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Abstract. We have considered a compartmental epidemiological model with

infectious disease to observe the influence of environmental stress on disease

transmission. The proposed model is well-defined as the population at each

compartment remains positive and bounded with time. Dynamical behaviour of

the model is observed by the stability and bifurcation analysis at the equilibrium

points. Also, numerical simulation supports the theoretical proofs and the result

shows that the system undergoes a forward bifurcation around the disease-free

equilibrium. Our results indicate that with the increase of environmental pollution,

the overall infected population increases. Also, the disease transmission rate among

the susceptible and stressed population from asymptomatically infected individuals

plays a crucial role to make a system endemic. A corresponding optimal control

problem has also been proposed to control the disease prevalence as well as to

minimize the cost by choosing the vaccination policy before being infected and

treatment policy to the infected as control variables. Numerical figures indicate

that the vaccination provided to susceptible needs some time to reduce the disease

transmission but the vaccination provided to stressed individuals works immediately

after implementation. The treatment policy for symptomatically infected individuals

works with a higher rate at an earlier stage but the intensity decreases with time.

Simultaneous implementation of all control interventions is more useful to reduce

the size of overall infective individuals and also to minimize the economic burden.

Hence, this literature clearly expresses the impact of environmental pollution

(specifically the influence of environmental stress) on the disease transmission in

the population.
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1. INTRODUCTION

In the continuous changing world, there are a variety of stresses from toxins to the

vicissitudes of climate change present in the environment which may affect the organisms. The

presence of environmental stress enhances the effects of pollutants on organisms. The impact of

these stress depends on the dynamical behaviour of the corresponding stressed system. One of

the interesting areas is to analyse the combined impacts of environmental stress and infectious

diseases. There are many reports indicating that infectious diseases play a key role in the

dynamics of many natural populations [1]. So, one can assume that environmental stress either

aggravates or mitigates the transmission of infectious disease among susceptible, depending on

the aspects of the system which are emphasized.

Let us consider the interplay of disease and stress from the perspective of an individual host

which is affected by a host-specific parasite. It is expensive to maintain the immune systems and
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so, stressed animals may fail to produce enough energy to fulfil a beneficial defence [2]. There

are many stressors present, like malnutrition [3], toxic chemicals in environmental pollution [4],

thermal stress due to climate change [5] etc. which increase the probability of getting infected

from susceptible through infectious diseases.As a conclusion, it is stated that stressed individuals

are more susceptible to infection [6, 1]. It is evident that within a species, the impact of any

stressor varies with genotype [7]. Hence, environmental stresses escalate the transmission of an

infectious disease.

Environmental pollution has become a concerning topic these days. It contains water

pollution, air pollution as well as soil pollution. The toxic chemicals, present in the environment,

can be transmitted to the population by water, air and food. Most of these chemicals make

a harmful effect on living species. A lot of work has been done analysing the perilous

impact of this pollution on ecosystem [8, 9, 10]. Environmental pollution causes several other

diseases including respiratory and cardiovascular diseases. Research leads to the conclusion that

increasing environmental pollution create difficulties in the way of survival of animal and plant

population.

Growing industrialization causes the air to be highly contaminated by gaseous pollutants and

particulate matters like PM10 and PM2.5. Also, there are natural activities like volcanoes, forest

fire, and anthropogenic activities etc. which increase the damage to the environment as the air

pollutants containing poisonous gases (e.g. SO2, CO, NO etc.), hydrocarbons, metals (mercury,

lead etc.) as well as particulate matters (PM2.5, PM10) increase for these. Moreover, there are

some organic pollutants too, for example, pesticides, dioxin etc. which form toxic chemicals.

The mentioned air pollutants can even damage the signalling pathways of hormones and

reproductive system [11], cause dysfunction of tissue due to shortage of oxygen (ischaemia),

create an irregularity in heartbeats (arrhythmias) [12], premature mortality [13], lung cancer,

cardiovascular disease mortality, cardiac problems [14] etc. Javan et al. have conducted a

two-year experiment in 2013 to observe the effects of exposure particulate matter (PM10) at

Zabol in Iran [15]. They have concluded that the total mortality, cardiovascular mortality,

respiratory mortality etc. are increased by almost 50 % in 2014–2015 and this situation needs

some urgent control actions. There are some research works revealing the relationship between

biomass fuels (BMF) and traffic–related air pollution (TRAP) and among those works, some

consider the impact of the infectious diseases like tuberculosis, asthma etc. [16] in their system.

Moreover, several studies reveal that air pollution makes a negative impact on newborns and

children [17]. It is observed that the air pollutants affect the developing embryos [18] and

newborn causing increased systolic blood pressure (SBP) [19].

Scarcity of safe drinking water becomes a concerned topic at present.Wastage from different

industries and agricultural activities are the main contributors which contaminate various water

sources. Now, there is water bactericide which is used for water treatment but these disinfectants

have some side effects which make negative impacts. Almost 100,000 water contaminants

are registered in the water which is used regularly [20]. Low birth weight, spontaneous

abortions, pre-term delivery, stillbirth, birth defects and lung cancer, adverse reproductive and

developmental defects etc. are some of the examples of noxious impacts of the consequences

of disinfectants [21, 22, 23]. So, exposure of pregnant women to contaminated water may have

risky side-effects [24, 25, 26].

There are some researches which reveal that the development of the immune system may be

impeded due to the exposure to different pollutants [27, 28, 29]. As per the work performed

by Hertz-Picciotto et al. [27] it may be concluded that impact of some organic compounds

are proved to be more dangerous in the prenatal period and early exposure to these chemicals

increases the risk of infection significantly [28]. Raqib et al. [29] collected data of those pregnant

women from a rural area in Bangladesh who were affected with arsenic contamination, to make
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their experiment to study the impact of arsenic exposure on the development of the immune

system. They concluded that arsenic exposure causes increased morbidity.

Research reveals that climate changes and an increase in temperature due to emission of

pollutants and greenhouse gases (because of anthropogenic activities) have made negative

impacts on the environment [30, 31, 32, 33, 34, 35, 36]. Several studies have been done to

analyse the impact of environmental pollution on disease transmission [32, 37]. Lipp et al. [32],

in their studies proved that the emitted pollutants due to the anthropogenic activities increase

the normal temperature and even change the UV intensity. They concluded that this change in

temperature would expand the prevalence of V. cholerae. The work done by Patz et al. is dealt

with the impact of environmental changes due to environmental pollution on various infectious

diseases [31].

There are certain infectious diseases in which we get individuals who can transmit their

illness without showing any symptoms. These individuals said to be “carriers”, play an important

role in the disease transmission.Asymptomatic individuals are thosewho unaware of their illness

and hence can infect others easily. Typhoid fever caused by the bacteria Salmonella Typhi is an

infectious disease where in some cases people do not exhibit any symptoms for a long time.

At the beginning of the 20th century people came to know about this fever from the cases of

Typhoid Mary in the US and “Mr. N the milker” in England. In that case, the asymptomatically

infected individuals transmitted disease among many people over the years at workplaces as

well as at homes. Even today, almost 21 million people are getting infected and approximately

200,000 people are died by Typhoid fever worldwide each year. Asymptomatic individuals are

considered to play a vital role in the transmission of Typhi bacteria which is an obligation for

the eradication of Typhoid fever using vaccination and treatment [38].

Let us take another major infectious disease hepatitis B in which long-term asymptomatic

carriage is observed. It is a liver disease caused by the HBV virus from the Hepadnavirus

family. In most of the cases, the infected people completely recover after proper treatment

and develop lifetime immunity. Several reports say that almost 5–10% of adults suffer from

chronic HBV infection, and about 15–25% of them develop the liver disease later. Jaundice,

nausea, abdominal pain, joint pain, fatigue etc. are some of the basic symptoms of Hepatitis B.

But approximately 30% of infected people do not show any of the mentioned symptoms. The

existence of a large proportion of chronic asymptomatic individuals hinders to control hepatitis

B infection in many countries as they can transmit most of the infections. There are many

other infectious diseases where infected people go through this asymptomatic stage. Further,

there is another virus named, Epstein–Barr Virus (EBV) of the herpes family which causes

infectious mononucleosis, known as glandular fever. Most of the infected people remain in an

asymptomatic stage in this case as there do not any symptoms developed but the virus remains

dormant in the cells of the throat and the immune system for the rest of their lives. Further,

Clostridium difficile associated disease (CDAD) occurs from Clostridium difficile bacillus. The

disease cause diarrhoea, toxic mega-colon, pseudo-membranous colitis, perforation of the colon

etc. More than 300,000 cases of diarrhoea have been reported yearly in the United States and up

to 30% of asymptomatic infected have been reported in long-term care facilities. So, it can be

assumed that asymptomatically infected people may propagate the disease transmission causing

large outbreaks of CDAD in North America and Europe [39].

Rest of the paper has been organized as follows: in the following section, we have formulated

a compartmental epidemiological model to analyse the impact of environmental stress on the

disease transmission.Anew compartment has been introduced where individuals are considered

to be affected by environmental pollution and hence have a larger chance to become infected.

Section 3 shows that the model is well-posed as the state variables are positive and bounded over

time. In Section 4, equilibrium analysis with basic reproduction number has been performed.

203

Mathematical Biology and Bioinformatics. 2021. V. 16.№ 2. doi: 10.17537/2021.16.201



SAHA, SAMANTA

Section 5 analyses the sensitivity of different parameters inR0. Section 6 deals with the stability

conditions of the equilibrium points. In Section 7, it has been shown that the system undergoes

a transcritical bifurcation at R0 = 1. Section 8 contains the pictorial scenarios of the system

dynamics without applying any control strategies. In section 9, control interventions have been

implemented to control the infection. The subsequent section contains the numerical simulations

for the proposed control system and the last section includes a brief conclusion.

2. MATHEMATICALMODEL: BASIC EQUATIONS

We have formulated a five compartmental epidemic model to analyse the effect of

environmental pollution on the spread of infectious diseases mainly caused by air or water

pollution or even radioactive contamination. Let us consider the total population as N(t)
which is subdivided into five phases at any time t, i.e., susceptible population X1(t),
portion of susceptible population which is affected by environmental pollution and moved

into stressed population X2(t), asymptomatically infected population I1(t), symptomatically
infected population I2(t) and recovered population R(t). Natural recruitment rate of total

susceptible population is taken as a constant Λ, out of which, a proportion p of them enters

directly into stressed classX2(t) and remaining (1−p) stays inX1(t) class. Now, the susceptible
individuals in X1 class move to the stressed class with a rate of θ because regular exposure

to environmental pollution is considered here. At every stage, the natural death rate of human

populations is d whereas the disease-related death rate is given by δ and it has been taken only

in two infected stages.

A susceptible population can become infected (asymptomatically) after getting touch with

both asymptomatically and symptomatically infected population with a rate of β1 and β2

respectively. It is evident that the stressed population can be infected more easily and so, it

is assumed that the disease transmission rates are higher for the stressed population than the

susceptible population. Considering this fact, we have introduced some stress-related parameters

ω1, ω2 andβ
′
1, β

′
2,where,ω1, ω2 denote the levels of stress whileβ

′
1, β

′
2 represent the extents

to which stress can be increased for β1 and β2 respectively [40]. Hence, both the transmission

rates for individuals of X2 class is modified as β1(1 +ω1β
′
1) and β2(1 +ω2β

′
2) respectively .

The asymptomatically infected individuals move to the symptomatic phase at a rate of ηwhile on

the other hand, symptomatically infected individuals are moved to recovered class at a constant

rate of α. It is assumed that the recovered people can move back to susceptible and stressed class
due to the presence of environmental pollution with a rate of γ. So, a proportion q of recovered
population joins theX2(t) class and the remaining fraction (1− q) enters into theX1(t) class. A
schematic diagram has been provided in Figure 1 to get a better insight into the proposed model.

