected in all these conditions. Stenosis increases the resistance to the flow of 

blood in arteries resulting in hypertension. It also induces substantial changes in velocity of 

blood flow, arterial pressure distribution, wall shear stress and resistance impedance. Prior 

knowledge of flow parameters such as velocity, flow rate, pressure drop in diseased artery is 

acknowledged to be crucial for preventive and curative medical intervention. Therefore, it is 

imperative to understand the behavior of blood flow in a stenotic artery that is significantly 

different from flow of blood in healthy artery.  
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REVIEW OF LITERATURE 

From the literature, it is revealed that many early attempts in modelling blood flow in a 

stenotic artery have considered Newtonian fluid property in basic Navier–Stoke’s equations [3–

6]. But, from various haemo-rheological experimentation [7–10], it is inferred that blood flow 

in artery exhibits non-Newtonian behaviour. Accordingly, researchers have considered three 

types of non-Newtonian blood properties: Thixotropy, visco-elasticity and shear thinning. Any 

of these three types of non-Newtonian model fails to describe the true rheological nature of 

blood flow [11–16]. Thixotropy and visco-elasticity, being transient property of blood, is 

exhibited at low shear rates and has a fairly long time scale. This suggests that thixotropy and 

visco-elasticity are of secondary importance in physiological blood flow [15]. Accordingly, 

researchers have considered different class of time independent fluid, usually exhibits shear 

thinning behaviour. The constitutive relation to account for apparent viscosity segregates into 

three zones. The lower Newtonian zone having low shear rate constant viscosity, upper 

Newtonian zone of high shear rate constant viscosity. In between there is a central zone of 

decreasing viscosity with increase in shear rate. Power law suitably explains this zone and fails 

to characterize the low and high shear rate zones. Herschel-Bulkley, Carreau, Casson, Cross 

model extends the power law model by including the yield stress in its expression. According 

to Tu and Deville [17], Sankar and Yatim [18], Tesch [19] and Verma [20] blood obeys as 

Casson fluid at moderate shear rate, whereas, Herschley-Bulkley fluid is applicable even for 

small shear rate. Further, Sankar and Yatim [18] have reported significant difference between 

the flow quantities and have concluded that use of Herschley-Bulkley fluid yields better results 

than Casson fluid in diseased artery. These models yield similar results in terms of wall shear 

stress at high shear rates but at low shear rate exhibits only qualitative similarity [21]. Besides 

shear rate, geometry and flow rate also influence the validity of fluid [21–23]. As diameter gets 

smaller Casson fluid fails to conform where as Herschley-Bulkley fluid continues to be valid 

[21, 22].  

Fahraeus and Lindquist effect, where in blood viscosity depends on arterial diameter, is 

significant in stenosis as it constricts the artery in reducing its size. According to Hall [24] and 

Porenta [25], artery being long, narrow and slowly tapering cones, also affects the flow of 

blood. Considering the observation of Hall and Porenta, few models are reported those have 

considered tapered stenotic artery [26, 27]. Besides, Fahraeus – Lindquist effect and tapered 

artery, the effects of ratio of size of blood constituents to diameter of artery, deformability of 

blood constituents, including Merrington and Weissenberg effects are acknowledged to 

influence the flow characteristics of blood since blood is a suspension. Reiner – Rivlin fluid is 

reported to explain these complex physics [28–30]. The constitutive relation of Reiner – Rivlin 

fluid contains an extra term of cross viscosity. Therefore, consideration of Reiner – Rivlin fluid 

in developing blood flow model is expected to yield realistic results under conditions of blood 

flowing through tapered stenotic artery.  

Reiner – Rivlin constitutive relation renders the conservation equations non-linear partial 

differential equations due to an extra term of cross viscosity with product of strain tensors. Few 

semi-analytical and numerical solutions are found to be reported in literature but analytical 

solution seems to be elusive due to mathematical complexity. This has motivated the present 

research to obtain a closed-form solution considering Reiner – Rivlin constitutive relation. 

Solution yields an expression for axial velocity, which is utilized to obtain pressure gradient, 

resistance impedance and wall shear stress by considering volumetric flow rate as initial 

condition. The effect of viscosity, cross viscosity, flow rate, taper angle of artery and degree of 

stenosis on axial velocity, resistance impedance and wall shear stress are studied. 

