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Abstract. In this manuscript, we design a fractional order delay differential equation

model for HIV transmission with the implementation of three distinct therapies

for three different infectious stages. The novelty of the model lies in clubbing

delay and fractional calculus with the introduction of three different therapies for

HIV in a single model. We investigate the positivity of solutions, analyze the

stability properties, followed by Hopf bifurcation analysis. To probe the parameters

that expedite the spread of infection, uncertainty and sensitivity analysis were

performed. The numerical review was carried out to substantiate our theoretical

results. Our proposed model parameters have been calibrated to fit yearly data from

Afghanistan, Australia, France, Italy, Netherlands and New Zealand.
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INTRODUCTION

Acquired immunodeficiency syndrome (AIDS) is the leading infectious cause of adult death

in the world. Many researchers have focused on modeling HIV, in order to understand its

dynamics, as it is the best way to design medicine for HIV. An important advantage of using

compartmental models is that the mathematical representation of biological processes allows for

clarity and precision with respect to epidemiological hypotheses and aid to decision making [1].

It is well understood from the outset that the infectious disease is modeled using compartments

in which it is presumed that the population has the same character in each compartment. From

this it is possible to observe how the population passes through each compartment and why it

passes using one compartment to another.As the infected individual progresses through different

phases of infection before developing AIDS in a full swing, we frame the HIV phases into

compartments and sketch out the characteristics of each phase, as shown in Fig. 1. Even though

the progression of HIV infection is represented in stages, it is inevitable for a person to go

from stage 1 (initial acute phase) to stage 3 (symptomatic phase). Several therapies are available

which can prevent a patient from obtaining AIDS and alleviate the symptoms of HIV infection.

For normal individuals, the CD4+T cell count level is 800 to 1200mm3, and for HIV individuals,

200 or less. HIV infection is almost invariably lethal within 5 to 10 years without drug treatment.

People treated with HIV will live longer without the symptoms associated with HIV. Currently,

79 percentage of people with HIV are believed to know their status.Antiretrovial therapy (ART)

was offered worldwide to 23.3 million people living with HIV in 2018. New HIV infections

started falling by 37 percentage between 2000 and 2018, and HIV-related deaths fell by 45

percentage withART rescuing 13.6 million lives. This achievement was the result of great efforts

by national HIV programmes supported by civil society and international development partners

[1].

Mathematical models have been applied to the characterizing of infectious diseases in the last
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few decades and HIV epidemiologies occupy a major portion of research in the arena. In 2009,

Cai et al. [2] have introduced a simple model of HIV with two stages, namely asymptomatic,

symptomatic stages with treatment. This work was followed by Hernandez-Vargas and

Middleton [3], who provided a HIV model with three stages. Followed by this, in the year of

2013, Sharma and Samanta [4] have compared a deterministic and delay model of HIV with its

phases. Currently, in 2017, Simpson and Gumel [5] have designed a HIVmodel that incorporates

pre-exposure prophylaxis (PrEP). Recently, in 2020, Akrami and Atabaigi [6] have analyzed

about Hopf and forward bifurcation of an integer and fractional-order SIR epidemic model,

followed by this in the same yearWu et al. [7] have studied about the complex behavior analysis

of a fractional-order land dynamical model with holling-II type land reclamation rate on time

delay. In 2020, Shaikh et al. [8] have designed a fractional order covid-19 model. Numerous

models where discussed in the literature in different dimensions, which have been tabulated in

the Table 1.

Table 1. Literature survey

S. No. Types of HIVModels References

1. Models with treatment [2, 5]

2. Models with HIV stages [4, 3]

3. Age structured models [9, 10]

4. Co-infection models [11, 12]

5. Models with delay [13, 14, 15, 16, 17]

6. Fractional order models [24, 25, 18, 19, 20, 21, 22]

7. Fractional order delay models [34, 35, 36]

Motivated by the above literature, we formulate a five compartmental HIV epidemic model

with three different types of treatment namely AntiRetroviral therapy (ART), Protease Inhibitor

(PI) and Reverse Transcriptase Inhibitor (RTI) which add up a novelty to our study. To derive

our model equations, we divide the total high-risk human population (denoted byN(t)) into five
different classes, namely, susceptible to the disease, S(t), infective population in acute phase,

I(t), infective population in asymptomatic phase, K(t), infective population in symptomatic

phase,H(t) and full-blownAIDS groupA(t) at time t. The natural death rate µ is assumed to be
same for all compartments. The complete dynamics of system (1) is represented by a flow chart

in Fig. 1. The description of parameters used in system (1) is provided in Table 2. The proposed

model takes the following form as follows:
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Fig. 1. Flowchart diagram for model (1)

.

dS(t)

dt
=ϕ− β1I(t)S(t)− β2K(t)S(t)− β3H(t)S(t)− µS(t),

dI(t)

dt
=β1I(t)S(t) + β2K(t)S(t) + β3H(t)S(t)− (1− ρ1)σ1I(t)− µI(t),

dK(t)

dt
=(1− ρ1)σ1I(t)− (1− ρ2)σ2K(t)− µK(t),

dH(t)

dt
=(1− ρ2)σ2K(t)− (1− ρ3)σ3H(t)− µH(t),

dA(t)

dt
=(1− ρ3)σ3H(t)− (d+ µ)A(t).

(1)

Fractional calculus has been 300 years old history, the development of fractional calculus

theory is mainly focused on the pure mathematical field. The earliest more or less systematic

studies seem to have been made in the 19th century by Liouville, Riemann, Leibniz, etc. Most

differential systems used to describe physical phenomena are integer-order systems. With the

development of fractional calculus, it has been found that the behavior of many systems can

be described by using the fractional differential systems. It is worth mentioning that many

physical phenomena having memory and genetic characteristics can be described by using the

fractional differential systems. In fact, real world processes generally ormost likely are fractional

order systems. In recent years, the fractional dynamics have attracted the attention of many

researchers due to their wide application in different fields, such asmedicine, finance, hydrology,

system biology and so on. Medicine and biology include rich sources for mathematical ideas.

Mathematical modeling of diseases in biological studies is one of the most important application

fields of fractional derivatives [18, 19, 20, 21, 22].
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In human societies, the process of evolution and control of the epidemic is associated with

memory. The experience or knowledge of people about the spread of a disease in the past should

affects their response. If people are aware of the past of a particular disease in their environment,

they may use different precautionary measures, such as vaccinations. On the other hand, the

fractional derivatives play an important role in describing the effects of memory in dynamic

systems. As α limits to 1, the memory effects are reduced [23].
The fractional-order dynamical system can explain more realistic phenomena, which are

neglected in the classical theory of dynamical system of integer order. Unlike integer-order

models, fractional-order models have the potential to capture nonlocal relations in time.

The fractional-order derivative gives more degree of freedom and consistent with reality of

interactions because of its ability to give an exact expression of the nonlinear phenomena.