Considering all the assumptions and taking all the parameters as a positive quantity, we get

our system as:

dX1

dt
= (1− p)Λ− dX1 − θX1 + (1− q)γR− (β1I1 + β2I2)X1, X1(0) > 0,

dX2

dt
= pΛ + θX1 − dX2 + qγR− {β1(1 +ω1β

′

1)I1 + β2(1 +ω2β
′

2)I2}X2, X2(0) > 0,

dI1
dt

= (β1I1 + β2I2)X1 + {β1(1 +ω1β
′

1)I1 + β2(1 +ω2β
′

2)I2}X2 − (d+ δ)I1 − ηI1, I1(0) ≥ 0,

dI2
dt

= ηI1 − (d+ δ)I2 − αI2, I2(0) ≥ 0,

dR

dt
= αI2 − γR− dR, R(0) ≥ 0.

(1)
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Fig. 1. Schematic diagram of system (1).

3. POSITIVITYAND BOUNDEDNESS

This section analyse the positivity and boundedness of the system variables to show the

well-posedness of system (1).

Th e o r em 1. Solutions of system (1) starting in R5
+ are positive for all time.

P r o o f. Right hand side of system (1) is continuous and locally Lipschitzian onC (space of

continuous functions) which implies that a unique solution (X1(t), X2(t), I1(t), I2(t), R(t)) of
(1) exists on [0, ξ),where 0 < ξ ≤ +∞ [41].We show that,X1(t) > 0, ∀ t ∈ [0, ξ). If it doesn’t
hold, then ∃t1 ∈ [0, ξ) such that X1(t1) = 0, Ẋ1(t1) ≤ 0 and X1(t) > 0, ∀ t ∈ [0, t1). So there
must have I1(t) ≥ 0, ∀ t ∈ [0, t1). Suppose the statement is not true. Then ∃t2 ∈ (0, t1) such that
I1(t2) = 0, İ1(t2) < 0 and I1(t) ≥ 0, ∀ t ∈ [0, t2). Our claim is I2(t) ≥ 0, ∀ t ∈ [0, t2). Again,
if it is not true, then ∃t3 ∈ (0, t2) such that I2(t3) = 0, İ2(t3) < 0 and I2(t) ≥ 0, ∀ t ∈ [0, t3).
From 4th equation of (1):

dI2
dt

∣∣∣∣
t=t3

= ηI1(t3)− (d+ δ+ α)I2(t3) = ηI1(t3) ≥ 0,

which is a contradiction to İ2(t3) < 0. So, I2(t) ≥ 0, ∀ t ∈ [0, t2).
Next we claim R(t) ≥ 0, ∀ t ∈ [0, t2). Suppose it is not true. Then ∃t4 ∈ (0, t2) such that
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R(t4) = 0, Ṙ(t4) < 0 and R(t) ≥ 0, ∀ t ∈ [0, t4). Now from the 5th equation of (1):

dR

dt

∣∣∣∣
t=t4

= αI2(t4)− (d+ γ)R(t4) = αI2(t4) ≥ 0,

which is a contradiction to Ṙ(t4) < 0. So, R(t) ≥ 0, ∀ t ∈ [0, t2).
Next we claimX2(t) > 0, ∀ t ∈ [0, t2). If it is not true, then ∃t5 ∈ (0, t2) such thatX2(t5) =

0, Ẋ2(t5) ≤ 0 and X2(t) > 0, ∀ t ∈ [0, t5). From the 2nd equation of (1):

dX2

dt

∣∣∣∣
t=t5

= pΛ + θX1(t5)− dX2(t5) + qγR(t5)− {β1(1 +ω1β
′

1)I1(t5) + β2(1 +ω2β
′

2)I2(t5)}X2(t5)

= pΛ + θX1(t5) + qγR(t5) > 0,

which is a contradiction to Ẋ2(t5) ≤ 0. So, X2(t) > 0, ∀ t ∈ [0, t2).
Now from the 3rd equation of (1):

dI1
dt

∣∣∣∣
t=t2

= (β1I1(t2) + β2I2(t2))X1(t2) + {β1(1 +ω1β
′

1)I1(t2) + β2(1 +ω2β
′

2)I2(t2)}X2(t2)

− (d+ δ)I1(t2)− ηI1(t2)

= β2I2(t2)X1(t2) + β2(1 +ω2β
′

2)I2(t2)X2(t2) ≥ 0,

which is a contradiction to İ1(t2) < 0. So, I1(t) ≥ 0, ∀ t ∈ [0, t1). Hence, X2(t) > 0, I2(t) ≥
0, R(t) ≥ 0, ∀ t ∈ [0, t1).

Again from the 1st equation of (1):

dX1

dt

∣∣∣∣
t=t1

= (1− p)Λ− dX1(t1)− θX1(t1) + (1− q)γR(t1)− (β1I1(t1) + β2I2(t1))X1(t1)

= (1− p)Λ + (1− q)γR(t1) > 0,

which is a contradiction to Ẋ1(t1) ≤ 0. It shows that X1(t) > 0, ∀ t ∈ [0, ξ). By the previous
steps we have X2 > 0, I1 ≥ 0, I2 ≥ 0 and R ≥ 0 ∀ t ∈ [0, ξ), where 0 < ξ ≤ +∞. Hence the
theorem.

Th e o r em 2. All solutions of system (1) starting in R5
+ are uniformly bounded.

P r o o f.
Consider, N(t) = X1(t) +X2(t) + I1(t) + I2(t) +R(t).

∴
dN

dt
= Λ− dN − δ(I1 + I2) ≤ Λ− dN.

The solution N(t) has the following property:

0 < N(t) ≤ N(0)e−dt+
Λ

d

(
1− e−dt

)
, whereN(0) = X1(0)+X2(0)+ I1(0)+ I2(0)+R(0).

As t → ∞, 0 < N(t) ≤ Λ
d
.

Therefore, all solutions of system (1) enter into the region:

Ω =

{
(X1, X2, I1, I2, R) ∈ R5

+ : 0 < N(t) ≤ Λ

d

}
.
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4. EQUILIBRIUMANALYSIS

In this section, we analyse the equilibrium points of system (1) along with their feasibility

conditions. For epidemiological models, usually basic reproduction number R0 determines the

existence of endemic equilibrium and stability of disease-free equilibrium of a system. System

(1) has following equilibrium points:

(1) Disease-free equilibrium (DFE): E0(X10, X20, 0, 0, 0) =
(

(1−p)Λ
d+θ

, Λ(pd+θ)
d(d+θ)

, 0, 0, 0
)
.

(2) Endemic equilibrium: E∗(X∗
1 , X

∗
2 , I

∗
1 , I

∗
2 , R

∗).

4.1 Basic reproduction number (R0)

Ability of an infectious disease to invade a population is one of the important concerns.

Basic reproduction number R0 is the number of average number of newly infective individuals

generated by a single infectious individual when introduced into a susceptible population.

Method developed by van den Driessche and Watmough [42] has been used here to determine

R0 of system (1).

For this system, infection is introduced only in asymptomatic phase and the infected

compartments are asymptomatic (I1) and symptomatic stages (I2). Let us take x ≡ (I1, I2).
Third and fourth equations of system (1) can be written as:

dx

dt
= F(x)− ν(x),

F(x) =

(
(β1I1 + β2I2)X1 + {β1(1 +ω1β

′
1)I1 + β2(1 +ω2β

′
2)I2}X2

0

)
,

ν(x) =

(
(d+ δ+ η)I1

−ηI1 + (d+ δ+ α)I2

)
,

where F(x) has only new infection term and ν(x) has the other terms. Now the

corresponding linearized matrices of F(x) and ν(x) evaluated at disease-free equilibrium E0 =
(X10, X20, 0, 0, 0) are respectively

F = (DF(x)) (E0) =

(
β1X10 + β1(1 +ω1β

′
1)X20 β2X10 + β2(1 +ω2β

′
2)X20

0 0

)
,

V = (Dν(x)) (E0) =

(
(d+ δ+ η) 0

−η (d+ δ+ α)

)
.

Consider, A = β1(d+ δ+α)+β2η and B = β1(1+ω1β
′
1)(d+ δ+α)+β2(1+ω2β

′
2)η.

R0 is the spectral radius of the next generation matrix FV −1. So, the basic reproduction number
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of system (1) is [42]:

R0 =
η{β2X10 + β2(1 +ω2β

′
2)X20}+ (d+ δ+ α){β1X10 + β1(1 +ω1β

′
1)X20}

(d+ δ+ η)(d+ δ+ α)

=
{β1(d+ δ+ α) + β2η}X10 + {β1(1 +ω1β

′
1)(d+ δ+ α) + β2(1 +ω2β

′
2)η}X20

(d+ δ+ η)(d+ δ+ α)

=
AX10 +BX20

(d+ δ+ η)(d+ δ+ α)

=
Λ{A(1− p)d+B(pd+ θ)}

d(d+ θ)(d+ δ+ η)(d+ δ+ α)
.

(2)

Existence of endemic equilibrium point E∗(X∗
1 , X

∗
2 , I

∗
1 , I

∗
2 , R

∗) :
Let, A = β1(d + δ + α) + β2η, B = β1(1 + ω1β

′
1)(d + δ + α) + β2(1 + ω2β

′
2)η and

C = (d+ γ)(d+ δ+ η)(d+ δ+ α). From system (1), we have:

(1− p)Λ− dX∗
1 − θX∗

1 + (1− q)γR∗ − (β1I
∗
1 + β2I

∗
2 )X

∗
1 = 0,

pΛ + θX∗
1 − dX∗

2 + qγR∗ − {β1(1 +ω1β
′

1)I
∗
1 + β2(1 +ω2β

′

2)I
∗
2}X∗

2 = 0,

(β1I
∗
1 + β2I

∗
2 )X

∗
1 + {β1(1 +ω1β

′

1)I
∗
1 + β2(1 +ω2β

′

2)I
∗
2}X∗

2 − (d+ δ)I∗1 − ηI∗1 = 0,

ηI∗1 − (d+ δ)I∗2 − αI∗2 = 0,

αI∗2 − (γ+ d)R∗ = 0.

(3)

Solving:

I∗1 =
(

d+δ+α
η

)
I∗2 , R∗ =

(
α

d+γ

)
I∗2 , X∗

1 =
η{Λ(1−p)(d+γ)+γα(1−q)I∗2 }

(d+γ)[η(d+θ)+AI∗2 ]
,

X∗
2 =

pηΛ(d+γ)[η(d+θ)+AI∗2 ]+qηγα[η(d+θ)+AI∗2 ]I
∗
2+Λθη2(1−p)(d+γ)+θγαη2(1−q)I∗2

(d+γ)[η(d+θ)+AI∗2 ][dη+BI∗2 ]

and I∗2 is a positive root of the equation

P1I
2
2 + P2I2 + P3 = 0,

where, P1 = AB[γηα(1− q) + qηγα− C] =

= −AB[d(d+ δ+ η)(d+ δ+ α) + γ(d+ δ)(d+ δ+ α+ η)] < 0;

P2 = Aη{dγαη(1− q) +BΛ(1− p)(d+ γ)}+B{ApηΛ(d+ γ) + γαη2(qd+ θ)}−
− Cη{Ad+B(d+ θ)},

P3 = Cd(d+ θ)η2

[
Λ{A(1− p)d+B(pd+ θ)

d(d+ θ)(d+ δ+ η)(d+ δ+ α)
− 1

]
=

= Cdη2(d+ θ)(R0 − 1).

Here P3 < 0 (> 0) according as R0 < 1 (> 1). So, for R0 > 1, we get a unique equilibrium
point while for R0 < 1, we get no feasible equilibrium point or at most two equilibrium points.

Hence we have the following theorem.

Th e o r em 3. System (1) always has a disease-free equilibrium E0 (X10, X20, 0, 0, 0)
irrespective of any parametric values. Moreover, if R0 > 1, it admits a unique endemic

equilibrium E∗(X∗
1 , X

∗
2 , I

∗
1 , I

∗
2 , R

∗).
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5. SENSITIVITYANALYSIS

Basic reproduction number R0 of system (1) depends on thirteen parameters, namely,

recruitment rate (Λ), probabilities of recruitment in susceptible and stressed population (p, 1−
p), transmission rates (β1, β2), stress levels (ω1, ω2), levels upto which stress can be increased
(β

′
1, β

′
2), disease related death rate (δ), natural death rate (d), progression rate of susceptible

population into stressed class (θ), progression rate of asymptomatically infectious population

into symptomatic class (η), progression rate of symptomatically infectious population into

recovered class (α). Now among all these parameters, we can not control some of the parameters

like Λ, p, d, δ,η.

