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Abstract. The aim is to explore a COVID-19 SEIR model involving

Atangana-Baleanu Caputo type (ABC) fractional derivatives. Existence,

uniqueness, positivity, and boundedness of the solutions for the alternative

model are established. Some stability results of the proposed system are also

presented. Numerical simulations results obtained in this paper, according to the

real data, show that the model is more suitable for the disease evolution.
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INTRODUCTION

The world is currently experiencing an epidemic of infectious disease called COVID-19 [5],

resulting from a new virus belonging to the coronavirus family: SARS-CoV-2. Coronaviruses

are a family of various viruses that can infect both humans and animals. Human coronaviruses

mainly cause respiratory infections, ranging from mild colds to severe lung disease. They can

also be accompanied by digestive disorders such as gastroenteritis. To contain this pandemic

which is probably only in its infancy, and avoid a collapse of the health systems, governments

must adopt immediate and effective measures in a context of major uncertainty.

The COVID-19 pandemic is drawing attention more than ever to quantitative mathematical

modeling. Policymakers and the general public are turning to science, andmodeling in particular

to gain insight into the complex dynamics of the epidemic, from a local and global perspective,

as well as to predict the consequences of possible interventions on the number of cases,

hospitalizations and deaths.

Mathematical modeling in epidemiology began in 1760, with Bernoulli’s work to assess the

effectiveness of vaccination against smallpox. For COVID-19 pandemic, epidemiologists are

developing, testing and adjusting models to simulate the spread of this infectious disease; it’s

about better understanding it and optimizing interventions to control it.

Current models of COVID-19 are generally derived from classic approach for epidemic

modeling developed in 1927 by Kermack and McKendrik [25]. The approach divide the

population into 3 classes, the number of which changes as a function of time:
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• S individuals: they are the non-carriers of the virus, therefore susceptible to being infected.

• I individuals: they are the infected individuals, whatever the degree of severity of the

disease (asymptomatic, symptomatic carriers, etc.).

• R individuals: these are the individuals who have been infected and are recovered. They

are therefore immune, for a period of several months, it is believed, for COVID-19.

For COVID-19 disease, it would be suitable to add a population of exposed individuals (E)
to the model. Adding more compartments allows for a refined description of specific epidemics

with assumptions on transfer from one class to another, see for example [15, 14, 30].

Vaccinating the population would be an ideal solution against COVID-19. In the absence of

an available vaccine, confinement (combined with other social distancing measures) will limit

the proportion of susceptible people who become infectious. Simulation models are therefore a

crucial tool in the fight against COVID-19, helping to understand the enormous efforts required

to fight the coronavirus, slow the spread of the epidemic and, thus, save lives.

The usual integer-order models do not enjoy subsequent memory effects occurring in

many biological models. The hereditary, as essential property of many biological processes,

is introduced through the ABC operator. Fractional operators have received increasing interest

by several directions in the modeling of biological process. Let us brefly review one of the

recent papers, in [34] for exemple, the authors proposed and studied the dynamics behavior of

COVID-19, that was by analysed an SEIHDR model based on ABC operator, they showed the

transmission dynamics of COVID-19 after they analysed the existence results, see [1, 2, 13, 12,

11, 21, 8, 7, 6, 18, 19, 20, 16, 10, 9, 23, 24, 29, 31, 32, 33] and the references therein.

In the present work, due the great importance ofABC fractional derivativewe aim to promote

its application to a SEIR epidemic model for COVID-19 and prove existence and uniqueness of

bounded and positive solution by using the fixed point theory. After that, fractional derivative

effect on epidemic trend is showed through some numerical simulations.

The paper is organized as follows. We first formulated the mathematical model for

COVID-19 transmission with ABC fractional derivatives. Existence, uniqueness, positivity and

boundedness of solutions are then proved. Some stability results of the proposed system are

presented and the epidemic trend is discussed by using real data and numerical experiments.

Finally, a conclusion is drawn in the last section.

FRACTIONALMODEL

Before presenting the fractional model, we first recall some definitions and properties that

are needed in the next sections.