The state of the integer order systems at each time does not depend on the previous history

of the system: it is a memoryless process. It is well known that the behavior of the trajectory

of a fractional differential operator is nonlocal and can be a useful way to include memory

in a dynamical process. A dynamical process based on fractional order derivatives carries

information about its present and past states. It is therefore reasonable to try to use a fractional

compartmental system to observe the mechanism of the spread of diseases in epidemiological

models. Biological models of fractional order have gained much attention in recent times

which are more consistent for natural phenomena than integer-order systems that aid the

characterization of dynamic systems such as memory property and fractional order system

inherits some interesting properties from the integer order system [24, 25, 26, 27, 28, 29, 30,

31, 32, 33].

Most of the HIV models in literature have used the delay parameter to denote the time for

uninfected population or cell to become infected population or cell. The inclusion of the delay

parameter in the nonlinear system results in the rich dynamics of the system. Moreover, we

know that delay impact disease spread in population. In the case of delay differential equation

model, the shift in trajectories over time t depends not only on t, but also on prior conditions. In
the objective world, this sort of situation is plentiful. In our study, we replace the integer-order

derivative into an arbitrary fractional order derivative (0 < α ≤ 1) and we incorporate the delay
term τ, where τ is the discrete time delay representing the time necessary for the susceptible

humans to contact with the infectives [35, 36, 37, 38, 39, 34]. Therefore, including these two

forms of memories: a fractional order (0 < α ≤ 1) and discrete time delay τ, in epidemic system
(1) would certainly enrich the dynamics of the modified epidemic system (2). Many processes

in nature possess memory and hereditary properties which cannot be modeled using ordinary

derivative. There are two ways to include memory in the model. One called the “delay” and

another is “fractional derivative”. Due to its non local nature, fractional derivative is having a

long memory. If these two things unified, the resulting model may be robust [36].

We have system (2) is governed by fractional order delay differential equations of the form:

Dα
t S(t) =ϕ− β1S(t)I(t− τ)− β2S(t)K(t− τ)− β3S(t)H(t− τ)− µS(t),

Dα
t I(t) =β1S(t)I(t− τ) + β2S(t)K(t− τ) + β3S(t)H(t− τ)

− (δ1 + µ)I(t),

Dα
t K(t) =δ1I(t)− (δ2 + µ)K(t),

Dα
t H(t) =δ2K(t)− (δ3 + µ)H(t),

Dα
t A(t) =δ3H(t)− (d+ µ)A(t),

(2)

where (1− ρ1)σ1 = δ1, (1− ρ2)σ2 = δ2 and (1− ρ3)σ3 = δ3.
Fractional derivative of model (2) is in the sense of Caputo. Where α ∈ (0, 1] is the order of
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the fractional derivative and Dα
t denotes

dα

dtα
. In the Caputo fractional operator standard initial

conditions in terms of derivatives of integer order is involved. These initial conditions have

clear physical interpretation. The Laplace transform of the Caputo Fractional derivative is a

generalization of the Laplace transform of integer order derivative, where n is replaced by α.

The same does not hold for the Riemann Liouville case. This property is an important advantage

of the Caputo operator over the Riemann-Liouville operator [40]. The proposed fractional order

HIVmodel (2) undergoes various analysis like local stability, bifurcation analysis and sensitivity

analysis of the basic reproduction number R0. We also present some numerical simulation for

the proposed model and we fitted our model to yearly new cases of HIV infection for several

countries like Afghanistan, Australia, France, Italy, Netherlands and New Zealand. The system

(2), with the initial conditions

S(θ) = ψ1(θ), I(θ) = ψ2(θ), K(θ) = ψ3(θ),

H(θ) = ψ4(θ), A(θ) = ψ5(θ), θ ∈ [−τ, 0],
(3)

where the initial function is denoted as ψ = (ψ1,ψ2,ψ3,ψ4,ψ5)
T belongs to C :=

C([−τ, 0],R5) of continuous functions mapping [−τ, 0] into R5. Since we deal with biological

models, ψi ≥ 0, i = 1, 2, 3, 4, 5. Furthermore, we assume that

S(t) > 0, I(t) ≥ 0, K(t) ≥ 0, H(t) ≥ 0, A(t) ≥ 0, for all t > 0. (4)

The rest of this paper is systematized as follows. Section 2, concerns with the necessary

preliminaries and the model analysis like local stability and bifurcation analysis of the system

(2). In Section 3, sensitivity of the basic reproduction number R0 have been performed. In

Section 4, we present some numerical simulations and discussion for our system (2). In Section

5, we fitted our model to yearly new cases of HIV infection for Afghanistan, Australia, France,

Italy, Netherlands and New Zealand. In Section 6, we give some concluding remarks. Finally,

we discuss some future work in this direction in section 7. The novelty of the model lies in

clubbing delay and fractional calculus with the introduction of three different therapies for HIV

in a single model. To the best of the authors knowledge, in such a complex model, this has not

been addressed before in the literature.

2. MODELANALYSIS

In this section, we investigate some analytical properties of the nonlinear fractional order

delay system (2).

2.1. PRELIMINARIES

This subsection concerns with the necessary definitions, lemmas and theorems which will

be used in the upcoming results.

De f i n i t i o n 1. [35] The Caputo fractional derivative of order α of a function f(t) ∈
Cn([t1,∞),R) is defined as

Dα
t f(t) =

1

Γ(n− α)

∫ t

t1

f (n)(ξ)

(t− ξ)α+1−n
dξ,

where t1 ≥ t, Γ(.) is the Gamma function, and n is the positive integer such that

n− 1 < α < n.
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Table 2. Parameters description

Parameter Description Value Unit

[assumed] [assumed]

ϕ The recruitment rate 500 day−1

β1 Horizontal transmission rate coefficient of infection when 0.0000005 day−1

susceptibles contact with the infectives

in the first stage (acute phase)

β2 Horizontal transmission rate coefficient of infection when 0.0000006 day−1

susceptibles contact with the infectives

in the second stage (asymptomatic phase)

β3 Horizontal transmission rate coefficient of infection when 0.0000002 day−1

susceptibles contact with the infectives

in the third stage (symptomatic phase)

µ Natural death rate 0.08 day−1

σ1 Progression rate to second stage (asymptomatic phase) 0.03 day−1

from the first stage (acute phase)

σ2 Progression rate to third stage (symptomatic phase) 0.05 day−1

from the second stage (asymptomatic phase)

σ3 Progression rate to full-blown AIDS class from the 0.01 day−1

third stage (symptomatic phase)

ρ1 Proportion of the efficacy of ART treatment 0.65 day−1

ρ2 Proportion of the efficacy of PI treatment 0.5 day−1

ρ3 Proportion of the efficacy of RTI treatment 0.1 day−1

d Disease induced death rate of the full-blown AIDS group 0.001 day−1

When 0 < α < 1, one has

Dα
t f(t) =

1

Γ(1− α)

∫ t

t1

f
′
(ξ)

(t− ξ)α
dξ.
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Lemma 1. [35] Let x(t) be a continuous function on [t1,+∞) and satisfy

Dα
t x(t) ≤ −λx(t) + µ,

x(t1) = xt1 , where 0 < α ≤ 1, λ,µ ∈ R, and λ 6= 0, t1 ≤ 0 is the initial time. Then

x(t) ≤
(
xt1 −

µ

λ

)
Eα(−λ(t− t1)

α) +
µ

λ
, (5)

where Eα(·) is the Mittag–Leffler function defined as

Eα,β(z) =
∞∑
k=0

zk
Γ(kα+ β)

,

where, α > 0,β > 0 and z ∈ C. When β = 1, one has Eα(z) := Eα,1(z). Furthermore,
E1,1(z) = ez.