PRELIMINARIES 

Some preliminaries are presented here which will be used in sequel in formulating the 

problem for axi-symmetric case.  
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Constitutive equations for Reiner Rivlin fluid 

Considering isotropic fluid, according to Reiner and Rivlin, the general relation between 

stress tensor ij  and rate of deformation ij  is given as: 

ˆ
ij ij ij c ijp       , 

where strain rate tensor ij ik kj  , Kronecker delta ˆ ˆ1 for  ;   0 for   ij iji j i j        . 

The stress tensors in cylindrical-polar coordinates  , ,r z  are [29, 30]: 

 ˆ
rr rr rr c rr rr r r z zp            ; where ˆ 1rr   

2 2 2
1 1

2 4rr c

u u u v v v w
p

r r r r r z r

           
                 

            

, 

 ˆ
c r r z zp                ;where ˆ 1 

2 2 2
1 1 1 1

2 4c

v u v u u v v v w
p

r r r r r r r z r


             
                     

              

, 

 ˆ
zz zz zz c zz zz zr zr z zp          ;where ˆ 1zz   

2 2 2
1

2 4zz c

w w u w v w
p

z z z r z r

           
                

            

, 

 ˆ
r r r r c rr r r zr zp                  ; where ˆ 0r   

1 1
2 2

1

1 1
r c

u u v v u v v

r r r r r r ru v v

r r r v u u w v w

r r z r z r



         
         

                    
             

        
         

, 

 ˆ
z z z z c z z zz r rzp                 ; where ˆ 0z   

1 1 1
2

1

1
z c

v u v w v w w

r r z r z r zv w

z r u v v u w

r r r z r



           
         

                     
          

      
      

, 

 rz zr rz rz c rr rz rz zz z rp            ; where ˆ 0rz   

2 2

1 1
rz c

u u w u w w

r z r z r zu w

z r v w u v v

z r r r r

           
        

                     
          

      
      

, 

where, u, v and w are velocity vectors in radial, angular and axial directions respectively. Above 

generalized equations are used in formulating the present problem.  

FORMULATION OF PROBLEM 

The present paper attempts to solve Navier – Stokes equations for momenta and mass for 

axis-symmetric case considering constitutive relation for Reiner – Rivlin fluid. The model for 

blood flow in artery is formulated and subsequently the solution is obtained by considering 

following conditions. 
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i. If  , ,r z  be the cylindrical-polar coordinate system with 0r   is the axis of symmetry 

of artery, the cylindrical co-ordinate  ,r z  is considered where, 0




. 

ii. Flow of blood in artery is considered as incompressible Reiner – Rivlin fluid, i.e. 

0
t r z

       
       

       
. 

iii. Steady flow of blood is considered. Thus, 0
t





. 

iv. Viscosity is considered to be constant. 

v. Density of blood is assumed to be constant. 

vi. Radial component of velocity  u  is considered very small and considered to remain 

constant, ie. 0
u

r





. 

Considering above conditions, the conservation equations in dimensional form are 

expressed as: 

0
u u w

r r z

 
  

 
  

 
1 zr

rr

u u
u w r

r z r r z r


   

      
    

  

 
1 zz

zr

w w
u w r

r z r r z

   
     

    
  

Applying conditions considered in the paper, stress tensors in dimensional form for 

Reiner – Rivlin fluid reduces to 
2

2 4rr c

u u
p

r r

  
        

  
, 

2

2 4 c

u u
p

r r


 
        

 
, 0

r 
  , 0

z
  , 

2rz c

w u u w u w w

r r z r z r z

              
               

              
. 

For the clarity, it is stated that ij  represent dimensional form. All variables with superscript 

dash represent dimensional form and without dash as superscript represent non-dimensional 

form for the same variables. 

These expressions are utilized to formulate the model for blood flow in artery considering 

blood as Reiner – Rivlin fluid. The schematic diagram of stenotic artery with coordinate system 

is shown in Fig. 1. 