De f i n i t i o n 1. [7] Let f ∈ H1(a, b), a < b and ζ ∈ [0, 1]. The definition of the

Atangana-Baleanu derivative in Caputo sense of order ζ of f is

ABC
a Dζ

t (f(t)) =
B(ζ)

1− ζ

∫ t

a

f ′(x)Eζ

(
−ζ

(t− x)ζ

1− ζ

)
dx (1)

where Eζ(·) is the Mittag-Leffler function while B(ζ) is a normalization function satisfying

B(0) = B(1) = 1.

De f i n i t i o n 2. [7] The associated fractional integral is given as

ABC
a Iζt (f(t)) =

1− ζ

B(ζ)
f(t) +

ζ

B(ζ)Γ(ζ)

∫ t

a

f(ν)(t− ν)ζ−1dν. (2)

We focus on a SEIR system to depict the prevalent characteristics of COVID-19. We
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introduce the ABC fractional time derivative and the model equations read

ABC
0D

ζ
t (S(t)) = Λ− β1IS − β2ES − µS,

ABC
0D

ζ
t (E(t)) = β1IS + β2ES − (γ1 + µ)E,

ABC
0D

ζ
t (I(t)) = γ1E − (γ2 + µ)I,

ABC
0D

ζ
t (R(t)) = γ2I − µR.

(3)

The system (3) is completed with the initial conditions

S(0) = S0, E(0) = E0, I(0) = I0, R(0) = R0.

The SEIR model (3) divides the population in total into four separate compartments. S(t)
stands for susceptible population at time t; the number of asymptomatic infectious individuals
is denoted by E(t); the number of symptomatic and infectious population is shown by I(t); the
number of infected population quarantined and expecting recovery is described by R(t). We

assume S(t) +E(t) + I(t) +R(t) = N(t), where Λ is the recruitment rate and µ is the natural

rate of death, β1 represents the transmission rate of S to E (S contacted by I), γ1 accounts for

transmission rate ofE to I , whileγ2 denotes the transmission rate of I toR.As COVID-19 is also
infectious in the incubation period, a coefficient β2 is involved to parameterize the transmission

rate of S to E (E contacted S). We assume that all parameters are positive. The flow chart is

shown in figure 1 in which the boxes represent the different compartments and the arrows the

transition between compartments.

Fig. 1. Flow SEIR model diagram.

EXISTENCE, UNIQUENESS, POSITIVITYAND BOUNDEDNESS

The fractional order system (3) is complex, non-local and there is no analytical method to

solve it. To prove existence of solutions, we make use of a fixed point approach. The system is

reformulated as follows: 

ABC
0D

ζ
t (S(t)) = H1(t, S),

ABC
0D

ζ
t (E(t)) = H2(t, E),

ABC
0D

ζ
t (I(t)) = H3(t, I),

ABC
0D

ζ
t (R(t)) = H4(t, R).

(4)

Let E(N) be a Banach space of real continuous functions on N . We consider A = E(N) ×
E(N) × E(N) × E(N) equipped with the norm ‖S‖ + ‖E‖ + ‖I‖ + ‖R‖ , where ‖W‖ =
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sup {|W (t)| , t ∈ N} ,W = S,E, I, R.
The ABC fractional order integral allows to convert the system (4) into a Volterra-type

integral equation as follows

S(t)− S(0) = 1−ζ
B(ζ)

H1(t, S) +
ζ

B(ζ)Γ(ζ)

∫ t

0
(t− ν)ζ−1H1(ν, S)dν

E(t)− E(0) = 1−ζ
B(ζ)

H2(t, E) + ζ
B(ζ)Γ(ζ)

∫ t

0
(t− ν)ζ−1H2(ν, E)dν,

I(t)− I(0) = 1−ζ
B(ζ)

H3(t, I) +
ζ

B(ζ)Γ(ζ)

∫ t

0
(t− ν)ζ−1H3(ν, I)dν,

R(t)−R(0) = 1−ζ
B(ζ)

H4(t, R) + ζ
B(ζ)Γ(ζ)

∫ t

0
(t− ν)ζ−1H4(ν, R)dν.

(5)

For the positivity and boundedness of the solutions, we have :

P r o p o s i t i o n 1. The solution of system (3) is non-negative and bounded for all t ≥ 0,
provided that initial conditions are non-negative.