Th e o r em 1. [24] The following autonomous system

Dα
t x(t) = Ax,

x(0) = x0,

with 0 < α ≤ 1, x ∈ Rn and A ∈ Rn×n is asymptotically stable if |arg(λj)| >
απ

2
is satisfied

for all eigenvalues λj of the matrix A. Also, this system is stable if and only if |arg(λj)| ≥
απ

2
for all eigenvalues λj of the matrix A with those critical eigenvalues satisfying |arg(λj)| =

απ

2
having geometric multiplicity of one. The geometric multiplicity of an eigenvalue λ of the matrix

A is the dimension of the subspace of vectors v for which Av = λv.

Th e o r em 2. [24]. Consider the following commensurated fractional order system

Dα
t x(t) = f(x),

x(0) = x0,

with 0 < α ≤ 1, x ∈ Rn and f : Rn → Rn i.e., f = (f1, f2 · · · fn)T . The equilibrium points

of the above system are calculated by solving the equation f(x) = 0. These equilibrium points

are locally asymptotically stable if all eigenvalues λj of the Jacobian matrix J =
∂f

∂x
evaluated

at the equilibrium points satisfy |arg(λj)| >
απ

2
. The equilibrium points are said to be simply

stable if |arg(λj)| ≥
απ

2
.

2.2. WELL-POSEDNESS

It is important to show the non-negativity and boundedness for the system (2) as they

represent human populations. Positivity implies that the human population survives and the

boundedness may be interpreted as a natural restriction to growth as a consequence of limited

resources. Let us begin the analysis of the nonlinear system (2) by analyzing its positivity and

boundedness.
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2.2.1. Non-negativity and boundedness

Since the problem taken up for analysis is biologically significant, we focus only on the

solutions that are non-negative and bounded. Denote

R5
+ = {x = (x1, x2, x3, x4, x5)|xi ≥ 0, i ∈ {1, 2, 3, 4, 5}}.

Th e o r em 3. By the assumptions (3) and (4) the set

Ω = {(S(t), I(t), K(t), H(t), A(t)) ∈ R5
+|S(t) + I(t) +K(t) +H(t) + A(t) ≤ ϕ

µ
, t ≥ 0} is

positively invariant with respect to the system (2).

P r o o f . In order to prove that the system is always non-negative, we add all the

compartments of the system (2), such that

Dα
t S(t)+Dα

t I(t)+Dα
t K(t)+Dα

t H(t)+Dα
t A(t) ≤ ϕ−µ(S(t)+I(t)+K(t)+H(t))−(d+µ)A(t).

We know that all the parameters are positive, one can obtain:

Dα
t N(t) ≤ ϕ− µ(N(t)),

where N(t) = S(t) + I(t) +K(t) +H(t) + A(t).
By using Lemma 1 we get,

N(t) ≤
(
−ϕ
µ

+N(0)

)
Eα(−µtα) +

ϕ

µ
.

Since Eα(−µtα) ≥ 0 when N(0) ≤ ϕ

µ
, we have N(t) ≤ ϕ

µ
.

Therefore, the following set is positively invariant for the system (2),

Ω =

{
(S(t), I(t), K(t), H(t), A(t))|N(t) ≤ ϕ

µ

}
. (6)

It is easy to see that S(t), I(t), K(t), H(t) and A(t) are bounded in a invariant set Ω. This
completes the proof.

Rema r k 1. It can be noted that the above methodology for proving positivity and

boundedness for system (2) can be adapted to prove the same for the system (1) and we get

the same invariant set Ω.

The next subsection deals with the basic reproduction number of the system (2) which plays

a vital role in disease transmission and the condition for existence of equilibrium points of the

system (2).

2.3. THE BASIC REPRODUCTION NUMBERAND EQUILIBRIUM POINTS

The biological sense of the basic number of reproduction (R0) is specified as the average

number of secondary infections caused during the infectious period by a single infectious

individual. The basic reproduction number (R0) is used to calculate the transmission capacity

of a disease, which also acts as a measure to determine if an infectious disease may or may not

spread through a population. The disease dies out whenR0 < 1 and it spreads whenR0 > 1. The
basic reproduction number for the nonlinear model (2) was obtained using the next-generation

matrix method [41].

R0 =
ϕ[β1(δ2 + µ)(δ3 + µ) + β2δ1(δ3 + µ) + β3δ1δ2]

µ(δ1 + µ)(δ2 + µ)(δ3 + µ)
,

R0 = R01 +R02 +R03,
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where

R01 =
ϕβ1

µ(δ1 + µ)
, R02 =

ϕβ2δ1

µ(δ1 + µ)(δ2 + µ)
, R03 =

ϕβ3δ1δ2

µ(δ1 + µ)(δ2 + µ)(δ3 + µ)
.

The given nonlinear dynamical system (2) possesses two equilibrium points which are

described below,

i) The disease free equilibrium point is E0(S0, I0, K0, H0, A0) = E0

(
ϕ

µ
, 0, 0, 0, 0

)
,

ii) The endemic equilibrium point is E1(S1, I1, K1, H1, A1),
where

S1 =
ϕ

µR0

, I1 =
ϕ(R0 − 1)

R0(δ1 + µ)
, K1 =

ϕδ1(R0 − 1)

R0(δ1 + µ)(δ2 + µ)
,

H1 =
ϕδ1δ2(R0 − 1)

R0(δ1 + µ)(δ2 + µ)(δ3 + µ)
, A1 =

δ3H1

(d+ µ)
.

In the next subsection, we analyze the local stability of the equilibria.

2.4. THE LOCAL STABILITYANALYSIS

In the following theorem we discuss the condition for the system (2) to be locally

asymptotically stable at its disease free equilibrium point.

Th e o r em 4. The disease free equilibrium E0 of the system (2) is locally asymptotically

stable if R0 < 1, provided that τ ≥ 0.