Now, R0 =
Λ[dA+θB+pd{ω1β1β

′
1(d+δ+α)+ω2β2β

′
2η}]

d(d+θ)(d+δ+η)(d+δ+α)
, where A = β1(d + δ + α) + β2η and

B = β1(1 +ω1β
′
1)(d+ δ+ α) + β2(1 +ω2β

′
2)η and from the expression of R0:

∂R0

∂β1

=
Λ{d+ θ(1 +ω1β

′
1) + pdω1β

′
1}

d(d+ θ)(d+ δ+ η)
> 0

∂R0

∂β2

=
Λη[d+ θ(1 +ω2β

′
2) + pdω2β

′
2]

d(d+ θ)(d+ δ+ η)(d+ δ+ α)
> 0

∂R0

∂β
′
1

=
Λβ1ω1(θ+ pd)

d(d+ θ)(d+ δ+ η)
> 0

∂R0

∂β
′
2

=
Λβ2ω2η(θ+ pd)

d(d+ θ)(d+ δ+ η)(d+ δ+ α)
> 0

∂R0

∂ω1

=
Λβ1β

′
1(θ+ pd)

d(d+ θ)(d+ δ+ η)
> 0

∂R0

∂ω2

=
Λβ2β

′
2η(θ+ pd)

d(d+ θ)(d+ δ+ η)(d+ δ+ α)
> 0

∂R0

∂α
= − Λβ2η[θ(1 +ω2β

′
2) + pdω2β

′
2]

d(d+ θ)(d+ δ+ η)(d+ δ+ α)2
< 0

∂R0

∂θ
=

Λd{β1(1 +ω1β
′
1)(d+ δ+ α) + β2(1 +ω2β

′
2)η}

d(d+ θ)2(d+ δ+ η)(d+ δ+ α)
> 0

In order to examine the sensitivity of R0 to the parameters β1, β2, ω1, ω2, β
′
1, β

′
2, α and

θ, we compute normalized forward sensitivity index with respect to each of these parameters

using the method of Arriola and Hyman [43]:

Γβ1 =

∣∣∣∣∣
∂R0

R0

∂β1

β1

∣∣∣∣∣ =
∣∣∣∣β1

R0

∂R0

∂β1

∣∣∣∣ = ∣∣∣∣ β1(d+ δ+ α){d+ θ(1 +ω1β
′
1) + pdω1β

′
1}

dA+ θB + pd{ω1β1β
′
1(d+ δ+ α) +ω2β2β

′
2η}

∣∣∣∣ ,
Γβ2 =

∣∣∣∣∣
∂R0

R0

∂β2

β2

∣∣∣∣∣ =
∣∣∣∣β2

R0

∂R0

∂β2

∣∣∣∣ = ∣∣∣∣ β2η[d+ θ(1 +ω2β
′
2) + pdω2β

′
2]

dA+ θB + pd{ω1β1β
′
1(d+ δ+ α) +ω2β2β

′
2η}

∣∣∣∣ ,
Γβ

′
1
=

∣∣∣∣∣∣
∂R0

R0

∂β
′
1

β
′
1

∣∣∣∣∣∣ =
∣∣∣∣β′

1

R0

∂R0

∂β
′
1

∣∣∣∣ = ∣∣∣∣ β1β
′
1ω1(pd+ θ)(d+ δ+ α)

dA+ θB + pd{ω1β1β
′
1(d+ δ+ α) +ω2β2β

′
2η}

∣∣∣∣ ,
Γβ

′
2
=

∣∣∣∣∣∣
∂R0

R0

∂β
′
2

β
′
2

∣∣∣∣∣∣ =
∣∣∣∣β′

2

R0

∂R0

∂β
′
2

∣∣∣∣ = ∣∣∣∣ β2β
′
2ω2η(pd+ θ)

dA+ θB + pd{ω1β1β
′
1(d+ δ+ α) +ω2β2β

′
2η}

∣∣∣∣ ,
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Γω1 =

∣∣∣∣∣
∂R0

R0

∂ω1

ω1

∣∣∣∣∣ =
∣∣∣∣ω1

R0

∂R0

∂ω1

∣∣∣∣ = ∣∣∣∣ β1β
′
1ω1(pd+ θ)(d+ δ+ α)

dA+ θB + pd{ω1β1β
′
1(d+ δ+ α) +ω2β2β

′
2η}

∣∣∣∣ ,
Γω2 =

∣∣∣∣∣
∂R0

R0

∂ω2

ω2

∣∣∣∣∣ =
∣∣∣∣ω2

R0

∂R0

∂ω2

∣∣∣∣ = ∣∣∣∣ β2β
′
2ω2η(pd+ θ)

dA+ θB + pd{ω1β1β
′
1(d+ δ+ α) +ω2β2β

′
2η}

∣∣∣∣ ,
Γα =

∣∣∣∣∣
∂R0

R0

∂α
α

∣∣∣∣∣ =
∣∣∣∣ αR0

∂R0

∂α

∣∣∣∣ = ∣∣∣∣ αβ2η{θ+ (pd+ θ)β
′
2ω2}

(d+ δ+ α)[dA+ θB + pd{ω1β1β
′
1(d+ δ+ α) +ω2β2β

′
2η}]

∣∣∣∣ ,
Γθ =

∣∣∣∣∣
∂R0

R0

∂θ
θ

∣∣∣∣∣ =
∣∣∣∣ θR0

∂R0

∂θ

∣∣∣∣ = ∣∣∣∣ dθ{β1(1 +ω1β
′
1)(d+ δ+ α) + β2(1 +ω2β

′
2)η}

(d+ θ)[dA+ θB + pd{ω1β1β
′
1(d+ δ+ α) +ω2β2β

′
2η}]

∣∣∣∣ .
From the mentioned discussion, it is observed that the normalized sensitivity index for stress

level β
′
1 is same as ω1 implying that the basic reproduction number R0 is equally sensitive for

both the parametersω1 and β
′
1.Moreover,R0 is equally sensitive for bothω2 and β

′
2 also.Also,

all these four parameters are directly proportional with R0, i.e., the increase in these parameters

cause a increase in R0 and decrease cause a decrease in R0. So, this analysis shows that if
the stress levels increase, then disease can invade into population quickly. Also, the disease

transmission coefficients β1, β2 are directly proportional with R0 and it is quite obvious that

increasing transmission rates cause quick invasion of disease in susceptible population. It is also

evident that, more infection can spread in population if more people move into stressed class.

The sensitivity index for θ proves that this parameter has a direct proportion with R0. On the

contrary, α maintains a inverse proportion with R0, i.e., increment in the parameter leads to a

decrease in R0 and if this decreases, R0 increases. From the calculations, it is obtained that R0

is more sensitive to changes in β
′
1, β

′
2 or even ω1, ω2 than β1, β2 and θ. So, it is sensible to

focus on β
′
i, ωi for i = 1, 2 which are stress levels and the extents upto which stresses can be

increased.

6. STABILITYANALYSIS

Now we are going to discuss the local stability criterion for the equilibrium points. The

Jacobian matrix of system (1) is as follows:

J =


a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55

 (4)

where a11 = −(d+θ)− (β1I1+β2I2), a12 = 0, a13 = −β1X1, a14 = β2X1, a15 = (1−q)γ;
a21 = θ, a22 = −d−{β1(1+ω1β

′
1)I1 +β2(1+ω2β

′
2)I2}, a23 = −β1(1+ω1β

′
1)X2, a24 =

−β2(1 +ω2β
′
2)X2, a25 = qγ;

a31 = β1I1+β2I2, a32 = β1(1+ω1β
′
1)I1+β2(1+ω2β

′
2)I2, a33 = β1X1+β1(1+ω1β

′
1)X2−

(d+ δ+ η), a34 = β2X1 + β2(1 +ω2β
′
2)X2, a35 = 0;

a41 = 0, a42 = 0, a43 = η, a44 = −(d+ δ+ α), a45 = 0;
a51 = 0, a52 = 0, a53 = 0, a54 = α, a55 = −(d+ γ).
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6.1 Local Stability of E0

Jacobian matrix corresponding to equilibrium point E0 is given by:

J |E0 =


−(d+ θ) 0 −β1X10 −β2X10 (1− q)γ

θ −d −β1(1 +ω1β
′
1)X20 −β2(1 +ω2β

′
2)X20 qγ

0 0 a33 β2X10 + β2(1 +ω2β
′
2)X20 0

0 0 η −(d+ δ+ α) 0

0 0 0 α −(d+ γ)

 ,

where, a33 = β1X10+β1(1+ω1β
′
1)X20−(d+δ+η). Eigenvalues of the characteristic equation

of J |E0 are λ1 = −(d+θ), λ2 = −d, λ3 = −(d+γ), and other two eigenvalues are the roots of
the equation λ2+P1λ+P2 = 0,where, P1 = 2(d+δ)+η+α−β1X10−β1(1+ω1β

′
1)X20 and

P2 = −[(d+ δ+α)a33+η{β2X10+β2(1+ω2β
′
2)X20}] = −(d+ δ+α)(d+ δ+η)(R0− 1).

So, P2 > 0 when R0 < 1. Now, the characteristic equation has roots with negative real parts

only when P1, P2 > 0. So, we have the following theorem.

Th e o r em 4. The disease free equilibrium E0 is locally asymptotically stable (LAS) if

R0 < 1 along with β1X10 + β1(1 +ω1β
′
1)X20 < 2(d+ δ) + η+ α.

6.2 Global Stability of E0

For global stability conditions of the disease free equilibrium point E0, approach from [44]

is used here. Let system (1) can be written as follows

dX

dt
= F (X,Z),

dZ

dt
= G(X,Z), G(X,O) = O,

where X ∈ Rm and Z ∈ Rn denote the number of uninfected and infected population

respectively. So, by this notation, the disease free equilibrium point E0 is denoted by P0 =
(X0, O). The following two conditions guarantee the global stability of DFE:

(A1) X0 is globally asymptotically stable for
dX
dt

= F (X,O).

(A2) G(X,Z) = BZ − Ĝ(X,Z), where Ĝ(X,Z) ≥ O for all (X,Z) ∈ Ω and

B = DZG(X0, O) is a M-matrix (M-matrix: matrix with non-negative off-diagonal elements)

and Ω is the region where the solutions of the model exist biologically. Then the following

lemma [44] states the condition for global stability of the disease free equilibrium point E0.

Lemma: The equilibrium point P0 = (X0, O) is globally asymptotically stable for R0 ≤ 1
when the stated conditions (A1) and (A2) are satisfied.

Th e o r em 5. The disease-free equilibrium point E0 of system (1) is GAS when R0 < 1.

P r o o f. For system (1), (A1) is as follows

F (X, 0) =

(
(1− p)Λ− (θ+ d)X1

pΛ + θX1 − dX2

)
.

The characteristic polynomial of the system is given by (λ+ d)(λ+ (d+ θ)) = 0 which gives
the eigenvalues as λ1 = −d and λ2 = −(d + θ). Hence X = X0 is globally asymptotically

211

Mathematical Biology and Bioinformatics. 2021. V. 16.№ 2. doi: 10.17537/2021.16.201



SAHA, SAMANTA

stable. Now we have

G(X,Z) = BZ − Ĝ(X,Z) =

=

 β1X10 + β1(1 +ω1β
′
1)X20 − (d+ δ+ η) β2X10 + β2(1 +ω2β

′
2)X20 0

η −(d+ δ+ α) 0

0 α −(d+ γ)


 I1

I2

R

−

−


[
{β1X10 + β1(1 +ω1β

′
1)X20}I1 + {β2X10 + β2(1 +ω2β

′
2)X20}I2

−(β1I1 + β2I2)X1 − {β1(1 +ω1β
′
1)I1 + β2(1 +ω2β

′
2)I2}X2

]
0

0


Here, B is a M-matrix and Ĝ(X,Z) ≥ O . Hence, the conditions stated in (A1) and (A2) are
satisfied and the theorem follows.