P r o o f. We have

ABC
0D

ζ
tS|S=0 = Λ ≥ 0,

ABC
0D

ζ
tE|E=0 = β1IS ≥ 0,

ABC
0D

ζ
tI|I=0 = γ1E ≥ 0,

ABC
0D

ζ
tR|R=0 = γ2I ≥ 0.

Therefore, all solutions initiated in R4
+ are positive.

For the boundedness, we have

N(t) = S(t) + E(t) + I(t) +R(t),

and

ABC
0 Dζ

tN(t) = Λ− µN(t).

So, we deduce that

N(t) = N(0)Eζ(−µtζ) +
Λ

µ
(1− Eζ(−µtζ)). (6)

Since 0 < Eζ(−µtζ) ≤ 1 and 1− Eζ(−µtζ) ≤ 1, we obtain N(t) ≤ N(0) +
Λ

µ
. This achieves

the proof .

Th e o r em 1. Assume that

0 ≤ (β1 + β2)c+ µ < 1, (7)

then the kernelH1 satisfies the Lipschitz condition and contraction.

P r o o f. For two functions S1 and S2, one has

‖H1(t, S2)−H1(t, S1)‖ = ‖−β1IS2 − β2IS2 − µS2 + β1IS1 + β1IS1 − µS1‖

≤ ‖β1I + β2E + µ‖ ‖S2(t)− S1(t)‖ ≤ δ1 ‖S2(t)− S1(t)‖ .
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where δ1 = (β1 + β2)c + µ, c = max(b, c′) and ‖E‖ ≤ b, ‖I‖ ≤ c′. We conclude that the

Lipschitz condition is satisfied forH1.

Moreover, if 0 ≤ (β1 + β2)c+ µ < 1, then there follows a contraction.
The remaining kernels can be easily handled to get

‖H2(t, E2)−H2(t, E1)‖ ≤ δ2 ‖E2(t)− E1(t)‖ . (8)

‖H3(t, I2)−H3(t, I1)‖ ≤ δ3 ‖I2(t)− I1(t)‖ . (9)

‖H4(t, R2)−H4(t, R1)‖ ≤ δ4 ‖R2(t)−R1(t)‖ . (10)

The same procedure discussed for example in [26] can be applied to get existence and

uniqueness for the fractional model (3). In particular, we have

Th e o r em 2. Assume that

1− ζ

B(ζ)
δi +

tζmax

B(ζ)Γ(ζ)
δi < 1, i = 1, 2, 3, 4. (11)

for some tζmax, then the fractional model (3) admits a unique solution.

STABILITY RESULTS

We can see that the closed set

Γ = {(S,E, I, R) ∈ R4
+ : S + E + I +R ≤ Λ

µ
}

is a positively invariant set for the system (3). In fact, from (6), we can conclude thatN(t) ≤ Λ

µ
as t −→ ∞. Hence, for any initial condition in Γ, the solution of fractional model (3) does
not leave Γ for all t ≥ 0 and the system is well posed for mathematical and epidemiological

considerations in Γ. In this section, we shall prove some stability result for the model (3) with
integer-order derivative, namely

Ṡ(t) = Λ− β1IS − β2ES − µS,

Ė(t) = β1IS + β2ES − (γ1 + µ)E,

İ(t) = γ1E − (γ2 + µ)I,

Ṙ(t) = γ2I − µR.

(12)

Let us first calculate the basic reproduction numberR0 and the endemic equilibrium.

1. Equilibria and basic reproduction number

The disease-free equilibrium is obtained by letting I = 0 in (12), we have the disease-free
equilibrium state

X0 = (S̃0, 0, 0, 0) =
(Λ
µ
, 0, 0, 0

)
.
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The infectious part of the system (12) is
Ė(t) = β1IS + β2ES − (γ1 + µ)E,

İ(t) = γ1E − (γ2 + µ)I.
(13)

By linearized sytem at the point X0, we have the following corresponding matrix :

A =

β2S̃0 − γ1 − µ β1S̃0

γ1 −γ2 − µ

 .

The matrix A can be rewritten as A = V − S where

V =

β2 β1

0 0

 , S =

γ1 + µ 0

−γ1 γ2 + µ

 .

The next generation matrix [4] is :

VS−1 =


β2S̃0(γ2 + µ) + γ1β1S̃0

(γ1 + µ)(γ2 + µ)

β1S̃0

γ2 + µ
γ1

γ1 + µ
0

 .