P r o o f . The Jacobian matrix and the corresponding characteristic equation of system

(2) at the disease free equilibrium point E0 is given by

J(E0) =



−µ −β1ϕe
−λτ

µ

−β2φe
−λτ

µ

−β3φe
−λτ

µ
0

0
β1ϕe

−λτ

µ

β2ϕe
−λτ

µ

β3ϕe
−λτ

µ
0

−(δ1 + µ)

0 δ1 −(δ2 + µ) 0 0

0 0 δ2 −(δ3 + µ) 0

0 0 0 δ3 −(d+ µ)


and

(λα + µ)(λα + d+ µ)
(
λ3α + P1λ

2α + P2λ
α + P3 − e−λτ(P4λ

2α + P5λ
α + P6)

)
= 0,
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where

P1 = 3µ+ δ1 + δ2 + δ3,

P2 = 3µ2 + 2µ(δ1 + δ2 + δ3) + δ1δ2 + δ1δ3 + δ2δ3,

P3 = µ
3 + µ2(δ1 + δ2 + δ3) + µ(δ1δ2 + δ1δ3 + δ2δ3) + δ1δ2δ3,

P4 =
ϕβ1

µ
,

P5 = 2φβ1 +
ϕδ1β2

µ
+
ϕδ2β1

µ
+
ϕβ1δ3

µ
,

P6 = ϕµβ1 +ϕ(β2δ1 + β1δ2 + β1δ3) +
ϕ

µ
(β3δ1δ2 + β2δ1δ3 + β1δ2δ3).

Clearly, Eq. (7) has two negative real root λα1 = −µ, λα2 = −(d + µ). The remaining roots
are calculated by the following transcendental equation

λ3α + P1λ
2α + P2λ

α + P3 − e−λτ(P4λ
2α + P5λ

α + P6) = 0. (7)

Put τ = 0 in Eq. (7), i.e. for non delay case we get

λ3α + λ2α(P1 − P4) + λ
α(P2 − P5) + (P3 − P6) = 0, (8)

where P1 − P4, P2 − P5 and P3 − P6 > 0 which can be written as

P1 − P4 = 2µ+ δ2 + δ3 + (1−R01)(δ1 + µ),

P2 − P5 = (δ1 + µ)(δ3 + µ)(1−R01) + (δ1 + µ)(δ2 + µ)(1−R02)

+ (δ2 + µ)(δ3 + µ)(1−R03),

P3 − P6 = (1−R0)(δ1 + µ)(δ2 + µ)(δ3 + µ).

Using the above expressions it is straightforward to show that the all the eigenvalues of Eq.

(7) have no positive roots and satisfy the condition |arg(λj)| >
απ

2
, for j = 1, 2, · · · , 5, if

R0 < 1, when τ = 0.
Let us look for the root distribution of Eq. (7), when τ > 0. If we begin by looking for the

purely imaginary λ = iω,ω > 0 is a solution of Eq. (7), then

−iω3α −ω2αP1 + iωαP2 + P3 − e−(iω)τ(−ω2αP4 + iωαP5 + P6) = 0.

By seperating real and imaginary parts we have,

−ω2αP1 + P3 + cos(ωτ)ω2αP4 = cos(ωτ)P6 + sin(ωτ)P5,

−ω3α +ωαP2 − sin(ωτ)ωαP4 = cos(ωτ)ωαP5 − sin(ωτ)P6.

Squaring and adding the above equations, we get

ω6α +ω4α(P 2
1 − 2P2 − P 2

4 ) +ω
2α(−2P1P3 + P 2

2 − P 2
5 + 2P4P6) + P 2

3 − P 2
6 = 0, (9)

substituteM3 = P 2
1 − 2P2 − P 2

4 ,M4 = −2P1P3 + P 2
2 − P 2

5 + 2P4P6 andM5 = P 2
3 − P 2

6

in above equation, we obtain,

ω6α +ω4αM3 +ω
2αM4 +M5 = 0. (10)

Now all we need to prove is Eq. (10) has no positive root. It happens only whenM3,M4 and
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M5 is positive, where

M3 = 3µ2 + δ21 + δ
2
2 + δ

2
3 + 2µ(δ1 + δ2 + δ3) +

2φβ1δ3

µ
,

M4 = (δ1 + µ)(δ3 + µ)(1−R01) + (δ1 + µ)(δ2 + µ)(1−R02)

+ (δ2 + µ)(δ3 + µ)(1−R03) + 3µ2 + 2µ(δ1 + δ2 + δ3)

+ δ1δ2 + δ1δ3 + δ2δ3 + 2φβ1 +
ϕδ1β2

µ
+
ϕδ2β1

µ
+
ϕβ1δ3

µ

+ 2(δ1 + µ)(δ2 + µ)(δ3 + µ)(1−R0),

M5 = (1−R0)(1 +R0)(δ1 + µ)
2(δ2 + µ)

2(δ3 + µ)
2.

AsM3,M4 andM5 > 0 only whenR0 < 1. This shows that the Eq. (10) has no positive root

if R0 < 1. It is clear that all the eigenvalues of Eq. (7) satisfy the condition |arg(λj)| >
απ

2
,

for j = 1, 2, · · · , 5, if R0 < 1. According to Theorem 2, the disease free equilibrium E0 of the

system (2) is locally asymptotically stable.

The following theorem, clearly explains the condition under which the system (2) undergoes

Hopf bifurcation.

2.5. BIFURCATIONANALYSIS

Th e o r em 5. The endemic equilibrium pointE1 of the system (2) is locally asymptotically

stable for τ ∈ [0, τ0). Moreover, it undergoes a Hopf bifurcation at E1, when τ = τj(j =
0, 1, 2 . . . ).

P r o o f . As the standard techniques in the theory of bifurcation analysis suggests,

the Jacobian matrix of the system (2) at the endemic equilibrium point E1 to identify the

characteristic equation when τ > 0 as follows:

J(E1) =



−(N + µ) −β1S1e
−λτ −β2S1e

−λτ −β3S1e
−λτ 0

N β1S1e
−λτ β2S1e

−λτ β3S1e
−λτ 0

−(δ1 + µ)

0 δ1 −(δ2 + µ) 0 0

0 0 δ2 −(δ3 + µ) 0

0 0 0 δ3 −(d+ µ)



,

where N = β1I1 + β2K1 + β3H1.

The characteristic polynomial of the above matrix J(E1) can be written as

X1(λ) +X2(λ)e
−λτ +X3e

−λτ = 0, (11)

where

X1(λ) = λ
5α + q1λ

4α + q2λ
3α + q3λ

2α + q4λ
α + q5,

X2(λ) = r1λ
4α + r2λ

3α + r3λ
2α + r4λ

α and X3 = r5.
The values of q1, q2, q3, q4, q5, r1, r2, r3, r4 and r5 can be seen in Appendix. When τ = 0, Eq.
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(11) becomes

λ5α + (q1 + r1)λ
4α + (q2 + r2)λ

3α + (q3 + r3)λ
2α + (q4 + r4)λ

α + (q5 + r5) = 0. (12)

The endemic equilibrium E1 is locally asymptotically stable, if it satisfy the following

Routh-Hurwitz conditions:

i) q1 + r1 > 0, q2 + r2 > 0, q3 + r3 > 0, q4 + r4 > 0, q5 + r5 > 0,

ii) (q1 + r1)(q2 + r2)(q3 + r3) > (q3 + r3)
2 + (q1 + r1)

2(q4 + r4),

iii) ((q1+r1)(q4+r4)−(q5+r5))((q1+r1)(q2+r2)(q3+r3)−(q3+r3)
2−(q1+r1)

2(q4+r4)) >
(q5 + r5)((q1 + r1)(q2 + r2)− (q3 + r3))

2 + (q1 + r1)(q5 + r5)
2.