6.3 Local Stability of E∗

Th e o r em 6. WhenR0 > 1, the endemic equilibrium point E∗ of system (1) is LAS under

the conditions (i), (ii), (iii) and (iv) (stated in the proof).

P r o o f. From (4), the Jacobian matrix corresponding to E∗ is

J =


a11 0 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 0

0 0 a43 a44 0

0 0 0 a54 a55


where a11 = −(d+ θ)− (β1I

∗
1 + β2I

∗
2 ), a13 = −β1X

∗
1 , a14 = β2X

∗
1 , a15 = (1− q)γ;

a21 = θ, a22 = −d−{β1(1+ω1β
′
1)I

∗
1 +β2(1+ω2β

′
2)I

∗
2}, a23 = −β1(1+ω1β

′
1)X

∗
2 , a24 =

−β2(1 +ω2β
′
2)X

∗
2 , a25 = qγ;

a31 = β1I
∗
1 + β2I

∗
2 , a32 = β1(1 + ω1β

′
1)I

∗
1 + β2(1 + ω2β

′
2)I

∗
2 , a33 = β1X

∗
1 + β1(1 +

ω1β
′
1)X

∗
2 − (d+ δ+ η), a34 = β2X

∗
1 + β2(1 +ω2β

′
2)X

∗
2 ;

a43 = η, a44 = −(d+ δ+ α); a54 = α, a55 = −(d+ γ).
Characteristic equation of J |E1 is λ

5 +Q1λ
4 +Q2λ

3 +Q3λ
2 +Q4λ+Q5 = 0,

where Q1 = −(a11 + a22 + a33 + a44 + a55),

Q2 = a55(a11 + a22 + a33 + a44) + a33a44 + a11a22 + (a11 + a22)(a33 + a44)

− a34a43a23a32 − a13a31,

Q3 = −a55{a33a44 + a11a22 + (a11 + a22)(a33 + a44)} − a33a44(a11 + a22)

− a11a22(a33 + a44) + a34a43(a11 + a22 + a55) + a23a32(a11 + a44 + a55)

− a43a32a24 − a21a13a32 + a13a31(a22 + a44 + a55)− a14a43a31

Q4 = a55{a33a44(a11 + a22) + a11a22(a33 + a44)}+ a11a22a33a44

− a34a43{a55(a11 + a22) + a11a22} − a23a32{a55(a11 + a44) + a11a44}
+ a43a32a24(a11 + a55) + a21a32a13(a44 + a55)− a13a31{a55(a22 + a44) + a22a44}
− a14a43a32a21 + a14a43a31(a22 + a55)− a54a43a32a25 − a54a43a31a15
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Q5 = −a11a22a33a44a55 + a11a22a34a43a55 + a11a23a32a44a55

− a11a55a43a32a24 − a21a13a32a44a55 + a13a31a22a44a55 + a14a43a32a21a55

− a14a43a31a22a55 + a11a54a43a32a25 − a54a43a32a21a15 + a54a43a31a15a22.

So, by Routh-Hurwitz criterion, E∗ is locally asymptotically stable (LAS) if the following

conditions hold: (i) Qi > 0 for i = 1, 2, 3, 4, 5;
(ii) Q3(Q1Q2 −Q3) > 0,
(iii) (Q1Q2 −Q3)Q3 > Q2

1Q4 −Q1Q5,
(iv) Q4{Q1(Q2Q3 −Q1Q4)−Q2

3 +Q1Q5} > Q5{Q1(Q
2
2 −Q4)−Q2Q3 +Q5}.

6.4 Global Stability of E∗

We check the global stability of the endemic equilibrium point E∗ of system (1) here.

Th e o r em 7. Assume that R0 > 1 and consider

P =
(
β2X

∗
1I

∗
2 + β2(1 +ω2β

′

2)X
∗
2I

∗
2 − ηI∗1

)
,

Q =
(
β1X

∗
1I

∗
1 + β1(1 +ω1β

′

1)X
∗
2I

∗
1 − αI∗2

)
,

U =(Λ + (d+ θ)X∗
1 + dX∗

2 + (d+ δ+ η)I∗1 + (d+ δ+ α)I∗2 + (d+ γ)R∗) .

Then the endemic equilibrium E∗ of system (1) is globally asymptotically stable (GAS) in the

region Ξ =
{
(X1, X2, I1, I2, R) ∈ R5

+ : PI∗2I1 +QI∗1I2 > UI∗1I
∗
2

}
.

P r o o f. Consider a function V as:

V (t) =

(
X1 −X∗

1 −X∗
1 ln

X1

X∗
1

)
+

(
X2 −X∗

2 −X∗
2 ln

X2

X∗
2

)
+

(
I1 − I∗1 − I∗1 ln

I1
I∗1

)
+

(
I2 − I∗2 − I∗2 ln

I2
I∗2

)
+

(
R−R∗ −R∗ ln

R

R∗

)
Time derivative of V computed along the solutions of system (1) is given by

dV

dt
=

(
1− X∗

1

X1

)
dX1

dt
+

(
1− X∗

2

X2

)
dX2

dt
+

(
1− I∗1

I1

)
dI1
dt

+

(
1− I∗2

I2

)
dI2
dt

+

+

(
1− R∗

R

)
dR

dt
=

=

(
1− X∗

1

X1

)
[(1− p)Λ− dX1 − θX1 + (1− q)γR− (β1I1 + β2I2)X1]+

+

(
1− X∗

2

X2

)
[pΛ + θX1 − dX2 + qγR− {β1(1 +ω1β

′

1)I1 + β2(1 +ω2β
′

2)I2}X2]+

+

(
1− I∗1

I1

)
[(β1I1 + β2I2)X1 + {β1(1 +ω1β

′

1)I1 + β2(1 +ω2β
′

2)I2}X2 − (d+ δ+ η)I1]+

+

(
1− I∗2

I2

)
[ηI1 − (d+ δ+ α)I2] +

(
1− R∗

R

)
[αI2 − (γ+ d)R].

Let,
X1

X∗
1

= u,
X2

X∗
2

= v,
I1
I∗1

= r,
I2
I∗2

= s,
R

R∗ = y.
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dV

dt
= (d+ θ)X∗

1

(
2− u− 1

u

)
− (1− q)γR∗

(
1− y − 1

u
+

y

u

)
+ β1X

∗
1I

∗
1

(
1− ur − 1

u
+ r

)
+

+ β2X
∗
1I

∗
2

(
1− us+ s− 1

u

)
− θX∗

1

(
1− 1

v
− u+

u

v

)
+ dX∗

2

(
2− v − 1

v

)
−

− qγR∗
(
1− y − 1

v
+

y

v

)
+ β1(1 +ω1β

′

1)X
∗
2I

∗
1

(
1− vr − 1

v
+ r

)
+ β2(1 +ω2β

′

2)X
∗
2I

∗
2×

×
(
1− vs− 1

v
+ s

)
− β1X

∗
1I

∗
1

(
1− ur − 1

r
+ u

)
− β2X

∗
1I

∗
2

(
1− us− 1

r
+

us

r

)
−

− β1(1 +ω1β
′

1)X
∗
2I

∗
1

(
1− vr − 1

r
+ v

)
β2(1 +ω2β

′

2)X
∗
2I

∗
2

(
1− vs− 1

r
+

vs

r

)
+

+ (d+ δ+ η)I∗1

(
2− r − 1

r

)
− ηI∗1

(
1− r − 1

s
+

r

s

)
+ (d+ δ+ α)I∗2

(
2− s− 1

s

)
−

− αI∗2

(
1− s− 1

y
+

s

t

)
+ (d+ γ)R∗

(
2− y − 1

y

)
.

Steady state of system (1) at E∗ gives

(1− p)Λ− dX∗
1 − θX∗

1 + (1− q)γR∗ − (β1I
∗
1 + β2I

∗
2 )X

∗
1 = 0,

pΛ + θX∗
1 − dX∗

2 + qγR∗ − {β1(1 +ω1β
′

1)I
∗
1 + β2(1 +ω2β

′

2)I
∗
2}X∗

2 = 0,

(β1I
∗
1 + β2I

∗
2 )X

∗
1 + {β1(1 +ω1β

′

1)I
∗
1 + β2(1 +ω2β

′

2)I
∗
2}X∗

2 − (d+ δ)I∗1 − ηI∗1 = 0,

ηI∗1 − (d+ δ)I∗2 − αI∗2 = 0,

αI∗2 − (γ+ d)R∗ = 0,

which leads to

dV

dt
= −X∗

1 (d+ β1I
∗
1 )u− (1− p)Λ

u
− dR∗y − pΛ

v
− {β1X

∗
1I

∗
1 + β1(1 +ω1β

′

1)X
∗
2I

∗
1 − αI∗2}s−

− {β2X
∗
1I

∗
2 + β2(1 +ω2β

′

2)X
∗
2I

∗
2 − ηI∗1}r − {d+ β1(1 +ω1β

′

1)I
∗
1}X∗

2v + {Λ + (d+ θ)X∗
1+

+ dX∗
2 + (d+ δ+ η)I∗1 + (d+ δ+ α)I∗2 + (d+ γ)R∗} ≤

≤ {Λ + (d+ θ)X∗
1 + dX∗

2 + (d+ δ+ η)I∗1 + (d+ δ+ α)I∗2 + (d+ γ)R∗}−

− I1
I∗1

{β2X
∗
1I

∗
2 + β2(1 +ω2β

′

2)X
∗
2I

∗
2 − ηI∗1} −

I2
I∗2

{β1X
∗
1I

∗
1 + β1(1 +ω1β

′

1)X
∗
2I

∗
1 − αI∗2} =

= U − P
I1
I∗1

−Q
I2
I∗2

< 0.

where, P = β2X
∗
1I

∗
2 + β2(1 +ω2β

′
2)X

∗
2I

∗
2 − ηI∗1 , Q = β1X

∗
1I

∗
1 + β1(1 +ω1β

′
1)X

∗
2I

∗
1 − αI∗2

and U = Λ+(d+θ)X∗
1 +dX∗

2 +(d+δ+η)I∗1 +(d+δ+α)I∗2 +(d+γ)R∗. Therefore, dV
dt

< 0
in Ξ and dV

dt

∣∣
E∗ = 0. Hence, by Lyapunov LaSalle’s theorem [45], E∗ is globally asymptotically

stable in the interior of Ξ for R0 > 1.

7. DIRECTION OF BIFURCATIONAT R0 = 1

In system (1), an unique endemic equilibrium point E∗ exists only when R0 > 1.
When R0 lies below unity, either there will be no endemic equilibrium point or at most two

endemic equilibrium points. So, we have to search for the existence of a bifurcation around the

equilibrium point when R0 = 1. For this purpose let us state the central manifold theorem [46]:

Th e o r em 8. Consider the following system of ODEs with a parameter Φ:
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dx

dt
= f(x,Φ), f : Rn × R → Rn and f ∈ C2 (Rn × R) ,

with Oeq as an equilibrium of this system and f(Oeq,Φ) = O for all Φ. Assume
(a) M = Dxf(Oeq, 0) = ( ∂fi

∂xj
(Oeq, 0)) is the linearized matrix of the above system around the

equilibrium point Oeq with Φ evaluated at 0. Zero is a simple eigenvalue of the matrix M and

all other eigenvalues of the matrix have negative real parts.

(b) Matrix M has a non-negative right eigenvector w and a left eigenvector v corresponding

to the zero eigenvalue.

Let fk be the k
th component of f and

a =
n∑

k,i,j=1

vkwiwj
∂2fk

∂xi∂xj

(Oeq, 0),

b =
n∑

k,i=1

vkwi
∂2fk
∂xi∂Φ

(Oeq, 0),

then the local dynamics of the system around Oeq is totally determined by a and b as follows:

1. a > 0, b > 0. When Φ < 0 with |Φ| � 1, Oeq is locally asymptotically stable, and there

exists a positive unstable equilibrium; when 0 < Φ � 1, Oeq is unstable and there exists

a negative and locally asymptotically stable equilibrium.