So, the basic reproduction number is

R0 =
β2(γ2 + µ) + γ1β1

(γ1 + µ)(γ2 + µ)
S̃0.

In the next, we prove that model (12) has a unique endemic equilibrium.

Lemma 1. IfR0 > 1, then the system (12) admits a unique endemic equilibriumX∗, and

no endemic ifR0 ≤ 1.

P r o o f. In order to determine the endemic equilibrium, we set the right-hand side of (12)
to zero. We find that

Λ− β1I(t)S(t)− β2E(t)S(t)− µS(t) = 0, (14)

β1I(t)S(t) + β2E(t)S(t)− (γ1 + µ)E(t) = 0, (15)

γ1E(t)− (γ2 + µ)I(t) = 0, (16)

γ2I(t)− µR(t) = 0. (17)

By adding (14) and (15), we get

E(t) =
1

(γ1 + µ)
(Λ− µS(t)). (18)

From (16) we obtain

I(t) =
γ1

γ2 + µ
E(t). (19)
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while from (17) it follows that

R(t) =
γ2

µ
I(t). (20)

Using (19) in (15) one gets

E(t)

[
S(t)

( β1γ1

γ2 + µ
+ β2

)
− (γ1 + µ)

]
= 0.

That is, or E(t) = 0 or S(t) =
(γ1 + µ)(γ2 + µ)

β1γ1 + β2(γ2 + µ)
. If E(t) = 0, then from (18) we obtain

S(t) =
Λ

µ
, while from (19) I(t) = 0, which implies by (20) R(t) = 0. So the endemic

equilibrium state X∗ = (S∗, E∗, I∗, R∗) with

S∗ =
(γ1 + µ)(γ2 + µ)

β1γ1 + β2(γ2 + µ)
=

S̃0

R0

,

E∗ =
1

(γ1 + µ)
(Λ− µS∗) =

Λ

R0(γ1 + µ)
(R0 − 1) > 0,

I∗ =
γ1

γ2 + µ
E∗,

R∗ =
γ2

µ
I∗.

(21)

2. Stability

For local stability of the disease-free equilibrium state, we have

Th e o r em 3. If R0 < 1, then the disease-free equilibrium state X0 of system (12) is
locally asymptotically stable.

P r o o f. We evaluate the Jacobian matrix of system (12) at X0 to get

J(X0) =



−µ −β2S̃0 −β1S̃0 0

0 β2S̃0 − (γ1 + µ) β1S̃0 0

0 γ1 −(γ2 + µ) 0

0 0 γ2 −µ


,

and the characteristic polynomial reads

P (X) = (X + µ)
(
X2 + (γ1 + γ2 + 2µ− β2S̃0)X + (γ1 + µ− β2S̃0)(γ2 + µ)− β1γ1S̃0

)
= (X + µ)

(
X2 + (γ1 + γ2 + 2µ− β2S̃0)X + (γ1 + µ)(γ2 + µ)(1−R0

)
. (22)
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Polynomial (22) has a real roots which are

X1 = −µ < 0,

X2 +X3 = −
(
γ1 + γ2 + 2µ− β2S̃0

)
< 0,

X2X3 = (γ1 + µ)(γ2 + µ)(1−R0) > 0.

So X2 < 0 and X3 < 0. Therefore, by applying the Routh-Hurwitz’s criterion, the disease-free
equilibrium X0 is locally asymptotically stable. For the global stability of the disease free

equilibrium state, we have

Th e o r em 4. The disease-free equilibrium state is globally asymptotically stable if

R0 < 1.

P r o o f. We define the following Lyapunov function V by

V (S,E, I) =
1

µ+ γ2

[β2(µ+ γ2) + β1γ1

µ+ γ1

E + β1I
]
.