From [39], assume λ = iω = ω

(
cos

(
π

2

)
+ isin

(
π

2

))
,ω > 0 and by substituting

λ = iω in (11), we have

(ε1 + iκ1) + (ε2 + iκ2)e
−iωτ +X3e

−iωτ = 0, (13)

where

ε1 =
5∑

y=0

q5−yω
yαcos

(
yαπ

2

)
, κ1 =

5∑
y=0

q5−yω
yαsin

(
yαπ

2

)
,

ε2 =
4∑

y=1

r5−yω
yαcos

(
yαπ

2

)
, κ2 =

4∑
y=1

r5−yω
yαsin

(
yαπ

2

)
,

where q0 = r0 = 1.
By separating the real and imaginary parts, we have

ε1 + ε2cos(ωτ) + κ2sin(ωτ) +X3cos(ωτ) = 0,

κ1 − ε2sin(ωτ) + κ2cos(ωτ)−X3sin(ωτ) = 0.
(14)

From Eq. (14), we obtain

cos(ωτ) =
−ε1(ε2 +X3) + κ1κ2

(ε2 +X3)2 + κ22
, sin(ωτ) =

κ1(ε2 +X3)− ε1κ2
(ε2 +X3)2 + κ22

.

Since cos2ωτ+ sin2ωτ = 1, we have

ω10α + h1ω
9α + h2ω

8α + h3ω
7α + h4ω

6α + h5ω
5α

+h6ω
4α + h7ω

3α + h8ω
2α + h9ω

α + h10 = 0. (15)

The values of h1, h2, h3, h4, h5, h6, h7, h8, h9 and h10 can be seen in Appendix.

Let

h(ω) = ω10α+h1ω
9α+h2ω

8α+h3ω
7α+h4ω

6α+h5ω
5α+h6ω

4α+h7ω
3α+h8ω

2α+h9ω
α+h10,

h(ω) = 0.

To locate the bifurcation point, we need to understand the nature of roots and their distribution

in the phase plane. We analyze this from Eq. (11), in the form of two cases as follows:

Case (i). If hi > 0, i = 1, 2, · · · , 10, then Eq. (11) has no root with zero real parts for all τ ≥ 0.
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From hi > 0, i = 1, 2, · · · , 10, then h(0) = h10 > 0 and h
′
(ω) = 10αω10α−1 + 9αω9α−1 +

8αω8α−1 + 7αω7α−1 + 6αω6α−1 + 5αω5α−1 + 4αω4α−1 + 3αω3α−1 + 2αω2α−1 + αωα−1.

Combining α > 0, hi > 0, i = 1, 2, · · · , 10, then we claim that Eq. (15) has no real root and

hence, Eq. (11) has no purely imaginary root. Note that h10 6= 0, then λ = 0 is not a root of Eq.
(11).

Case (ii). If hi < 0, i = 1, 2, · · · , 9, h10 > 0, Eq. (11) has a pair of purely imaginary roots

±iω0 when τ = τj, j = 0, 1, 2, · · ·
where

τj =
1

ω0

[
arccos

(
−ε1(ε2 +X3) + κ1κ2

(ε2 +X3)2 + κ22

)
+ 2jπ

]
, j = 0, 1, 2 · · · , (16)

andω0 is the unique positive root of (15).

From h10 > 0 and h(0) = h10 > 0. Then, by limω→∞h(w) = +∞, h′(ω) > 0 forω > 0, there
exists a unique ω0 > 0 such that h(ω0) = 0. Then, ω0 is a root of (15). From (14), we know

that Eq. (11) with τ = τj, (j = 0, 1, 2, · · · ) has a pair of purely imaginary roots ±iω0.

Let λ(τ) = n(τ) + iω(τ) be the root of (11), such that when τ = τj satisfying n(τj) = 0
andω(τj) = ω0. From Eq. (11), we have[

dλ

dτ

]−1

=
X

′
1(λ) +X

′
2(λ)e

−λτ − τX2(λ)e
−λτ − τX3e

−λτ

λ(X2(λ)e−λτ +X3e−λτ)
, (17)

X
′

1(λ) +X
′

2(λ)e
−λτ − τX2(λ)e

−λτ − τX3e
−λτ = a1 + ia2,

λ(X2(λ)e
−λτ +X3e

−λτ) = a3 + ia4.

Where

a1 =
5∑

y=1

q5−yω
yα−1cos

(
(yα− 1)π

2

)
+

4∑
y=1

r5−yω
yα−1cos

(
ωτ− (yα− 1)π

2

)

−
4∑

y=1

r5−yτω
yαcos

(
ωτ− yαπ

2

)
− τX3sin(ωτ),

a2 =
5∑

y=1

q5−yω
yα−1sin

(
(yα− 1)π

2

)
+

4∑
y=1

r5−yω
yα−1sin

(
ωτ− (yα− 1)π

2

)

−
4∑

y=1

r5−yτω
yαsin

(
ωτ− yαπ

2

)
− τX3cos(ωτ),

a3 =
4∑

y=1

r5−yω
yα+1cos

(
ωτ− (yα+ 1)π

2

)
+ωX3sin(ωτ),

a4 =
4∑

y=1

r5−yω
yα+1sin

(
ωτ− (yα+ 1)π

2

)
+ωX3cos(ωτ).

Then

Re

[(
dλ

dτ

)−1
∣∣∣∣∣ τ = τj,ω = ω0

]
=

a1a3 + a2a4
a23 + a24

6= 0. (18)
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The transversality condition holds, and Hopf bifurcation occurs at τ = τj. Hence proved.

Rema r k 2. A unique endemic equilibrium E1 exist when R0 > 1. If the time delay τ ∈
[0, τ0) the endemic equilibriumE1 is locally asymptotically stable. When the time delay τ passes

through the critical value τ0, the endemic equilibrium E1 will become unstable and a Hopf

bifurcation occurs under some conditions. This biologically means as the time delay τ increases,

the numbers of the uninfected population.

The next section deals with the sensitivity analysis of the basic reproduction number R0.

3. SENSITIVITY INDICES OF β1,β2,β3, ρ1, ρ2, ρ3,ϕ and µWITH R0

In this section, sensitivity analysis is performed to identify the important parameter which

contributes to the variability in the outcome of the basic reproduction number based on their

estimation uncertainty [42]. Partial rank correlation coefficient (PRCCs) is estimated between

the values of R0 and the values of each of the eight parameters, which is derived from the

uncertainty analysis. The PRCCs value for R0 and each of eight parameters enlisted in Table 3

and graphically represented in Fig. 3.

The parameter with positive PRCCs is directly proportional to R0, i.e. β1,β2,β3 and ϕ,

whereas the parameter with negative PRCCs is inversely proportional to R0, i.e. ρ1, ρ2, ρ3
and µ. We observe that the parameter β1 is highly correlated, and µ is the second highly

correlated parameter. Hence we can conclude that β1 and µ are the most important parameters

in determining the R0.