2. a < 0, b < 0. When Φ < 0 with |Φ| � 1, Oeq is unstable; when 0 < Φ � 1, Oeq is

locally asymptotically stable, and there exists a positive unstable equilibrium.

3. a > 0, b < 0. When Φ < 0 with |Φ| � 1, Oeq is unstable, and there exists a locally

asymptotically stable negative equilibrium; when 0 < Φ � 1, Oeq is stable, and a positive

unstable equilibrium appears.

4. a < 0, b > 0. When Φ changes from negative to positive, Oeq changes its stability from

stable to unstable. Correspondingly a negative unstable equilibrium becomes positive and

locally asymptotically stable.

The non-negativity of components of the eigenvector w is not necessary when corresponding

component of equilibrium is positive. It is described in Remark 1 in [46].

The requirement that w is non-negative in the previous theorem is not necessary and even

when some components in w are negative, we still can apply the theorem. But in this case, one

has to compare the components of w with the equilibrium because the general parameterization

of the center manifold before the coordinate change is

W c = {x0 + c(t)y + k(c,Φ) : v · k(c,Φ), |c| ≤ c0, c(0) = 0}

given that x0 is a non-negative equilibrium point of system (usually x0 is the DFE). Hence,

x0 − 2 bΦ
a

> 0 needs that w(j) > 0 when x0(j) = 0. x0(j) > 0 does not imply that w(j) is
positive.

Define X1 = x1, X2 = x2, I1 = x3, I2 = x4 and R = x5, then system (1) can be rewritten
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as:

dx1

dt
= (1− p)Λ− dx1 − θx1 + (1− q)γx5 − (β1x3 + β2x4)x1 ≡ f1,

dx2

dt
= pΛ + θx1 − dx2 + qγx5 − {β1(1 +ω1β

′

1)x3 + β2(1 +ω2β
′

2)x4}X2 ≡ f2,

dx3

dt
= (β1x3 + β2x4)x1 + {β1(1 +ω1β

′

1)x3 + β2(1 +ω2β
′

2)x4}x2 − (d+ δ)x3 − ηx3 ≡ f3,

dx4

dt
= ηx3 − (d+ δ)x4 − αx4 ≡ f4

dx5

dt
= αx4 − (γ+ d)x5 ≡ f5

(5)

Let us consider Φ = β1 as bifurcation parameter for R0 = 1. Thus at Φ = Φ∗ =

β∗
1, R0 = 1 gives β∗

1 =
(d+δ+η)(d+δ+α)−β2η{X10+(1+ω1β

′
1)X20}

(d+δ+α){X10+(1+ω1β
′
1)X20}

. The linearized matrix of system

(5) at E0(X10(β
∗
1), X20(β

∗
1), 0, 0, 0) ≡ (X∗

10, X
∗
20, 0, 0, 0) with bifurcation parameter β1 = β∗

1

is given by

J |E0 =


−(d+ θ) 0 −β∗

1X
∗
10 −β2X

∗
10 (1− q)γ

θ −d −β∗
1(1 +ω1β

′
1)X

∗
20 −β2(1 +ω2β

′
2)X

∗
20 qγ

0 0 a33 β2X
∗
10 + β2(1 +ω2β

′
2)X

∗
20 0

0 0 η −(d+ δ+ α) 0

0 0 0 α −(d+ γ)

 ,

where, a33 = β∗
1X

∗
10 +β∗

1(1+ω1β
′
1)X

∗
20 − (d+ δ+ η). Here, λ1 = −(d+ θ), λ2 = −d, λ3 =

−(d + γ), and other two eigenvalues are the roots of the equation: λ2 + P1λ + P2 = 0, where,
P1 = 2(d+δ)+η+α−β∗

1X
∗
10−β∗

1(1+ω1β
′
1)X

∗
20 and P2 = −(d+δ+α)(d+δ+η)(R0−1).

At R0 = 1, P2 = 0 resulting in one zero eigenvalue of J |E0(β
∗
1) and one eigenvalue with

negative real part (by LAS condition). Right eigenvector corresponding to the zero eigenvalue

of the matrix J |E0(β
∗
1) is denoted by w = (w1, w2, w3, w4, w5)

T where,

w1 = d{(1− q)γαη− β∗
1X

∗
10(d+ δ+ α)(d+ γ)− β2X

∗
10η(d+ γ)},

w2 = [γαη(θ+ qd)− β∗
1(d+ δ+ α)(d+ γ){θX∗

10 + (1 +ω1β
′

1)X
∗
20(d+ θ)}

− β2{X∗
10ηθ(d+ γ) + η(d+ γ)(d+ θ)(1 +ω2β

′

2)X
∗
20}],

w3 = d(d+ γ)(d+ θ)(d+ δ+ α),

w4 = dη(d+ γ)(d+ θ),

w5 = dαη(d+ θ).

Also the left eigenvector of J |E0(β
∗
1) corresponding to zero eigenvalue is v = (v1, v2, v3, v4)

T =
(0, 0, 1, 0, 0). Therefore,

a =
n∑

k,i,j=1

vkwiwj
∂2fk

∂xi∂xj

(E0) = v3

5∑
i,j=1

wiwj
∂2f3

∂xi∂xj

(E0) =

= 2w1w3β1 + 2w1w4β2 + 2w2w3β1(1 +ω1β
′

1) + 2w2w4β2(1 +ω2β
′

2) =

= 2[w1β1 + w2β1(1 +ω1β
′

1)]w3 + 2[w1β2 + w2β2(1 +ω2β
′

2)]w4.
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b =
n∑

k,i=1

vkwi
∂2fk
∂xi∂Φ

(E0) = v3

5∑
i=1

wi
∂2f3

∂xi∂β1

(E0) =

= w3{X∗
10 + (1 +ω1β

′

1)X
∗
20} =

= d(d+ γ)(d+ θ)(d+ δ+ α){X∗
10 + (1 +ω1β

′

1)X
∗
20} > 0.

Now, applying the last condition of Theorem 8, it is observed that the system possesses a forward

bifurcation when a < 0 and a backward bifurcation when a > 0. So, we get the theorem as

follows:

Th e o r em 9. If a > 0, then system (1) undergoes a backward bifurcation at R0 = 1,
otherwise if a < 0, then it undergoes a forward bifurcation and the endemic equilibrium is

locally asymptotically stable for R0 > 1 with the bifurcation parameter β1 = β∗
1.

8. NUMERICAL SIMULATIONWITHOUTANYCONTROLPOLICY

This section contains the numerical simulation of model system (1) where no control

interventions are applied. Let us fix most of the parameters in Table 1.

Table 1. Parameter values used for numerical simulation of system (1)

Parametric Values

Λ p d θ q β2 γ

10 0.4 0.02 0.04 0.6 0.00005 0.04

ω1 ω2 β
′

1 β
′

2 δ η α

0.3 0.05 0.1 0.01 0.03 0.02 0.05

Figure 2 shows that for β1 = 0.00002, we have the basic reproduction number as R0 =
0.22(< 1) and the trajectory starting from x0 ≡ (0.5, 0.03, 0.5, 0.03, 0.5) ultimately converges to
E0(100, 400, 0, 0, 0) where only susceptible population and stressed population live as a steady
state.

But for an increasing value of β1 (i.e., β1 = 0.0002), R0 = 1.53(> 1) and hence disease

invade in the system resulting in occurrence of endemic equilibrium point. Figure 3 shows

that the trajectory starting from the same initial point approaches to endemic equilibrium point

E∗(85.95, 234.25, 54.80, 10.96, 9.13) and E0 becomes unstable in this situation.

So, it is noticed that from the steady state situation of E0, if the disease transmission rate

among asymptomatically infected individual starts to increase, then at a threshold value of

β1, E0 loses its stability and becomes unstable. Figure 4 shows that the system without any

control interventions undergoes a forward bifurcation specifically a transcritical bifurcation

around E0 at β = β[TC] = 0.00017.
Now θ denotes the rate at which susceptible population moves into stressed class due to

environmental pollution and toxin. So, it is quite obvious that increasing level of pollution leads

to move more people entering into stressed class. In Figure 5 we portray the same scenario. It

is concluded from this figure that if θ starts to increase, then the number of people in stressed

population class increases with time.
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Fig. 2. Stability of the populations around disease-free equilibrium E0.
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Fig. 3. Stability of the populations around endemic equilibrium E∗.

Figure 6 depicts the impact of θ on the stressed class more specifically. It is observed that

the population in stressed class increases with a higher rate for smaller value of θ. But for a

comparatively higher value of θ (i.e., θ > 0.3), the curve loses its steepness and increases with
a slower rate.

In Figure 7, the sensitivities of some of the parameters in disease transmission have been

observed. The pictures depict that the transmission rate among asymptomatically infected

individuals (β1) is most sensitive to control the reproduction number (R0). Besides of it, the
transmission rate among symptomatically infected individual (β2), the disease transmission rate
among asymptomatically infected individuals due to pollution (β

′
1), one of the stress-related

parameters (ω1) and the rate at which susceptible moves to stressed class (θ) also increase with
an increase of R0 but the rate of increment is slower in these cases. Further β

′
2 and ω2 hardly

participate to control R0. On the other hand, the recovery rate (α) is inversely proportional to

R0 which is true, i.e., R0 starts to increases as α decreases and the disease invade in the system.

Figure 8 shows how the rate at which susceptible moves to stressed class (θ) affects disease
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Fig. 5. Trajectory profiles of stressed population (X2) for different values of θ.
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Fig. 6. Variation of steady state level of stressed population for different values of θ.

transmission. From the figure, it is concluded that increasing value of θ leads to the increase of

asymptomatically infected individuals (I1). If more population enters into stressed class, then

the disease can be transmitted easily and we get more of asymptomatically infected individuals.

219

Mathematical Biology and Bioinformatics. 2021. V. 16.№ 2. doi: 10.17537/2021.16.201



SAHA, SAMANTA

2 3 4 5 6 7 8 9 10

x 10
−4

1

2

3

4

5

6

7

8

β
1

R
0

1 2 3 4 5 6 7 8 9 10

x 10
−4

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

β
2

R
0

(a) (b)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

β
’

1

R
0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

ω
1

R
0

(c) (d)

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

1

1.1

1.2

1.3

1.4

1.5

1.6

θ

R
0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

β
’

2

R
0

(e) (f)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

ω
2

R
0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

α

R
0

(g) (h)

Fig. 7. Relationship between basic reproduction number R0 with β1, β2, β
′
1, ω1, θ, β

′
2, ω2

and α.

In Figure 9, we have plotted the asymptomatically infected individuals against of

stress-related parameters (ω1, ω2) to observe the variation of I1 over time for different values
of p. In this figure, it is shown that the infected population increases when p starts to increase. In
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Fig. 8. Trajectory profiles of asymptomatically infected population (I1) for different values of θ.

Figure 9,a the rate of increment is higher than of Figure 9,b, i.e.,ω1 has more impact on disease

transmission thanω2. It is also concluded that the higher level of environmental stress can cause

an increase in disease transmission.
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Fig. 9. (a) Variation of asymptomatically infected population (I1) due to change in pollution level,

ω1 for different values of p. (b) Variation of asymptomatically infected population (I1) due to

change in pollution level,ω2 for different values of p.

Also, infected population changes for increasing stress levels (β
′
1, β

′
2) with increasing

value of θ (see Figure 10). In figures 11 and 12, the impacts of stress related parameters

ω1, ω2, β
′
1, β

′
2 on asymptomatically infected individual have been studied for different values

of θ and p respectively. From Figure 9 – Figure 12, it is concluded that the asymptomatically

infected individuals increase with ωi, β
′
i for i = 1, 2 when θ and p are increased. As a result,

the environmental pollution has an important role in disease transmission.