Let the following non-dimensional variables are introduced: 

0r rd  ; z bz ; 0w u w ; 0u
u u

b

 
  
 

; 0

2

0

u b
p p

d

 
  
 

; 0 zh d h ; 0bu
Re





; 0cu

b


 


 

0

rr rr

b

u

 
   

 
; 0

0

zr zr

d

u

 
   

 
; 

0

zz zz

b

u

 
   

 
; 

0

b

u
 

 
   

 
.  

The geometry of stenosis in non-dimensional form is described as [27, 28]: 

    1 , if 1

if otherw, i e s

n

z

z

z

d z s z s s z s
h

d

              
 

,   (1) 
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where 1zd z  , 
 

 

1

01

n

n

n

n

n d b


 


, 

a
s

b
 ,  n is shape factor and tan   . 

 

 
Fig. 1. Schematic diagram of stenotic artery with coordinate system. 

 

For non-tapered artery 0  , divergent artery 0   and convergent artery 0  . Further, 

following conditions are also used to consider mild stenosis: 

0

1
d


; 

1

1

1
nRe n

b

 
 

 
; 

1

1

0 ~ 0
nd n

b

 
 

 

. 

The equations governing steady flow of incompressible Reiner – Rivlin in cylindrical 

coordinate considering suitable transformation for non-dimensional parameters and mild 

stenosis conditions reduce to [27, 28]: 

0
u u w

r r z

 
  

 
        (2) 

0
p

r





         (3) 

1
2

p w w w
r r

z r r r r z

     
        

      (4) 

SOLUTION OF PROBLEM 

closed-form solution for velocity is obtained from Eq. (4) considering the boundary and 

initial condition as: 0
w

r





 at 0r  ; 0w   at zr h  and u   finite and constant: 

 
2

22 21
2 2 2

2 2

p r
w ur u ln r u C

z

 
        

  
,    (5) 

where C  is constant of integration to be evaluated by using following boundary conditions. At 

zr h , 0w  , equation (5) becomes: 
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 
2

2 2
2 21 2

2 2
2 2 2

z
z

z

r hp r u
w u r h u ln

z h u

    
        

     

.     (6) 

The volume flow rate being initial condition is utilized to obtain axial pressure gradient 

(
p

z




) from [27, 28]. 

Substituting Eq. 6 in Volume flow rate, 
0

2
zh

Q rwdr  , (
p

z




) is evaluated as: 

 
2

3 4
4 3 3 2 2 22

4 4
2 3 8

z z
z z

z

uh hp u
u ln u h u h

z h u

   
       

   
. 

Substituting the axial pressure gradient (
p

z




) in Eq. 6 it becomes: 

 

 

2
2 2

2 2

2
3 4

4 3 3 2 2 2

2
2 2

2 2

2
4 4

2 3 8

z
z

z

z z
z z

z

h r r u
Q u h r u ln

h u
w

uh hu
u ln u h u h

h u

     
        

      
   
        

    

   (7) 

Resistance impedence [27, 28]:  

1 2 1

0 1

s s s

s s

p p p p
dz dz dz

Q z z z

 



        
            

       
    ,    (8) 

where 

2 1

0

s
p

p dz
z


 

   
 

 . 

Wall shear stress [27, 28]:   

2 |rz z

w w u
r h

r r r

    
      

    
. 

Then, using Equation (7) in above relation wall shear stress can be expresses as: 
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2
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8 3 2 2

z
rz

z z z z
z z

Qh

h uh u h u h
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u

 
     

         
   

. (9) 

The effect of viscosity, flow rate, degree of stenosis and type of tapered artery on velocity, 

resistance impedence and wall shear stress are studied by using Equations 7, 8 and 9 

respectively.  

NUMERICAL RESULTS AND DISCUSSION 

The computer codes are written in MATLAB to compute the velocity, resistance impedence 

and wall shear stress to study its variation with respect to different parameters such as ratio of 

cross viscosity to viscosity, flow rate, amount of stenosis for three different types of artery 

namely non-tapered, convergent and divergent.  