Parameters

1 2 3 4 5 6 7 8

P
R

C
C

-1

-0.5

0

0.5

1
β

1

β
2

β
3 ρ

1 ρ
2

ρ
3

φ µ

Fig. 2. The PRCCs between input parameters and output R0.

4. NUMERICAL SIMULATIONAND DISCUSSIONS

The calculations has been carried out using MATLAB (R2015a), in order to represent

the major theoretical results of the delayed fractional order phase structured HIV model (2).

Numerical simulations has been performed using predictor-corrector algorithm for solving

fractional differential equations involving delay [43]. Here, the figures are plotted with the initial

conditions as S(0) = 5000, I(0) = 4000, K(0) = 3000, H(0) = 2000 and A(0) = 1000, with
the delay term τ = 4.

• Fig. 3 has been plotted using the parameters listed in the Table 2 for different values of

α, where R0 = 0.0391 < 1. In this scenario, it can be noticed that susceptible and acute
phase solution curves tend to become constant, while other solution curves of three phase

tend to zero. This biologically means that infective individual gradually decreases when

R0 < 1 and uninfected population survives for a better health life.
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Table 3. PRCCs for R0 and eight input parameters

S. No. Parameter PRCCs

1. β1 0.8543

2. β2 0.1410

3. β3 0.0170

4. ρ1 -0.0033

5. ρ2 -0.0220

6. ρ3 -0.0159

7. ϕ 0.0568

8. µ -0.5020

• Fig. 4 has been plotted using the parameters listed in the Table 2 except for β1 =
0.00002,β2 = 0.00005,β3 = 0.00004, ρ1 = 0.4,σ2 = 0.09, for different values of
α, where R0 = 1.9204 > 1. In this case it can be observed that the solution curve of

the all compartments attains a constant. This biologically means that infective individual

survives when R0 > 1.

It can be observed from Fig. 3 and Fig. 4, that the solution trajectories of the fractional order

system behave like its integer counterpart. The results show that order of the fractional derivative

has a significant effect on the dynamic process. Also, from the results, it is obvious that the

memory effect is zero for α = 1. When the fractional order α is decreased from 1, the memory
trace nonlinearly increases from 0, and its dynamics strongly depends on time. The memory

effect points out the difference between the derivatives of the fractional order and integer order

[44]. In the following subsection we have analyzed the impact of three distinct treatments for

our proposed model (2).

4.1. Impact of treatment and its combinations

Here, we discuss about the impact of treatment and its combination in consecutive phases.

Fig. 5, Fig. 6 and Fig. 7 have been plotted with the same initial conditions and parameters used

to plot Fig. 4, except for α = 0.95. In this study we have analyzed eight cases of treatment and
its impact in the dynamics of the system (2), which are tabulated in Table 4 and the data has

been figured out using the observation from Fig. 5, Fig. 6 and Fig. 7.

In Table 4 the survival rate of population in the compartments under certain condition of

treatment is denoted by X, while the non survival rate of population is denoted by ×. It can

be observed that cases No. 1, 3 and 6 behave alike and cases No. 4, 5 and 7 also behave in

a similar fashion. The most hazardous instance is cases No. 2 and 8, where in the case No. 2

AIDS population survive, and in the case No. 8 symptomatic population survive. This is due

to the zero treatment and treatment at last phase. It can be noted down that AIDS population

attains a constant only when there is zero treatment and in other case of partial and full-fledged

treatment the AIDS population tends to zero. From this we can conclude that the population

will attain AIDS phase only when it is left without treatment. So the above analysis shows that
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implementing treatment at the earlier phase works better than treatment at second and third

phases.

Table 4. Treatment and its cases

Case No. Condition S(t) I(t) K(t) H(t) A(t)

1. ρ1 = ρ2 = ρ3 = 0.99 X X × × ×

2. ρ1 = ρ2 = ρ3 = 0 X X X X X

3. ρ1 = ρ2 = 0.99, ρ3 = 0 X X × × ×

4. ρ1 = 0, ρ2 = ρ3 = 0.99 X X X × ×

5. ρ1 = 0.99, ρ2 = 0, ρ3 = 0.99 X X X × ×

6. ρ1 = 0.99, ρ2 = ρ3 = 0 X X × × ×

7. ρ1 = 0, ρ2 = 0.99, ρ3 = 0 X X X × ×

8. ρ1 = 0, ρ2 = 0, ρ3 = 0.99 X X X X ×

time(days)
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Fig. 3. The graph denotes trajectories of S(t), I(t),K(t),H(t) and A(t) versus time t of system

(2), where R0 = 0.03906 < 1.
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Fig. 4. The graph denotes trajectories of S(t), I(t),K(t),H(t) and A(t) versus time t of system

(2), where R0 = 1.9234 > 1.
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Fig. 5. The figure denotes the impact of treatment on infectives for case No.1

(ρ1 = ρ2 = ρ3 = 0.99) and case No.2 (ρ1 = ρ2 = ρ3 = 0).
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Fig. 6. The figure denotes the impact of treatment on infectives for case No.3

(ρ1 = ρ2 = 0.99, ρ3 = 0), case No.4 (ρ1 = 0, ρ2 = ρ3 = 0.99) and case No.5

(ρ1 = 0.99, ρ2 = 0, ρ3 = 0.99).
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Fig. 7. The above figure denotes the impact of treatment on infectives for case No.6

(ρ1 = 0.99, ρ2 = ρ3 = 0), case No.7 (ρ1 = 0, ρ2 = 0.99, ρ3 = 0) and case No.8

(ρ1 = ρ2 = 0, ρ3 = 0.99).
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Fig. 8. The above figure denotes the impact of the delay parameter τ at the acute phase when

R0 > 1. It can be observed that the infected population at the acute phase decreases as the delay

parameter τ increases, which biologically denotes that the delay parameter τ plays a vital role in

disease control.

5. PARAMETER ESTIMATION

The baseline parameter values and initial population values obtained through curve fitting

are presented at Table 5 and Table 6. The full list of parameter ranges used in the simulation is

given in Table 2.

5.1. Data

The data were obtained from World Health Organization [45]. The data used represent new

HIV infection in Afghanistan, Australia, France, Italy, Netherlands and New Zealand. Data are

collected routinely on a yearly basis and was retrieved for the period beginning January 2000 to

December 2019. The pictorial representation of the raw data is given in Figures 9 –14. We fit

the model (2) to yearly new HIV infected population for these six countries. The notified cases

have high risk of spreading infection and thus it is convenient to fit the HIV infected cases to

the reported data.