In Figure 13, the growth of asymptomatically infected individuals has been observed in

presence as well as in absence of stressed population. In the case of absence of stressed

population, we have taken p = 0, θ = 0 and q = 0 to stop the influx of people in X2 class. It

is observed that the growth of asymptomatically infected population is lower when there is no
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Fig. 10. (a) Variation of asymptomatically infected population (I1) due to change in pollution

level,ω1 for different values of θ. (b) Variation of asymptomatically infected population (I1) due

to change in pollution level,ω2 for different values of θ.
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Fig. 11. (a) Variation of asymptomatically infected population (I1) due to β
′
1, which is effect of

pollution on β1 for different values of p. (b) Variation of asymptomatically infected population

(I1) due to β
′
2, which is effect of pollution on β2 for different values of p.
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Fig. 12. (a) Variation of asymptomatically infected population (I1) due to β
′
1, which is effect of

pollution on β1 for different values of θ. (b) Variation of asymptomatically infected population

(I1) due to β
′
2, which is effect of pollution on β2 for different values of θ.
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Fig. 13. Trajectories of asymptomatically infected population in the presence and absence of stress.

environmental stress.

9. OPTIMALCONTROLPROBLEM

Here we have formulated an optimal control problem corresponding to system (1) taking

(i) treatment policy to symptomatically infected individuals and (ii) vaccination policies for

susceptible and stressed people as control strategies. We have analysed how these control

parameters make an impact on disease transmission and also try to optimize the cost incurred

in their implementations [47, 48, 49]. A brief description about these control policies will help

to understand their influence for controlling the disease transmission.

(i) Providing treatment to symptomatically infected individuals:More of infectious people

enter into recovered class if proper and better treatment can be given to them at symptomatically

infected stage. So, a better treatment can low the disease prevalence resulting in a lesser infected
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present in the system and hence the transmission from susceptible and stressed classes to infected

class also reduce. Now, medical treatments or diagnosis provided to patients are limited and

this is why we have incorporated a saturated treatment rate function ε3u3I2
1+ζ3I2

to obtain (7). Here

ε3 denotes the treatment rate with intensity u3 and saturation constant ζ−1
3 . All the expenses

regarding diagnosis procedure have been considered at the time of treatment.Also, the treatment

intensity u3 is the control variable with the restriction 0 ≤ u3 ≤ 1.
(ii) Providing vaccines to susceptible and stressed individuals: Proper vaccination given to

susceptible and stressed population acts as a precaution from getting infected. If we can introduce

some vaccination processes for both the susceptible and stressed individuals so that they can

directly move into recovered class, then that can be considered as a possible tool to decrease the

disease transmission in the population. In our model system (7), u1, u2 represent the intensities

of vaccination processes satisfying 0 ≤ u1 ≤ 1, 0 ≤ u2 ≤ 1 where 0 implies no improvement
by vaccine and 1 implies full improvement by proper vaccine. Also, ε1, ε2 denote the rates

at which a vaccine is provided to the individuals. So, both u1 and u2 change with vaccination

procedure which implies that u1, u2 can be taken as control variables. As this process requires

some external bits of help and is not natural, so, vaccine cost etc. are involved in terms of

non-linear functions of u1(t), u2(t) to enhance the procedure.
The main aim of formulating a system with control interventions is to obtain optimal

treatment as well as optimal vaccination intensity by dint of information with minimum cost.

The mentioned analysis gives that the control variables u1(t), u2(t) and u3(t) belong to the

following set:

Π = {(u1(t), u2(t), u3(t)) | (u1(t), u2(t), u3(t)) ∈ [0, 1]× [0, 1]× [0, 1], t ∈ [0, Tf ]}

where Tf is the final time up to which control policies can be executed, and u1(t), u2(t) and
u3(t) all are bounded and measurable functions.

9.1 Determination of Total Cost

Let us first determine the total cost that has to be minimized for control interventions in the

system.

(i) Cost involved in treatment to symptomatically infected individuals: The total cost

associated with disease burden and better treatment for symptomatic infected people is∫ Tf

0

[
w1I2(t) + w4u

2
3(t)
]
dt

Cost associated with symptomatically infected people due to loss in manpower and the wealth

is represented by w1I2(t) [50, 51, 52] which expresses the opportunity loss or productivity

lose due to sickness. The term w4u
2
3 denotes the cost during treatment including medication

charges, the better expenditure of hospitalization etc. For treatment policy, we have considered

a quadratic nonlinearity u2
3 [50, 51, 52]. Non-linearity up to 2

nd order represents the seriousness

of the drugs which are used during the treatment period. Here w1, w4 are the positive weights

associated with symptomatically infected people and better treatment policy respectively.

(ii) Cost involved in vaccination procedure: The total cost incurred for the vaccination process

given to susceptible and stressed population is∫ Tf

0

[w2u
2
1(t) + w3u

2
2(t)]dt
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Here w2u
2
1(t) and w3u

2
3(t) denote the costs for vaccines applied to susceptible and stressed

population respectively. By convention, w2, w3 are the positive weights associated with

vaccination. These terms include the costs of the whole procedure of vaccination. Now, all

the vaccines are not easily available and also even affordable. So, applying such vaccines

are costly enough. Some researchers, in their work, have analysed the impact of the cost

associated considering the non-linearity up to order two [53, 51, 54] and we have taken the

same assumption here. The non-linearity up to order two has been taken here as u2
1(t) and

u2
2(t) which describe the impact of the cost associated with vaccination. These terms reflect the

importance of vaccination to reduce disease transmission also.

The following control problem is constructed taking into consideration the previous discussions

along with the cost functional J which has to be minimized:

J [u1(t), u2(t), u3(t)] =

∫ Tf

0

[
w1I2(t) + w2u

2
1(t) + w3u

2
2(t) + w4u

2
3(t)
]
dt (6)

subject to the model system:

dX1

dt
= (1− p)Λ− dX1 − θX1 + (1− q)γR− (β1I1 + β2I2)X1 −

ε1u1X1

1 + ζ1X1

,

dX2

dt
= pΛ + θX1 − dX2 + qγR− {β1(1 +ω1β

′

1)I1 + β2(1 +ω2β
′

2)I2}X2 −
ε2u2X2

1 + ζ2X2

,

dI1
dt

= (β1I1 + β2I2)X1 + {β1(1 +ω1β
′

1)I1 + β2(1 +ω2β
′

2)I2}X2 − (d+ δ+ η)I1,

dI2
dt

= ηI1 − (d+ δ)I2 − αI2 −
ε3u3I2
1 + ζ3I2

,

dR

dt
= αI2 − (γ+ d)R +

ε1u1X1

1 + ζ1X1

+
ε2u2X2

1 + ζ2X2

+
ε3u3I2
1 + ζ3I2

,

(7)

with the initial conditions X1(0) > 0, X2(0) > 0, I1(0) ≥ 0, I2(0) ≥ 0 and R(0) ≥ 0. Here
the functional J is the total cost representing sum of the costs as stated. The integrand:

L(X1, X2, I1, I2, R, u1(t), u2(t), u3(t)) = w1I2(t) + w2u
2
1(t) + w3u

2
2(t) + w4u

2
3(t)

denotes the cost at time t. Parameters w1, w2, w3 and w4 are positive weight constants which

balance the units of integrand [50, 51]. Let us denote u1(t) = u1, u2(t) = u2 and u3(t) = u3 at

the time of calculation. The optimal control interventions u∗
1, u

∗
2 and u

∗
3 exists inΠ and it mainly

minimizes the cost functional J.

Th e o r em 10. There exists optimal controls u∗
1, u∗

2 and u∗
3 in Π corresponding to the

control system (6)-(7) such that J(u∗
1, u

∗
2, u

∗
3) = min[J(u1, u2, u3)].

P r o o f. Proof has been given in Appendix.

Now, by Pontryagin’s Maximum Principle optimal controls u∗
1, u

∗
2 and u

∗
3 of the system can

be found as follows.

Th e o r em 11. If u∗
1, u∗

2 and u∗
3 be optimal control variables and X∗

1 , X
∗
2 , I

∗
1 , I

∗
2 , R

∗ be

the corresponding optimal state variables of the control system (6)-(7), then there exists adjoint
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variable λ = (λ1, λ2, λ3, λ4, λ5) ∈ R5 which satisfies the following canonical equations:

dλ1

dt
= λ1

[
d+ θ+ β1I1 + β2I2 +

ε1u1

(1 + ζ1X1)2

]
− λ2θ− λ3(β1I1 + β2I2)− λ5

ε1u1

(1 + ζ1X1)2
,

dλ2

dt
= λ2

[
d+ β1(1 +ω1β

′

1)I1 + β2(1 +ω2β
′

2)I2 +
ε2u2

(1 + ζ2X2)2

]
− λ3

[
β1(1 +ω1β

′

1)I1 + β2(1 +ω2β
′

2)I2

]
− λ5

ε2u2

(1 + ζ2X2)2
,

dλ3

dt
= λ1β1X1 + λ2β1(1 +ω1β

′

1)X2 − λ3{β1X1 + β1(1 +ω1β
′

1)X2 − (d+ δ+ η)} − λ4η,

dλ4

dt
= −w1 + λ1β2X1 + λ2β2(1 +ω2β

′

2)X2 − λ3{β2X1 + β2(1 +ω2β
′

2)X2}

+ λ4

(
d+ δ+ α+

ε3u3

(1 + ζ3I2)2

)
− λ5

(
α+

ε3u3

(1 + ζ3I2)2

)
,

dλ5

dt
= −λ1(1− q)γ− λ2qγ+ λ5(d+ γ)

(8)

with the transversality conditions λi(Tf ) = 0 for i = 1, 2, 3, 4, 5. The corresponding optimal

controls u∗
1, u

∗
2 and u

∗
3 are given by

u∗
1 = min

{
max

{
0,

(
ε1X

∗
1

2w2 (1 + ζ1X∗
1 )

(λ1 − λ5)

)}
, 1

}
,

u∗
2 = min

{
max

{
0,

(
ε2X

∗
2

2w3 (1 + ζ2X∗
2 )

(λ2 − λ5)

)}
, 1

}
,

and u∗
3 = min

{
max

{
0,

(
ε3I

∗
2

2w4 (1 + ζ3I∗2 )
(λ4 − λ5)

)}
, 1

}
.

(9)

P r o o f. Proof is given in Appendix.

10. NUMERICAL SIMULATION IMPLEMENTING THE CONTROLPOLICIES

In previous sections, we have analyzed the stability criterion of the equilibrium points and

found the optimal control paths to minimize the total cost considered for corresponding optimal

control problem. Here we have performed the numerical simulations for system (7) to support

the analytical findings and to observe the effect of control variables in the system dynamics. We

have considered the cases of implementation of one or two or all control strategies to find the

minimal cost one by one.

The corresponding control system stated in equations (6)-(7) have been solved here

numerically for parametric values in Table 2 with the initial population size: X1(0) =
90, X2(0) = 250, I1(0) = 50, I2(0) = 20 and R(0) = 10. The pictorial scenarios for

different cases can be obtained by MATLAB. The optimal control interventions are found using

Forward-backward sweep method. Here the optimal state system and the adjoint state system are

respectively solved forward and backward in time. In the next step, the steepest descent method

is used to update the optimal controls using Hamiltonian for the optimality of the system [60]

and it continues till the convergence. In this work, the control policies are applied and observed

for approximately 90 days.
Figure 14 shows the population trajectories with time when there are no control policies,

i.e., ui = 0 for i = 1, 2, 3. In this situation, at Tf = 90, the population is (85.16441616,

230.30053701, 57.07727059, 11.73755345, 10.32798982). It is observed that the growth of

asymptomatically infective population first increases and reaches its maximum values within
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Table 2. Parametric values used in model system (7)

Parameter Value Source

Λ 10 person/day [55]

δ 0.03/day [50]

d 0.02 [56]

α 0.05/day [57]

β1 0.0002/day [58]

γ 0.04/day [59]

β2 0.00005/day Assumed

p 0.4 Assumed

θ 0.04 Assumed

q 0.6 Assumed

ω1 0.3 Assumed

ω2 0.05 Assumed

β
′

1 0.1 Assumed

β
′

2 0.01 Assumed

η 0.02/day Assumed

ε1 0.001/day Assumed

ε2 0.8/day [50]

ε3 0.8/day [50]

ζ1 0.75/day Assumed

ζ2 0.045/day Assumed

ζ3 0.001/day Assumed

two weeks but then slowly decreases after around one month. Now, there is a significant number

of infective present for more than 30 days which causes the economic burden in terms of

productivity loss, mortality, morbidity and in procuring protective measures during this period.