From Eq. 1, it is seen that the radius of artery at any axial length depends on height of 

stenosis, taper angle of artery and shape factor. A MATLAB code for Eq. 1 is written to 
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calculate the radius of artery and the longitudinal sectional view of stenotic artery for different 

shape parameter, taper angle of artery and height of stenosis are shown in Fig. 1, Fig. 3, Fig. 5 

and Fig. 7 respectively. Few wireframe views in Fig. 3, Fig. 5, Fig. 7 and Fig. 9 are developed 

in CAD-CAE software by revolving the longitudinal sectional surface obtained from Eq. 1 for 

different shape parameter, taper angle of artery and height of stenosis. In CAD software, a 

surface is drawn corresponding to the longitudinal cross section and the by the surface 

revolution menu the surface is rotated to obtain a 3 D view of the stenotic artery. The wireframe 

view exhibits a clear view of the stenotic artery for different shape parameter, taper angle of 

artery and height of stenosis. 

Fig. 2 and Fig. 3 show the effect of shape parameter for non-tapered artery considering 

0.25   that implies the artery is 25 % clogged. For shape parameter  2n  , the stenosis is 

symmetric and location of maximum constriction is at middle of stenotic length. It is observed 

that as the value of shape parameter  n increases, the location of maximum constriction shift 

towards right. 

 

 

Fig. 2. Shape of stenosis at different shape parameter (n) for non-tapered artery, δ = 0.25, s = 1. 

 

 

   
Shape factor: n = 2 Shape factor: n = 5 Shape factor: n = 9 

Fig. 3. Wireframe view of shape of stenosis at different shape parameter (n) for non-tapered artery, δ = 0.25, 

s = 1. 
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Fig. 4. Shape of stenosis at different shape parameter (n) for divergent artery, δ = 0.25, s = 1, θ = 250. 
 

 

   
Shape factor: n = 2 Shape factor: n = 5 Shape factor: n = 9 

Fig. 5. Wireframe view of shape of stenosis at different shape parameter (n) for divergent artery, δ = 0.25, 

s = 1, θ = 250. 
 

The effect of tapered artery is shown from Fig. 4 to Fig. 7. The divergent artery shown in 

Fig. 4 and Fig. 5 expands rightward by a positive taper angle. As the length of artery increases 

the cross section of artery also gradually increases. The effect of shape parameter on divergent 

artery is seen on Fig. 5.  

The convergent artery in Fig. 6 and Fig. 7 show gradual reduction in cross sectional area of 

artery along axial length by a negative taper angle and eventually, the longitudinal symmetry is 

lost. It is observed that the tapering of artery and shape parameter alter the longitudinal 

symmetry of artery under stenotic length.  

The effect of tapered artery at a particular shape parameter (n = 2) has been plotted in Fig. 8 

and Fig. 9. It exhibits that maximum constriction and its location is effected by variation in 

taper angle.  

The location of maximum constriction has been determined at different shape parameter for 

 015    convergent, non-tapered and  015    divergent artery and is plotted in Fig. 10. 

From Fig. 10, it may be concluded that both shape factor and taper angle of artery influences 
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shape factor and taper angle of artery is expected to affect the velocity of flow of Reiner – Rivlin 

flow of blood in stenotic artery.  

 

 

Fig. 6. Shape of stenosis at different shape parameter (n) for convergent artery, δ = 0.25, s = 1, θ = –250. 
 

 

 

Fig. 7. Wireframe view of shape of stenosis at different shape parameter (n) for convergent artery, δ = 0.25, 

s = 1, θ = –250. 
 

 

 

Fig. 8. Shape of tapered artery with symmetric stenosis, n =2, δ = 0.25, s = 1. 
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Non-tapered artery (θ = 00) Divergent artery (θ = 250) Convergent artery (θ = 250)  

Fig. 9. Wireframe view of shape of stenosis for non-tapered, divergent and convergent artery, n =2, 

δ = 0.25, s = 1. 

 

 

 
Fig. 10. Effect of shape factor and taper angle on location of maximum stenotic constriction along axial 

length of artery, δ = 0.25, s = 1. 