5.2. Curve fitting

In this section, we fit system (2) to data to determine the trend of HIV in populations. Curve

fitting is a process that allows us to quantitatively estimate the trend of the outcomes. The curve

fitting process fits equations of approximating curves to the raw field data. However, for a given

set of data, the fitting curves of a given type are generally not unique. Thus, a curve with a

minimal deviation from all data points is desired. This best fitting curve can be obtained by the

method of least squares. In this method, the parameters not known are approximated through

minimization of the sum of the squared deviations between the data and the model. It minimizes

the sum of squared distances between the observed values and the model values. This can be

mathematically expressed as

RSS =
n∑

i=1

Θ2
i =

n∑
i=1

(Zi − Ẑ)2
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where Θi = (Zi − Ẑ) and n refers to the data points and RSS refers to the sum of square

error estimate which is assumed to follow a normal distribution. The following parameters were

fixed at the following values: β1 = 0.00002,β2 = 0.00005,β3 = 0.00004,µ = 3.96,σ1 =
0.03,σ2 = 0.09,σ3 = 0.01, ρ1 = 0.65, ρ2 = 0.5, ρ3 = 0.1, d = 0.001, S(0) = 5000, I(0) =
4000, K(0) = 3000, H(0) = 2000 andA(0) = 1000. The parameter ranges/values in parameter
values in Table 2 are used in the curve fitting and the resulting estimated parameter values

and initial values are presented in Table 5 and Table 6. Figures 9–14 denote the data fitted to

system (2) for the reported new cases of HIV infection in Afghanistan, Australia, France, Italy,

Netherlands and New Zealand. We observe that the model fits well with the data.

Table 5. Estimated parameter values of the model (2) for the countries Afghanistan, Australia,

France, Italy, Netherlands and New Zealand

Par. Afghanistan Australia France Italy Netherlands New Zealand

β1 1.963× 10−9 2.142× 10−9 2.023× 10−10 2.020× 10−10 2.156× 10−9 2.035× 10−8

β2 4.997× 10−9 5.018× 10−9 5.046× 10−10 5.193× 10−10 5× 10−9 5.133× 10−8

β3 3.710× 10−9 4.082× 10−9 3.932× 10−10 4.061× 10−10 4.136× 10−9 4.033× 10−8

µ. 1.080× 10−5 5.575× 10−6 5.128× 10−7 4.179× 10−7 5.215× 10−6 7.366× 10−5

d 1.011× 10−7 9.68× 10−8 9.981× 10−9 9.801× 10−9 9.713× 10−7 9.878× 10−7

σ1 7.796× 10−6 7.992× 10−6 8.016× 10−7 8.310× 10−7 8.046× 10−6 8.272× 10−5

σ2 8.900× 10−6 9.546× 10−6 8.825× 10−7 8.752× 10−7 9.548× 10−6 8.769× 10−5

σ3 9.363× 10−7 1.004× 10−6 9.890× 10−8 1.013× 10−7 1.006× 10−6 1.008× 10−5

ρ1 3.896× 10−5 3.879× 10−5 4.532× 10−6 4.667× 10−6 3.844× 10−5 4.035× 10−4

ρ2 4.952× 10−5 4.919× 10−5 5.080× 10−6 4.927× 10−6 4.909× 10−5 5.032× 10−4

ρ3 9.889× 10−6 1.046× 10−5 1.020× 10−6 1.015× 10−6 1.048× 10−5 9.892× 10−5
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Fig. 9. Denote the data fitted to system (2) for the reported new cases of HIV infection in

Afghanistan.
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Fig. 10.Denote the data fitted to system (2) for the reported new cases of HIV infection inAustralia.

77

Mathematical Biology and Bioinformatics. 2021. V. 16. № 1. doi: 10.17537/2021.16.57



PITCHAIMANI AND SARANYADEVI

time in days

2,000 2,002 2,004 2,006 2,008 2,010 2,012 2,014 2,016 2,018 2019

Y
e

a
rl
y
 n

e
w

 H
IV

 c
a

s
e

s
×10

5

0

0.5

1

1.5

2

2.5

Actual Data

Model Simulation

         France

Fig. 11. Denote the data fitted to system (2) for the reported new cases of HIV infection in France.
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Fig. 12. Denote the data fitted to system (2) for the reported new cases of HIV infection in Italy.
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Fig. 13. Denote the data fitted to system (2) for the reported new cases of HIV infection in

Netherlands.
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Fig. 14. Denote the data fitted to system (2) for the reported new cases of HIV infection in New

Zealand. The baseline parameter values and initial population values obtained from the curve fitting

are given in Table 5 and Table 6.
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Table 6. Estimated initial population values of the model (2) for the countries Afghanistan,

Australia, France, Italy, Netherlands and New Zealand

Initial Population Afghanistan Australia France Italy Netherlands New Zealand

S(0) 1551 14055 82056 65004 11056 1221

I(0) 1235 302 50453 46034 9876 987

K(0) 1455 1028 30765 33564 1543 675

H(0) 176 756 1098 3445 3456 445

A(0) 10 59 345 245 235 24

6. CONCLUSIONS

Adelayed fractional order phase structured HIV model with three phases, and three distinct

therapies have been studied to analyze the dynamics of the disease. In this article, the course

of infection have been categorized into the acute, asymptomatic, and symptomatic phases.

By all sorts of treatment methods, individuals with the asymptomatic, symptomatic phases

can be transformed into acute individuals. The dynamical behavior of the system (2) can be

determined by its basic reproduction number R0, i.e., If R0 < 1, the disease-free equilibrium is

globally stable. If R0 > 1, the disease persists, and the unique endemic equilibrium is globally

asymptotically stable. Thus for control of disease in a population, it is generally accepted that

it is desirable for R0 to be as small as possible. Particularly, it is desired, if possible, for R0 to

be less than one. The treatment rate ρ1, ρ2 and ρ3 inversely proportional to R0, it is clear that in

absence of treatment R0 > 1. This ensures that in some cases, it is possible that the treatment

can be used to make E0 stable when it would be unstable in the absence of treatment. On the

other hand, if R0 < 1, then by making R0 sufficiently large, E0 can be switched from stable to

unstable, causing the disease to persist in the population when it otherwise would have died out.

This situation reveals the impact of treatment on disease dynamics.

The novelty of the work lies in the incorporation of two types of memories, i.e. time delay

and fractional order in the proposed model (2), which makes it more realistic and enrich the

dynamics of the proposed model (2) when compared to the HIV model analyzed by swarnali

sharma and samanta [4]. In addition, we have also analyzed eight treatment cases which has

been never discussed before in the existing literature. It can be observed from Fig. (3) and Fig.

(4) that the solution trajectories of the fractional order delay system (2) becomes stable only if its

corresponding integer order solution trajectory gets stable. The main contributions of the work

are highlighted as follows,

1. We have computed basic reproduction number R0, and the local stability of the equilibria

for the system (2) has been discussed from the existing theories.

2. Predictor-corrector algorithm has been adapted to solve the fractional order delay

differential equation and to plot the solution trajectories of the non linear fractional delay

system (2).

3. Sensitivity analysis for the basic reproduction number R0 has been performed.
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4. Parameters have been estimated to fit yearly data for countries Afghanistan, Australia,

France, Italy, Netherlands and New Zealand for system (2).

The above contributions help us to view the dynamics of the proposed model. The ultimate

aim is to capture the most sensitive phase to understand the dynamics. It is a well known fact

that HIV is an incurable epidemic, the only way to increase the life span is to undergo suitable

treatment at the earliest phase. This helps to survive in a long run. In numerical analysis, (see.