In the following three figures the implementation effect of single control policy has been

discussed where the positive weight constants have been taken as w1 = 1, w2 = 500, w3 =
500 and w4 = 1800 [50]. In Figure 15, the population trajectories have been drawn when the

vaccination policy is applied only on susceptible individuals as a precaution, i.e., u1 is taken to

be a control parameter and the optimality of the system has been determined (taking u2 = u3 =
0). At Tf = 90, the population is (85.16441508, 230.30053695, 57.07727047, 11.73755344,

10.32799112). It is observed that the recovered population becomes higher than the case when

u1 is not implemented. If the people get vaccinated at the susceptible stage, then the chances of

being infected are lower and in fact, the count of people in both infectious stages has reduced in

this case. The top figure of left column in Figure 18 depicts the path of optimal intensity which
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Fig. 14. Profiles of populations in absence of controls. Parameters are as in Table 2.
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Fig. 15. Profiles of populations with applied optimal treatment u∗1 only and u2 = u3 = 0.

represents the pharmaceutical vaccination provided to the susceptible population. It shows that

this particular vaccination strategy hardly makes any impact in earlier days but after almost

two and a half months the intensity becomes higher. It leads to the conclusion that the applied

vaccination needs some time to show its effect to control the disease burden.

The population trajectories in Figure 16 can be obtained by solving system (7) only when the

vaccination applied to stressed population (u2) is considered. Here at Tf = 90, the population is
(85.1681878, 230.34242211, 57.07635690, 11.73587789, 10.32661119). Parameters have been

taken from Table 2 with mentioned weights. Vaccination provided to stressed population works

comparatively better to control the disease transmission as it increases both susceptible and

stressed population but decreases both infected populations. The right side figure in Figure 18

depicts the path of optimal intensity which represents the pharmaceutical vaccination provided

to the stressed population. In this case, it is observed that this particular vaccination strategy

works with a higher rate at an earlier stage of infection but after almost one and a half month,

the intensity becomes almost zero. It leads to the conclusion that the applied vaccination has a

transient effect to control the disease burden.
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Fig. 16. Profiles of populations with applied optimal treatment u∗2 only and u1 = u3 = 0.
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Fig. 17. Profiles of populations with applied optimal treatment u∗3 only and u1 = u2 = 0.

Trajectory profiles in Figure 17 depict the population when the treatment (u3) applied to

symptomatically infected population is considered.At Tf = 90, the population is (85.22158663,
231.45762501, 57.53470914, 11.67773883, 10.33995505). Providing better treatment to the

symptomatically infected population can control the disease transmission significantly as this

also increases both susceptible and stressed population and also recovered population.Moreover,

the symptomatically infected population also decreases. The bottom figure of left column

in Figure 18 represents the path of optimal intensity denoting the pharmaceutical treatment

provided to the symptomatically infected population. This control policy works with higher

intensity in the early stages and then it decreases with time. The treatment policy works for

quite a long time and can control the disease burden with higher intensity.

Trajectory profiles in Figure 19 depict the population when vaccination applied to both

susceptible and stressed population.At Tf = 90, the population is (85.16818672, 230.34242204,
57.07635678, 11.73587788, 10.32661249). Providing immunization also increases the number

of individuals in the susceptible and stressed population. So, a lesser number of people get

infected and the disease can not transmit that much.
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Fig. 18. Optimal intensity of treatment u∗1 when u2 = u3 = 0; u∗2 when u1 = u3 = 0 and u∗3 when

u2 = u3 = 0.
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Fig. 19. Profiles of populations with applied optimal treatments u∗1 and u
∗
2 but u3 = 0.

Trajectory profiles in Figure 20 depict the population when the susceptible population

takes vaccine as a precaution as well as the symptomatically infected population goes through

some better treatment policies. At Tf = 90, the population is (85.22158566, 231.45762497,

57.53470902, 11.67773882, 10.33995621). Providing vaccine to susceptible individuals and

treatment implemented to symptomatically infected population lead to more individuals in

susceptible as well as recovered class. The size of symptomatically infected population decreases

with a higher rate than the case when no control policies are applied.

Trajectory profiles in Figure 21 depict the population size when the stressed population takes

vaccine as a precaution as well as the symptomatically infected population goes through some

effective treatment policies. At Tf = 90, the population size is (85.22485747, 231.49232666,

57.53314564, 11.67620633, 10.33877987). So, effective treatment on symptomatically infected

population controls the disease transmission resulting in an increase of susceptible and stressed

population and also recovered population. And the symptomatically infected population also

decreases in this situation.

Implementation of the control policies is beneficial for the underlying system. Next, let

us consider the combination of three control policies simultaneously, i.e., a system where
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Fig. 20. Profiles of populations with applied optimal treatments u∗1 and u
∗
3 but u2 = 0.
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Fig. 21. Profiles of populations with applied optimal treatments u∗2 and u
∗
3 but u1 = 0.
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Fig. 22. Profiles of populations with both optimal control policies u∗1, u
∗
2 and u∗3. Parameters are

as in Table 2.
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the susceptible and stressed population are under vaccination strategy and effective treatment

policy is applied to symptomatically infected individuals. Figure 22 depicts the trajectory

profiles of the population in the presence of all control interventions. Here at Tf = 90, the
population size is (85.22485651, 231.49232661, 57.53314535, 11.67620632, 10.33878102).

So, the implementation of all the control policies works better to control disease transmission

as expected. Vaccination and treatment policies reduce the overall infected population and

also increase the susceptible population. The paths of the optimal control strategies have been

depicted in Figure 23. As per the simulations performed in this work: (i) the control policy

representing vaccination applied to susceptible individuals works better in the later stage, i.e.,

it works after almost two months; (ii) the control policy for vaccination applied to stressed

individuals works better in the earlier stage, i.e., it works better for almost first month and (iii)

the control policy regarding treatment applied to symptomatically infected individuals works

with higher intensity in the earlier stage but it decreases with time.
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Fig. 23. Profiles of optimal controls u∗1, u
∗
2 and u

∗
3. Other parameters are as in Table 2.

The cost design analysis in presence as well as in absence of controls have been performed in

Figure 24 because cost-effectiveness is one of the major attributes to determine the fitness. Two

cases have been considered here: (i) when there is no implemented control policy and (ii) when

all the control policies are implemented in the corresponding system. Optimal cost profiles for

both the cases are depicted in Figure 24,a. Moreover, the trajectory profiles of symptomatically

infected individuals and recovered individuals can be observed from figures 24,b and 24,c

respectively. The cost, in absence of any control policy, occurs because of productivity loss

by both infective populations. The opportunity loss is higher as the disease spread out and both

the infected population increase with higher rates. As a result, after a certain time economic

burden also increases. On the other hand, in the presence of all control policies in the system,

the optimal cost is lower than the case when no control policy is implemented. Lesser number

of infected individuals mainly reduce the overall cost due to opportunity loss.

10.1 Effect of Saturated Treatment on Optimal Control Policies

This section contains how pharmaceutical treatment affects the disease dynamics in the

presence of control policies with optimal intensities. Saturation rate on treatment (ζ−1
3 ) and

the treatment rate (ε3) have been varied in the following figures. Figure 25 shows the graphs of
symptomatically infected population and corresponding cost for different values of ζ3. With the

increase of ζ3, the number of infected individuals, as well as the associated cost, also increase

because of the proliferation of infective related productivity loss. The optimal controls have been
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Fig. 24. (a) Cost distribution in presence and absence of control policies. (b) Profiles of

symptomatically infected population under different control policies. (c) Profiles of recovered

population in presence and absence of control policies. Other parameters are as in Table 2.

drawn in Figure 26 from which it is observed that for increasing value of ζ3, the control policy

denoting vaccination for susceptible individuals starts to show its impact earlier. It means that

smaller saturation rate increases the time period during which the control policy is implemented

successfully. Also, increasing value of ζ3 increases the intensity level of the control denoting

vaccination for the stressed population too. On the contrary, increasing value of ζ3 decreases the

intensity level of the control denoting treatment of the symptomatically infected population.

Further, when the treatment rate (ε3) is varied from 0.5 to 0.8, the symptomatically infected
population decreases with time following a reduction in associated cost too (Fig. 27). From

Figure 28, it is observed that for increasing value of ε3, the control policy denoting vaccination

for susceptible individuals starts to show its impact later. It means that higher treatment rate

decreases the time period during which the control policy (for vaccination) is implemented

successfully. Also, increasing value of ε3 decreases the intensity level of the control denoting

vaccination for the stressed population too. On the contrary, increasing value of ε3 increases the

intensity level of the control denoting treatment of the symptomatically infected population.
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Fig. 25. (a) Profiles of symptomatically infected population for various ζ3 with u
∗
1, u

∗
2 and u

∗
3. (b)

Profiles of cost for various ζ3 with u
∗
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∗
2 and u

∗
3. Other parameters are as in Table 2.
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Fig. 26. (a) Plots of control u∗1 for various ζ3. (b) Plots of control u
∗
2 for various ζ3. (c) Plots of

control u∗3 for various ζ3. Other parameters are as in Table 2.
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Fig. 27. (a) Profiles of infected population for various ε3 with u∗1, u
∗
2 and u∗3. (b) Profiles of cost

for various ε with u∗1, u
∗
2 and u

∗
3. Other parameters are as in Table 2.
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Fig. 28. (a) Plots of control u∗1 for various ε3. (b) Plots of control u
∗
2 for various ε3. (c) Plots of

control u∗3 for various ε3. Other parameters are as in Table 2.
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11. CONCLUSION

Environmental stress mainly expedite the effect of pollutants on organisms. In this work,

a compartmental model with infectious disease has been proposed in system (1) to analyse the

impact of environmental stress on the dynamics of disease transmission. Pictorial scenarios have

been depicted to show how environmental stress affects disease transmission. For increasing

values of θ and p, the asymptomatically infected population also increases. It means, if the

stressed population increases, it will lead to the inclination of the infected population also. Also,

asymptomatically infected population with respect to the stress parameters ω1, ω2 and β
′
1,β

′
2

increases for increasing values of p and θ. But the increment of infected individuals are higher for
ω1, β

′
1 rather thanω2, β

′
2. Now the basic reproduction numberR0 also increases for increasing

environmental stress level but it is shown thatR0 is most sensitive to the disease transmission rate

among asymptomatically infected individuals (β1). As the basic reproduction number denotes

the average number of newly infective from a single infected, then it is evident that increasing

the value of R0 causes more infected individuals in the system.

Introducing optimal control policies reduce the disease prevalence to some extent. From

the numerical scenarios of Section 10 it is observed that, if we apply any one of the control

policies, that should be effective but with certain restrictions. Optimal response due to the

vaccination policy among the individuals of the susceptible population works better at a later

stage while vaccination policy for stressed people works with higher intensity at an earlier stage

of the infected period. With time the vaccination control intensity (among individuals of the

stressed population) decreases and ultimately it does not make any impact to reduce the disease

burden. So, providing a suitable vaccine to the susceptible population at the beginning can reduce

the economic burden. Moreover, the control policy corresponding to effective treatment for

symptomatic individuals works better in the first month of infection and then starts to decrease

(as per the simulations). Also, the optimal treatment can minimize the cost burden as well as the

size of overall infected individuals and the duration of disease prevalence. It is evident that the

overall infected population decreases significantly in the presence of all the control interventions

rather than in the absence of control policies. These policies can minimize the overall economic

load also. So, implementation of all control policies is more effective and economical to reduce

disease transmission in the presence of environmental pollution.

The first author (Sangeeta Saha) is thankful to the University Grants Commission, India for providing
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APPENDIX

1. Existence of Optimal Control Functions

Here we derive the conditions for which optimal control interventions exist and minimize

the cost function within a finite time.