 

 

 
Fig. 11. Variation of axial velocity with respect to radial distance in non-tapered artery at different radial 

velocity u, n =2, δ = 0.25, s = 1, z = 1.1, Q = 0.3 and β = 0.1. 
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The axial velocity component can be computed from Equation 7 by considering suitable 

values of radial velocity  u , volume flow rate  Q , non-dimensional ratio of cross viscosity 

to viscosity   , non-dimensional radius of artery  zh . First few graph are plotted to study the 

effect of variation of these parameters on axial component of velocity. The effect of radial 

velocity on axial velocity profile of non-tapered artery has been shown in Fig. 11.  

It is observed that change in radial velocity has a little effect on axial velocity profile. The 

variation in  u  does not affect the axial velocity profile along arterial wall. Therefore, the value 

of  u  is kept fixed at 0.01 for further study of the effect of other parameters on axial velocity 

profile.  

 

 

Fig. 12. Variation of axial velocity profile with respect to radial distance in non-tapered artery at different 

volumetric flow rate Q, n =2, δ = 0.4, s = 1, z = 1.3, u = 0.01 and β = 0.1. 

 

The axial velocity profile with respect to radial distance at different volumetric flow rate 

has been plotted in Fig. 12. It is observed that higher flow rate provides larger axial velocity 

profile across the cross section of artery.  

 

 
Fig. 13. Effect of volumetric flow rate  Q  on axial velocity profile in non-tapered artery, n =2, δ = 0.4, 

s = 1, z = 0.3, u = 0.01 and β = 0.1. 
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Fig. 14. Variation of axial velocity profile with respect to radial distance for non-tapered, divergent and 

convergent artery, n =2, δ = 0.4, s = 0, z = 0.5, Q = 0.3, u = 0.01 and β = 0.3.  

 

 

Fig. 15. Variation of axial velocity for non-tapered, divergent and convergent artery with respect to height 

of stenosis δ, s = 0, r = 0, z = 0.5, Q = 0.3, u = 0.01, β = 0.3, n = 2. 

 

 
Fig. 16. Variation of axial velocity for non-tapered, divergent and convergent artery with respect to ratio 

of cross-viscosity to viscosity β, n = 2, s = 0, r = 0, z = 0.5, Q = 0.3, u = 0.01, and δ = 0.4. 
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Fig. 17. Variation of resistance impedence with respect to height of stenosis for non-tapered artery, n = 2, 

s = 1, L = 2s + 1, Q = 0.3, u = 0.01 and β = 0.3.  

 

 

Fig. 18. Variation of total resistance impedence with respect to height of stenosis for non-tapered, divergent 

and convergent artery, n = 2, s = 1, L = 2s + 1, Q = 0.3, u = 0.01 and β = 0.3.  

 

 

Fig. 19. Variation of total resistance impedence for non-tapered, divergent and convergent artery with 

respect to ratio of cross-viscosity to viscosity β, n = 2, s = 0, L = 2s + 1, Q = 0.3, u = 0.01 and δ = 0.5.  
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Fig. 20. Variation of wall shear stress with respect to axial length in non-tapered, divergent and convergent 

artery, n = 2, s = 0, δ = 0.4, Q = 0.3, u = 0.1 and β = 0.1.  

 

 

Fig. 21. Variation of maximum wall shear stress at throat of stenosis with respect to height of stenosis for 

non-tapered, divergent and convergent artery, n = 2, s = 0, δ = 0.4, Q = 0.3, u = 0.1 and β = 0.3.  

 

 
Fig. 22. Variation of maximum wall shear stress at throat of stenosis with respect to ratio of cross-viscosity 

to viscosity for non-tapered, divergent and convergent artery, n = 2, s = 0, Q = 0.3, u = 0.1 and δ = 0.4.  
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Fig. 23. Variation of wall shear stress with respect to axial length for different shape factor in non-tapered 

artery, s = 0, δ = 0.4, Q = 0.3, u = 0.1 and β = 0.3. 

 

In Fig. 13, the variation of axial velocity with respect to volumetric flow rate has been 

plotted. With the increase in volumetric flow rate, axial velocity increases linearly. But, the rate 

of increase of axial velocity shows a decreasing trend as it moves away from axis. Considering 

the linear relationship with respect to volumetric flow rate, the value of volumetric velocity is 

kept fixed at 0.3 for further study.  