We have

V̇ =
1

µ+ γ2

[β2(µ+ γ2) + β1γ1

µ+ γ1

Ė + β1İ
]

=
1

µ+ γ2

[β2(µ+ γ2) + β1γ1

µ+ γ1

(
β1SI + β2SE − (γ1 + µ)E

)
+ β1

(
γ1E − (γ2 + µ)I

)]
=

R0

S̃0

(
β1SI + β2SE − (γ1 + µ)E

)
+

β1γ1

µ+ γ2

E − β1I

=
R0

S̃0

β1SI +
R0

S̃0

β2SE − R0

S̃0

(γ1 + µ)E +
β1γ1

µ+ γ2

E − β1I

= β1I
(R0

S̃0

S − 1
)
+
(R0

S̃0

β2S − R0

S̃0

(γ1 + µ) +
β1γ1

µ+ γ2

)
E

Then

V̇ = β1I
(R0

S̃0

S − 1
)
+
(R0

S̃0

β2S − β2(µ+ γ2) + β1γ1

(µ+ γ1)(µ+ γ2)
(γ1 + µ) +

β1γ1

µ+ γ2

)
E

= β1I
(R0

S̃0

S − 1
)
+
(R0

S̃0

β2S − β2

)
E

=
(
β1I + β2E

)(R0

S̃0

S − 1
)

≤
(
β1I + β2E

)( S

S̃0

− 1
)
≤ 0.

Hence V̇ ≤ 0, if R0 < 1. We deduce that the disease-free equilibrium state is globally
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asymptotically stable.

Th e o r em 5. The unique endemic equilibrium is globally asymptotically stable ifR0 > 1.

P r o o f. We consider the Lyapunov function L = L(S,E, I) for S,E, I > 0, such that

L =

∫ S

S∗

x− S∗

x
dx+

∫ E

E∗

x− E∗

x
dx+

∫ I

I∗

x− I∗
x

dx.

Clearly L = L(S,E, I) ≥ 0, for S,E, I > 0. By using the endemic equilibrium state X∗ =
(S∗, E∗, I∗, R∗), we have

L̇ =
S − S∗

S
Ṡ(t) +

E − E∗

E
Ė(t) +

I − I∗
I

İ(t)

=
S − S∗

S

(
β1I∗S∗

(
1− SI

S∗I∗

)
+ β2E∗S∗

(
1− ES

E∗S∗

)
+ µS∗

(
1− S

S∗

))
+

E − E∗

E

(
β1I∗S∗

( SI

S∗I∗
− E

E∗

)
+ β2E∗S∗

( ES

E∗S∗
− E

E∗

))
+

I − I∗
I

(
γ1E∗

( E

E∗
− I

I∗

))
= β1I∗S∗

(
2 +

I

I∗
− S

S∗
− E

E∗
− SIE∗

S∗I∗E

)
+
(
β2E∗S∗ + µS∗

)(
2− S∗

S
− S

S∗

)
+ γ1E∗

(
1 +

E

E∗
− I

I∗
− I∗E

IE∗

)
.

Note that we have

2− S

S∗
− S∗

S
≤ 0,

and if

2 +
I

I∗
− S

S∗
− E

E∗
− SIE∗

S∗I∗E
≤ 0

1 +
E

E∗
− I

I∗
− I∗E

IE∗
≤ 0

then, by Lyapunov stability theorem, it ensures that the model is globally asymptotically stable

at X∗ whenR0 > 1.

NUMERICAL SIMULATIONSAND DISCUSSION

Numerical simulations for solving the ABC fractional model (3) are based on formulas (5).

In fact, we use the two points Lagrange interpolation polynomial to approximate the fractional

integral [27]. We first present the method briefly and than apply it to obtain an iterative scheme.

By applying the fundamental theorem of fractional calculus we convert the system (4) into a

Volterra-type integral equation (5).

At t = tn+1 , n = 0, 1, 2..., we have
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S(tn+1)− S(0) =
1− ζ

B(ζ)
H1(tn, S) +

ζ

B(ζ)Γ(ζ)

∫ tn+1

0

(tn+1 − ν)ζ−1H1(ν, S)dν

So

S(tn+1) = S(0) +
1− ζ

B(ζ)
H1(tn, S) +

ζ

B(ζ)Γ(ζ)

n∑
k=0

∫ tk+1

tk

(tn+1 − ν)ζ−1H1(ν, S)dν

=
1− ζ

B(ζ)
H1(tn, S) +

ζ

B(ζ)Γ(ζ)

n∑
k=0

[
H1(tk, S(tk))

h

∫ tk+1

tk

(ν− tk−1)(tn+1 − ν)ζ−1dν

− H1(tk−1, S(tk−1))

h

∫ tk+1

tk

(ν− tk)(tn+1 − ν)ζ−1dν

]
+ S(t0)