Proof of Theorem 10

P r o o f. For existence of optimal controls, the following conditions need to be satisfied:

(i) Set of solutions of system (7) with control variables u1, u2 and u3 in Π 6= φ.

(ii) Π is closed, convex and state system can be expressed as a linear function of control

variables with coefficients depending on time and state variables.

(iii) The integrand of (6) denoted as L is convex on Π and L(X1, X2, I1, I2, R, u1, u2, u3) ≥
g(u1, u2, u3) where g(u1, u2, u3) is continuous and ||(u1, u2, u3)||−1g(u1, u2, u3) → ∞ whenever

||(u1, u2, u3)|| → ∞; ||.|| represents the L3(0, Tf ) norm.

From (7), the total population N = X1 +X2 + I1 + I2 +R.

So,
dN

dt
= Λ− dN − δ(I1 + I2) ≤ Λ− dN

⇒ 0 < N(t) ≤ N(0)e−dt +
Λ

d

(
1− e−dt

)
,

where N(0) represents the sum of the initial values of the variables (X1, X2, I1, I2, R).

As t → ∞, 0 < N(t) ≤ Λ
d .

For each control variable in Π, the solution of (7) is bounded as well as right hand side

functions are locally Lipschitzian with respect to all the variables. So, by Picard − Lindelöf

theorem, condition (i) is satisfied [61].

Now the control set Π is closed and convex by definition. Again each equation of system

(7) can be written as a linear equation in control variables u1, u2 and u3 with state variables

dependent coefficients and so condition (ii) is also satisfied. Now the quadratic nature of all

control variables u1, u2 and u3 ensure that the integrand L(X1, X2, I1, I2, R, u1, u2, u3) is convex.

Also, L(X1, X2, I1, I2, R, u1, u2, u3) = w1I2 + w2u
2
1 + w3u

2
2 + w4u

2
3

≥ w2u
2
1 + w3u

2
2 + w4u

2
3

Let, c = min(w2, w3, w4) > 0 and g(u1, u2, u3) = c(u21 + u22 + u23).

Then L(X1, X2, I1, I2, R, u1, u2, u3) ≥ g(u1, u2, u3).

Here g is continuous and ||(u1, u2, u3)||−1g(u1, u2, u3) → ∞ whenever ||(u1, u2, u3)|| → ∞.

Hence, condition (iii) holds good. From [62, 50], it is concluded that there exists control

interventions u∗1, u
∗
2 and u∗3 such that J [u

∗
1, u

∗
2, u

∗
3] = min[J [u1, u2, u3]].

2. Characterization of Optimal Control Functions

By Pontryagin’s Maximum Principle, we have derived here the necessary conditions for

optimal control functions for system (6)-(7) [62, 63]. Let us define the Hamiltonian function as:

H (X1, X2, I1, I2, R, u1, u2, u3,Ψ) = L(X1, X2, I1, I2, R, u1, u2, u3) + λ1
dX1

dt
+ λ2

dX2

dt
+ λ3

dI1
dt

+ λ4
dI2
dt

+ λ5
dR

dt
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So, H = w1I2 + w2u
2
1 + w3u

2
2 + w4u

2
3 + λ1 [(1− p)Λ− dX1 − θX1 + (1− q)γR

−(β1I1 + β2I2)X1 −
ε1u1X1

1 + ζ1X1

]
+ λ2 [pΛ + θX1 − dX2 + qγR

−{β1(1 +ω1β
′

1)I1 + β2(1 +ω2β
′

2)I2}X2 −
ε2u2X2

1 + ζ2X2

]
+ λ3 [(β1I1 + β2I2)X1

+{β1(1 +ω1β
′

1)I1 + β2(1 +ω2β
′

2)I2}X2 − (d+ δ+ η)I1

]
+ λ4 [ηI1 − (d+ δ)I2 − αI2

− ε3u3I2
1 + ζ3I2

]
+ λ5

[
αI2 − (γ+ d)R+

ε1u1X1

1 + ζ1X1
+

ε2u2X2

1 + ζ2X2
+

ε3u3I2
1 + ζ3I2

]
(10)

Here Ψ = (λ1, λ2, λ3, λ4, λ5) is the adjoint variable. We get minimized Hamiltonian by

Pontryagin’s Maximum Principle to minimize the cost functional. Pontryagin’s Maximum

Principle mainly adjoin the cost functional with the state equations by introducing adjoint

variables.

Proof of Theorem 11

P r o o f. Let u∗1, u∗2 and u∗3 be optimal control variables and X∗
1 , X

∗
2 , I

∗
1 , I

∗
2 , R

∗

are corresponding optimal state variables of the control system (7) which minimize the

cost functional (6). So, by Pontryagin’s Maximum Principle, there exist adjoint variables

λ1, λ2, λ3, λ4, λ5 which satisfy the following canonical equations:

dλ1
dt

= − ∂H

∂X1
,

dλ2
dt

= − ∂H

∂X2
,

dλ3
dt

= −∂H

∂I1
,

dλ4
dt

= −∂H

∂I2
,

dλ4
dt

= −∂H

∂R
.

So, we have

dλ1
dt

= λ1

[
d+ θ+ β1I1 + β2I2 +

ε1u1(t)

(1 + ζ1X1)2

]
− λ2θ− λ3(β1I1 + β2I2)− λ5

ε1u1(t)

(1 + ζ1X1)2
,

dλ2
dt

= λ2

[
d+ β1(1 +ω1β

′

1)I1 + β2(1 +ω2β
′

2)I2 +
ε2u2

(1 + ζ2X2)2

]
− λ3

[
β1(1 +ω1β

′

1)I1 + β2(1 +ω2β
′

2)I2

]
− λ5

ε2u2(t)

(1 + ζ2X2)2
,

dλ3
dt

= λ1β1X1 + λ2β1(1 +ω1β
′

1)X2 − λ3{β1X1 + β1(1 +ω1β
′

1)X2 − (d+ δ+ η)} − λ4η,

dλ4
dt

= −w1 + λ1β2X1 + λ2β2(1 +ω2β
′

2)X2 − λ3{β2X1 + β2(1 +ω2β
′

2)X2}

+ λ4

(
d+ δ+ α+

ε3u3(t)

(1 + ζ3I2)2

)
− λ5

(
α+

ε3u3(t)

(1 + ζ3I2)2

)
,

dλ5
dt

= −λ1(1− q)γ− λ2qγ+ λ5(d+ γ)

(11)

with the transversality conditions λi(Tf ) = 0, for i = 1, 2, 3, 4, 5.

From optimality conditions :
∂H

∂u1

∣∣∣∣
u1=u∗

1

= 0,
∂H

∂u2

∣∣∣∣
u2=u∗

2

= 0 and
∂H

∂u3

∣∣∣∣
u3=u∗

3

= 0.

So, u∗1 =
ε1X∗

1

2w2(1+ζ1X∗
1 )

(λ1 − λ5) , u
∗
2 =

ε2X∗
2

2w3(1+ζ2X∗
2 )

(λ2 − λ5) and u∗3 =
ε3I∗

2

2w4(1+ζ3I∗
2 )

(λ4 − λ5) . Now
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from these findings along with the characteristics of control set Π, we have

u∗1 =


0, if

ε1X∗
1

2w2(1+ζ1X∗
1 )

(λ1 − λ5) < 0
ε1X∗

1

2w2(1+ζ1X∗
1 )

(λ1 − λ5) , if 0 ≤ ε1X∗
1

2w2(1+ζ1X∗
1 )

(λ1 − λ5) ≤ 1

1, if
ε1X∗

1

2w2(1+ζ1X∗
1 )

(λ1 − λ5) > 1

u∗2 =


0, if

ε2X∗
2

2w3(1+ζ2X∗
2 )

(λ2 − λ5) < 0
ε2X∗

2

2w3(1+ζ2X∗
2 )

(λ2 − λ5) , if 0 ≤ ε2X∗
2

2w3(1+ζ2X∗
2 )

(λ2 − λ5) ≤ 1

1, if
ε2X∗

2

2w3(1+ζ2X∗
2 )

(λ2 − λ5) > 1

u∗3 =


0, if

ε3I∗
2

2w4(1+ζ3I∗
2 )

(λ4 − λ5) < 0
ε3I∗

2

2w4(1+ζ3I∗
2 )

(λ4 − λ5) , if 0 ≤ ε3I∗
2

2w4(1+ζ3I∗
2 )

(λ4 − λ5) ≤ 1

1, if
ε3I∗

2

2w4(1+ζ3I∗
2 )

(λ4 − λ5) > 1

which is equivalent as (9).

3. Optimal System

Now we state the optimal system with the optimal control variables u∗1, u∗2 and u∗3 defined

in section 9. The optimal system with minimized Hamiltonian H∗ at (X∗
1 , X

∗
2 , I

∗
1 , I

∗
2 , R

∗, λ1,

λ2, λ3, λ4, λ5) is as follows:

dX∗
1

dt
= (1− p)Λ− dX∗

1 − θX∗
1 + (1− q)γR∗ − (β1I

∗
1 + β2I

∗
2 )X

∗
1 − ε1u

∗
1X

∗
1

1 + ζ1X∗
1

,

dX∗
2

dt
= pΛ + θX∗

1 − dX∗
2 + qγR∗ − {β1(1 +ω1β

′

1)I
∗
1 + β2(1 +ω2β

′

2)I
∗
2}X∗

2 − ε2u
∗
2X

∗
2

1 + ζ2X∗
2

,

dI∗1
dt

= (β1I
∗
1 + β2I

∗
2 )X

∗
1 + {β1(1 +ω1β

′

1)I
∗
1 + β2(1 +ω2β

′

2)I
∗
2}X∗

2 − (d+ δ+ η)I∗1 ,

dI∗2
dt

= ηI∗1 − (d+ δ)I∗2 − αI∗2 − ε3u
∗
3I

∗
2

1 + ζ3I∗2
,

dR∗

dt
= αI∗2 − (γ+ d)R∗ +

ε1u
∗
1X

∗
1

1 + ζ1X∗
1

+
ε2u

∗
2X

∗
2

1 + ζ2X∗
2

+
ε3u

∗
3I

∗
2

1 + ζ3I∗2
,

(12)

with initial conditions: X∗
1 (0) > 0, X∗

2 (0) > 0, I∗1 (0) ≥ 0, I∗2 (0) ≥ 0 and R∗(0) ≥ 0. The

corresponding adjoint system is:

dλ1
dt

= λ1

[
d+ θ+ β1I

∗
1 + β2I

∗
2 +

ε1u
∗
1

(1 + ζ1X∗
1 )

2

]
− λ2θ− λ3(β1I

∗
1 + β2I

∗
2 )− λ5

ε1u
∗
1

(1 + ζ1X∗
1 )

2
,

dλ2
dt

= λ2

[
d+ β1(1 +ω1β

′

1)I
∗
1 + β2(1 +ω2β

′

2)I
∗
2 +

ε2u
∗
2

(1 + ζ2X∗
2 )

2

]
− λ3

[
β1(1 +ω1β

′

1)I
∗
1 + β2(1 +ω2β

′

2)I
∗
2

]
− λ5

ε2u
∗
2

(1 + ζ2X∗
2 )

2
,

dλ3
dt

= λ1β1X
∗
1 + λ2β1(1 +ω1β

′

1)X
∗
2 − λ3{β1X

∗
1 + β1(1 +ω1β

′

1)X
∗
2 − (d+ δ+ η)} − λ4η,

dλ4
dt

= −w1 + λ1β2X
∗
1 + λ2β2(1 +ω2β

′

2)X
∗
2 − λ3{β2X

∗
1 + β2(1 +ω2β

′

2)X
∗
2}

+ λ4

(
d+ δ+ α+

ε3u
∗
3

(1 + ζ3I∗2 )
2

)
− λ5

(
α+

ε3u
∗
3

(1 + ζ3I∗2 )
2

)
,

dλ5
dt

= −λ1(1− q)γ− λ2qγ+ λ5(d+ γ),

(13)
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with transversality conditions λi(Tf ) = 0, for i = 1, 2, 3, 4, 5 and u∗1, u
∗
2 and u∗3 are same as (9).
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