Figures 5–7) we have depicted the graph for eight cases of treatment, from which we conclude

that providing full-fledged treatment at the earlier stage (acute phase) works better than other

stages. In case if the person is aware of HIV infection at phase 2 or phase 3 (asymptomatic phase

or symptomatic phase), it is better to treat the infected individual at that stage to maintain his

health at the same phase of disease to avoid the infection progressing to AIDS.

7. FUTURE CHALLENGES

The limitations in the present study have been addressed in this section. Such limitations

will serve as the foundations for potential subsequent work in this area. First of all, we list some

of the major constraints of the study as follows:

i. The proposed model can also be generalized for n compartments with n distinct delays

and n phases.

ii. It can also be developed by the incorporation of stochasticity into the model which will

result as the HIV model with fractional stochastic delay.

iii. The proposed model can also be analyzed with the different incidence rates and n

parameter bifurcation analysis.

iv. Frequency-dependent phase structured HIV model can be developed to compare its

behavior with our proposed density-dependent HIV model.

Therefore, the study suggests many paths for future research from the above discussion. The

present study therefore serves as a new gateway for immunologists, eco-epidemiologists, and

mathematicians working in disease modeling. The present study helps us to view the impact of

memory and treatment in HIV modeling.

The University of Madras has supported this work through University Research Fellowship to Ms.

A. Saranya Devi.
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APPENDIX

THE VALUES OF POLYNOMIALCOEFFICIENTS USED IN BIFURCATION
ANALYSIS

The values of polynomial coefficients used in bifurcation analysis (see section 2.5) are as

follows:

q1 = H1β3 + I1β1 +K1β2 + d+ 5µ+ δ1 + δ2 + δ3,

r1 = −β1S1,

q2 = δ1[3µ+H1β3 + I1β1 +K1β2] + δ2[3µ+ δ1 +H1β3 +K1β2]

+ δ3[3µ+ δ2 + δ3 +H1β3 + 2I1β1] + 3µ[2µ+H1β3 + I1β1 +K1β2]

+ (d+ µ)[4µ+ δ1 + δ2 + δ3 +H1β3 +K1β2],

r2 = −S1[β1(3µ+ δ2 + δ3 + d+ µ) + β2δ1],

q3 =
[
(H1β3 + I1β1 +K1β2 + d+ 3µ+ δ3)δ2 + (H1β3 + I1β1 +K1β2 + d+ 3µ)δ3

+ 3µ2 + 2µH1β3 + 2µK1β2 + (H1β3 + I1β1 +K1β2 + 3µ)(d+ µ) + 2µI1β1

]
δ1

+ [(H1β3 + I1β1 +K1β2 + d+ 3µ)δ3 + 3µ2 + 2µH1β3 + 2µK1β2

+ (H1β3 + I1β1 +K1β2 + 3µ)(d+ µ) + 2µI1β1]δ2

+ [3µ2 + 2µH1β3 + 2µK1β2 + (H1β3 + I1β1 +K1β2 + 3µ)(d+ µ) + 2µI1β1]δ3

+ 3µ2(I1β1 +H1β3 +K1β2) + 4µ3 + [3µ(I1β1 +H1β3 +K1β2) + 6µ2](d+ µ),

r3 = [−δ3β2S1 − β2S1(d+ µ)− 2S1µβ2 − δ2S1β3]δ1

− [β1S1(d+ µ) + δ3β1S1 + 2µβ1S1]δ2 − [β1S1(d+ µ) + 2µβ1S1]δ3

− 3µβ1S1(d+ µ)− 3µ2β1S1,

q4 = [(H1β3 + I1β1 +K1β2 + d+ 2µ)δ3 + (H1β3 + I1β1 +K1β2 + 2µ)(d+ µ)

+ µH1β3 + µI1β1 + µK1β2 + µ
2]δ1δ2 + [(H1β3 + I1β1 +K1β2 + 2µ)(d+ µ)

+ µH1β3 + µI1β1 + µK1β2 + µ
2](δ3δ1 + δ3δ2) + [µ2(H1β3 + I1β1 +K1β2) + µ

3

+ (2µH1β3 + 2µI1β1 + 2µK1β2 + 3µ2)(d+ µ)](δ1 + δ2 + δ3)

+ [µ3(H1β3 + I1β1 +K1β2 + µ) + 3µ2(H1β3 + I1β1 +K1β2 + µ)(d+mu)],

r4 = −[µ(β3δ2 + β2δ3 + µβ2) + (d+ µ)(β3δ2 + β2δ3 + 2µβ2)]S1δ1

− [(β1S1(d+ 2µ) + 2µS1β1(d+ µ)− S1µ
2β1]δ2

− [µ2S1β1 − 2µS1β1(d+ µ)]δ3 − µ3S1β1 − 3µ2S1β1(d+ µ),

q5 = (H1β3 + I1β1 +K1β2 +mu)(d+ µ)[δ1δ3 + δ2δ3 + µδ1δ2 + µδ1δ3

+ µ2δ1 + µ
2δ2 + µ

2 + µ3],

r5 = −S1(d+ µ)µ[(β3δ2 + β2δ3 + µβ2)δ1 + 2(β1δ3 + µβ1)δ2 + 2µβ1δ3 + 2mu2β1],

h1 = 2q1cos

(
απ

2

)
,

h2 = 2q2cos(απ)− r21(4sin
2(απ)cos2(απ) + 4D2

3 + 1) + q21,

h3 = −2q3cos

(
7απ

2

)
− 8D2

3r1r2cos

(
3απ

2

)
cos(2απ)

+ (q1q2 − r1r2)

(
4cos(απ)cos

(
απ

2

)
− 2cos

(
3απ

2

))
,

h4 = −8r1r3D
2
3cos(απ)cos(2απ) + 2cos(απ)(q1q3 − r1r3)

+ 2q4cos(2απ) + q22 − r22 − 4r22D
2
3cos

2

(
3απ

2

)
,
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h5 = −8r2r3D
2
3cos

(
3απ

2

)
cos(απ) + 4cos(απ)cos

(
απ

2

)
(q1q4 − r1r4)

+ 2cos

(
απ

2

)
(q2q3 − r2r3 − q1q4 − r1r4)− 8r1r4D

2
3cos

(
απ

2

)
cos(2απ),

h6 = −r23 + q23 − 2r2r4cos(απ) + 2q1q5cos(2απ) + 2q2q4cos(απ)

− 8D2
3r2r4cos

(
3απ

2

)
cos

(
απ

2

)
− 4D2

3r
2
3cos

2(απ),

h7 = 2(−r3r4 + q3q4)cos

(
απ

2

)
+ 2q2cos

(
3απ

2

)
− 8r3r4D

2
3cos

(
απ

2

)
cos(απ),

h8 = q24 − r24 + 2q3q5cos(απ)− 4r24D
2
3cos

2

(
απ

2

)
,

h9 = 2q4q5cos

(
απ

2

)
,

h10 = q25 −D2
3.
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