= S(t0) +
1− ζ

B(ζ)
H1(tn, S(tn)) +

ζ

B(ζ)
×

n∑
k=0

[
hζH1(tk, S(tk))

Γ(ζ+ 2)
((n+ 1− k)ζ(n− k + 2 + ζ)− (n− k)ζ(n− k + 2 + 2ζ))

− hζH1(tk−1, S(tk−1))

Γ(ζ+ 2)
((n+ 1− k)ζ+1 − (n− k)ζ(n− k + 1 + ζ))

]

In a similar way, we get formulas for E, I and R.
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The numerical algorithm reads

• S(tn+1) = S(t0) +
1− ζ

B(ζ)
H1(tn, S(tn)) +

ζ

B(ζ)
×

n∑
k=0

[
hζH1(tk, S(tk))

Γ(ζ+ 2)
((n+ 1− k)ζ(n− k + 2 + ζ)− (n− k)ζ(n− k + 2 + 2ζ))

−hζH1(tk−1, S(tk−1))

Γ(ζ+ 2)
((n+ 1− k)ζ+1 − (n− k)ζ(n− k + 1 + ζ))

]

• E(tn+1) = E(t0) +
1− ζ

B(ζ)
H2(tn, E(tn)) +

ζ

B(ζ)
×

n∑
k=0

[
hζH2(tk, E(tk))

Γ(ζ+ 2)

(
(n+ 1− k)ζ(n− k + 2 + ζ)− (n− k)ζ(n− k + 2 + 2ζ)

)

−hζH2(tk−1, E(tk−1))

Γ(ζ+ 2)

(
(n+ 1− k)ζ+1 − (n− k)ζ(n− k + 1 + ζ)

)]

• I(tn+1) = I(t0) +
1− ζ

B(ζ)
H3(tn, I(tn)) +

ζ

B(ζ)
×

n∑
k=0

[
hζH3(tk, I(tk))

Γ(ζ+ 2)

(
(n+ 1− k)ζ(n− k + 2 + ζ)− (n− k)ζ(n− k + 2 + 2ζ)

)

−hζH3(tk−1, I(tk−1))

Γ(ζ+ 2)

(
(n+ 1− k)ζ+1 − (n− k)ζ(n− k + 1 + ζ)

)]

• R(tn+1) = R(t0) +
1− ζ

B(ζ)
H4(tn, R(tn)) +

ζ

B(ζ)
×

n∑
k=0

[
hζH4(tk, R(tk))

Γ(ζ+ 2)

(
(n+ 1− k)ζ(n− k + 2 + ζ)− (n− k)ζ(n− k + 2 + 2ζ)

)

−hζH4(tk−1, R(tk−1))

Γ(ζ+ 2)

(
(n+ 1− k)ζ+1 − (n− k)ζ(n− k + 1 + ζ)

)]

for n = 0, 1, . . .
The stability and convergence results for the above scheme can be obtained by using the

algorithm presented in [28].

In order to apply the fractional model (3) to simulate the COVID-19 epidemic in Morocco,

we consider the reported data from March 02, 2020, till June 17, 2020 and we make use of the

data from [22]. Estimation of the parameters β1,β2,γ1 and γ2 can be obtained by [3]

β1 =
R0

TI
,β2 =

R0

TE
,γ1 =

1

TE
,γ2 =

1

TI
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where TI and TE are respectively the infectious and incubation periods. We precise that

incubation period is the time elapsed between exposure and symptoms manifestation. The basic

reproduction number R0 ' 1.01 (May 5th, [22]). The R0 value shows that the quarantine

strategy and ensuing measures have a significant role in the epidemic trend. So, we can estimate

the parameters values and the results are summarized in Table 1.