Fig. 14 shows the axial velocity profile across cross section of artery for non-tapered, 

divergent and convergent artery. The trend shows similarity to the earlier reported trend 

[27, 28].  
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tapered artery. But, gradually the profile of wall shear stress with respect to axial length starts 

differentiating. The difference is maximum at the throat of the stenosis, where the cross section 

of artery is minimum. Further, it is determined that for a divergent artery, the magnitude of 

stress evolved is higher than in the order of non-tapered and convergent artery. The effect of 

height of stenosis on maximum wall shear stress at the throat of the stenosis is computed and 

plotted in Fig. 21. It is inferred that the height of stenosis significantly affects the evolution of 

peak wall shear stress. Therefore, greater the degree of constriction higher is the magnitude of 

difference in peak wall shear stress in comparison to wall shear stress at the approach. The 

effect of cross viscosity on wall shear stress is shown in Fig. 22, where in it observed that higher 

the cross viscous value relative to viscous term relatively more wall shear stress is generated at 

the throat of the stenosis. However, the effect is found to be linear with a marginal slope and 

similar trend is found in tapered and non-tapered artery. In Fig. 23, the effect of shape factor 

 n  on wall shear stress is plotted. From Fig. 23, it is observed that during upstream the rate of 

decrease of wall shear stress decreases with increase in shape factor  n . But in the downstream 

of the throat, the rate of increase of wall shear stress significantly increase with the increase in 

shape factor  n . Similar conclusions are reported by Mekheimer and Kot [27], Akbar et al. 

[28] and Srivastava [31]. 

CONCLUSION 

A mathematical model for axisymmetric blood flow through an axially non-symmetric but 

radially symmetric mild stenosis in a tapered artery is worked out. Blood flow is considered to 

obey Reiner – Rivlin fluid having an additional cross viscosity parameter. The exact 

expressions for the axial velocity, volume flow rate, resistance impedance, wall shear stress 

distribution in the stenotic region and its magnitude at the stenosis throat are derived by solving 

continuity and momentum equations. The nature of variation with respect to different 

parameters are studied by plotting graphs of the results. The main findings can be summarized 

as follows: 

i. Tapered artery of a particular taper angle and shape factor individually and jointly 

defines the location of throat of stenotic constriction and the height of stenosis. Both in turn, 

influence the fluid flow pattern. 

ii. The flow pattern is significantly dependent on volumetric flow rate and value of cross 

viscosity relative to viscosity and is non-linearly related to height of stenosis. 

iii. Impedence increases with the increase in the value of cross viscosity relative to 

viscosity. 

iv. For a divergent artery, the magnitude of wall shear stress evolved is higher than in the 

order of non-tapered and convergent artery. 

v. Height of stenosis significantly affects the evolution of peak wall shear stress. 

vi. Higher the cross viscous value relative to viscous term relatively more wall shear stress 

is generated at the throat of the stenosis. 

vii. Shape factor and taper angle significantly affect the rate of decrease and increase of wall 

shear stress in upstream and downstream respectively.  

NOMENCLATURE 

u   : Non-dimensional Radial Component of velocity of flow  

u  : Radial Component of velocity of flow [ms-1] 

0u  : Averaged velocity on cross section of artery [ms-1] 

w  : Non-dimensional Axial Component of velocity of flow  

w  : Axial Component of velocity of flow [ms-1] 

p   : Non-dimensional Pressure 
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p  : Arterial Pressure [Nm-2] 

   : Ratio of cross-viscosity to viscosity 

Re  : Reynold number 

a  : Length of artery before the commencement of stenosis [m] 

b  : Length of artery in stenotic region [m] 
L  : Total length of artery [m] 

  : Maximum height of stenosis [m] 

zd
 : Radius of the tapered arterial segment 

0d
 : Radius of non-tapered artery in non-stenotic region [m] 

  : Tapered angle of artery, [rad] 
  : Density of blood [kg m-3] 

t : Non-dimensional time 

r : Non-dimensional radial distance 

z : Non-dimensional axial distance 

  : Non-dimensional angular distance 
  : Coefficient of Newtonian viscosity [kg m-1s-1] 

c  : Coefficient of Cross Viscosity [ms-1]. 
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