Table 1. SEIR model parameters

Notation Description of parameter Value

S0 Initial susceptible population 798

E0 Initial exposed population 5

I0 Initial infected population 1

R0 Initial recovered population 0

µ Natural death rate 0.01

Λ Flux of population 20

β1 Transmission rate of S to I (I contacted S) 0.072

β2 Transmission rate of S to E (E contacted S) 0.337

γ1 Transmission rate of E to I 0.333

γ2 Transmission rate of I to R 0.0714

TI Infectious period 14.00

TE Incubation period 3.00

2020-03-01

2020-03-15
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2020-04-15

2020-05-01

2020-05-15
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2020-06-15

Time t (days)
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2000

4000
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m
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e 
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s

Total cases  of the infected individuals 
Total cases  of the recovered individuals

Fig. 2. Cumulative curves of infected and recovered individuals [22].
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The Figure 2 shows the cumulative cases of the infected and recovered individuals in

Morocco from March 2th to June 17th, 2020.

Simulations are carried out up to 120 days and t = 0 represents March 02, 2020. The Figure

3 shows the evolution of different compartments for ζ = 0.98. In Figures 5, 6, 7 and 8, the

behavior of the model components are visualized by varying the fractional order.

We can observe from Figure 4 that, when ζ = 1, the results obtained using the ABC

derivatives are close to the ones in the classical case. However, as ζ smaller than one, the obtained

results are slightly different.

0 20 40 60 80 100 120
Time t (days)

0

200

400

600

800

Co
m

pa
rtm

en
ts

S
E
I
R

Fig. 3. Numerical simulations for system (3) for ζ = 0.98.

0 20 40 60 80 100 120
Time t (days)
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 S (ζ= 0.98)

0 20 40 60 80 100 120
Time t (days)

0

50

100

150
E (classical)
 E (ζ= 0.98)

0 20 40 60 80 100 120
Time t (days)

0

200

400 I (classical)
 I (ζ= 0.98)

0 20 40 60 80 100 120
Time t (days)

0

500

1000

R (classical)
 R (ζ= 0.98)

Fig. 4. The comparison between the solutions obtained by using the function odeint to solve the

differential equations in Python and the numerical solutions obtained by the proposed method with

ζ = 0.98.

Next, we present graphical results of the COVID-19 model (3) along with real data. So to

make a better illustration, we tested various values of the fractional order ζ. Notice that in the

Figures 9 and 10 the solid curves is the model simulations for infected and recovered individuals

in fractional case, while the dotted curves represent the real curves from March 2th to June

17th, 2020. From these figures we illustrate the effect of fractional order ζ on both infected and
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Fig. 5. Evolution of the susceptible compartment for varying fractional order ζ.
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Fig. 6. Evolution of the exposed compartment for varying fractional order ζ.

recovered individuals in case ofMorocco. It is important to note that the dynamics of the infected

individuals can be simulated for ζ ∈ [0.9, 1], while the recovered individuals can be simulated
for ζ < 0.9. These results may be explained by the sudden outbreak of the epidemic, or a

considerable number of infected and asymptomatic infectious individuals were not quarantined

promptly. So we need to apply an optimal control strategy to control the behavior of the system.

The numerical simulations allow to conclude that notable results for the case of Morocco can

be obtained for fractional order ζ < 1.

CONCLUDING REMARKS

In this paper, a fractional SEIR model in theABC fractional derivative sense for COVID-19

modeling is considered. Results on existence, uniqueness, positivity and boundedness of the

solutions, are proved. Some stability results are also obtained. The graphical representations

show that the fractional model provides a suitable solution than that of the integer case, because

it allows to elucidate the correct information of the infection transmission.Models cannot predict

what will happen, but they can rather help to understand what might happen so that we can
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Fig. 7. Evolution of the infected compartment for varying fractional order ζ.
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Fig. 8. Evolution of the recovered compartment for varying fractional order ζ.

predict the worst cases and guide public health actions to achieve the best possible result. The

precision of the model predictions turns entirely on the quantity/quality of epidemiological data

used and on the understanding of the transmission dynamics of the disease. Both elements are

expected to improve and refine over time the model. We believe that the model of this paper

makes an attempt of the disease dynamics, so, we will focus in future on a comprehensible

depiction of COVID-19 inMorocco with a complete data record and under different intervention

strategies.
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Fig. 9. Infected population for different values of ζ with S0 = 798, E0 = 5, I0 = 1, R0 = 0,

µ = 10−2 and Λ = 10.
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Fig. 10. Recovered population with S0 = 798, E0 = 5, I0 = 1, R0 = 0, µ = 10−2 and Λ = 10.
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