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Abstract. Various regimes of a charge motion along a chain in a constant electric

field are investigated. This motion is simulated on the basis of the Holstein model.

Earlier studies demonstrate a possibility of a uniform motion of a charge in a

constant electric field over very long distances. For small values of the electric

field intensity a Holstein polaron can move at a constant velocity. As the electric

field intensity increases, a chargemotion acquires oscillatorily character, performing

Bloch oscillations. Since the charge motion depends on the whole set of the system

parameters the character of the motion depends not only on the value of the electric

field intensity. Therefore, the electric field intensity for which the uniform motion

takes place differs for chains with different parameters. The character of the charge

motion and distribution is considered in chains with different values of the constant

of coupling between the charge and the displacements of the chain. It is shown that

the values of the electric field intensity for which the regime of a charge motion

changes are different in chains with different values of the coupling constant. It is

also demonstrated that for one and the same value of the electric field intensity, in

chains with different values of the coupling constant either a uniform motion or an

oscillatory motion, or a stationary polaron can be observed.

Key words: nanobioelectronics, nanowires, molecular chains, polarons, DNA, charge

transfer, Holstein model.

INTRODUCTION

Elucidation of the mechanisms of electron transport in DNA which is the most important

problem of nanobioelectronics is dealt with in a large number of theoretical and experimental

works [1]–[17].Of particular interest is the study of charge transfer in DNA in the presence of

an electric field [18]–[25].

In the work presented, the motion of a charge along a chain in the presence of a constant

electric field is simulated on the basis of the Holstein model [26, 27]. Modeling of the charge

motion even in a homogeneous polynucleotide chain is a multipleparameter problem. Therefore,

despite the simplicity of the model chosen, various and complex dynamic regimes can take place

in the system under consideration. The character of the motion and distribution of a charge along

the chain depends on many parameters of the system: on each of the parameters of the chain, on

the value of the electric field intensity, on the initial distribution of the charge in the chain.

Earlier studies ([18], [22], [24]) show that the uniform motion of a polaron along a chain is

possible for small values of the electric field intensity. In [28] a possibility of a uniformmotion of

a polaron in a homogeneous Holstein chain in a constant electric field over very large distances
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was shown. For large values of the electric field intensity, a uniform motion is not observed, the

charge loses its original shape and moves along the chain in the direction of the field performing

Bloch oscillations. But the character of a charge motion along the chain depends not only on

the value of the electric field intensity, but also on the parameters of the chain and even on the

initial distribution of the charge.

In this work, we investigate the motion of a charge in a constant electric field in

polynucleotide chains with different values of the constant of coupling between the charge and

the displacements of the chain. The values of other parameters of the chain do not change. In

the course of a uniform motion along the chain, the charge moves maintaining its shape. In

this case, we can say that a polaron is moving along the chain. In this work, the dependence

of the velocity of a uniformly moving polaron on the value of the coupling constant between

the charge and the displacements of the chain is shown. In the course of oscillatory motion, the

charge loses its original shape and moves along the chain in the direction of the field, performing

Bloch oscillations. In this case, the instantaneous and average velocities of the charge motion

were considered and their dependence on the value of the coupling constant was investigated.

MATHEMATICALMODELAND INITIALDATA

Simulation of a charge motion in a homogeneous molecular chain in the presence of a

constant electric field was carried out on the basis of the Holstein model [26, 27]. Within the

framework of this model, DNA is considered as a homogeneous chain composed of N sites.

Each site is a nucleotide pair, which is considered as a harmonic oscillator [17]. The motion of a

charge in a constant electric field is modeled by a system of coupled quantum-classical dynamic

equations with dissipation. The dynamics of an electron is described by the linear Schrödinger

equation, and the dynamics of sites with allowance for dissipation is described by the classical

equations of motion.

To simulate the dynamics of a quantum particle in a chain ofN nucleotide pairs, we will use

the Holstein Hamiltonian, in which each site is a diatomic molecule:

Ĥ = −
∑N

n ν
(
|n〉〈n− 1|+ |n〉〈n+ 1|

)
+
∑N

n αqn|n〉〈n|

+
∑N

n Mq̇2n/2 +
∑N

n kq2n/2 +
∑N

n eEn|n〉〈n|, (1)

where ν is a matrix element of a charge transition between neighboring sites (nucleotide pairs),

α is a constant of charge interaction with sites displacements qn, M is the effective mass of a

site, k is an elastic constant, e is the electron charge, E is the electric field intensity.

The equations of motion for the Hamiltonian Ĥ lead to the following system of differential

equations:

iĀhḃn = −ν(bn−1 + bn+1) + αqnbn + eEanbn, (2)

Mq̈n = −γq̇n − kqn − α|bn|2 , (3)

where bn is the amplitude of the probability of a charge occurrence on the n-th site,
∑

n |bn|2 = 1,
Āh = h/2π, h is Planck’s constant. Classical motion equations (3) involve dissipation determined

by the friction coefficient γ.

Equations (2) are Schrödinger equations for the probability amplitudes bn, which describe

evolution of a particle in deformable chain. Equations (3) are classical motion equations which

describe the dynamics of nucleotide pairs with account taken for dissipation.

For numerical simulation of the polaron motion, we pass on to dimensionless variables using
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the relations:

η = τν/Āh , ω2 = τ2K/M , ω′τγ/M , qn = βun,

E = Eeaτ
/
Āh, κω2 = τ3(α)2/MĀh , β = τ2α/M , t = τt̃ , (4)

where τ is an arbitrary time scale which relates time t and dimensionless variable t̃, t̃ = t/τ,
τ = 10−14 sec (arbitrary time scale).

In dimensionless variables (4) equations (2), (3) take the form:

i
dbn

dt̃
= −η

(
bn+1 + bn−1

)
+ κω2unbn + Enbn, (5)

d2un

dt̃2
= −ω′dun

dt̃
−ω2un − |bn|2 , (6)

where bn are amplitudes of the probability of charge’s occurrence on the n-th site,
∑

n |bn(t̃)|2 =
1, η – are matrix elements of the transition through sites, ω is the frequency of oscillations of

the n-th site, κ is the coupling constant,ω′ is a friction coefficient, un are displacements of sites

from their equilibrium positions,E is the electric field intensity. In dimensional units the electric

field intensity is E ≈ E·1.88·106V /cm.

The model introduced in this way, which describes the dynamics of a charged particle in a

polynucleotide chain, explicitly takes into account dissipation in the system under consideration.

The system of nonlinear differential equations (5), (6) is solved by the Runge-Kutta method

of the 4th order. The calculations were carried out using the computing facilities of the JSCC

RAS.

In the absence of an electric field, the system of equations (5), (6) in the continual limit has

a stationary solution in the form of an inverse hyperbolic cosine:

| bn(0)| =
√
2

4

√
κ

|η|
ch−1

(κ(n− n0)

4|η|

)
, (7)

un(0) = | bn(0)|2
/
ω2, dun(0)

/
dt̃ = 0.

In this work, we investigate the motion of a charge in a constant electric field in

polynucleotide chains with different values of the coupling constant κ. To simulate the motion

of a charge, we will use the fixed values of the following parameters: matrix elements of the

transition along the sites η = 2.4, the oscillation frequency of the sites ω = 1, and the friction
coefficientω′ = 1.

To simulate themotion of a polaron in a constant electric field, wewill place an initial polaron

of the form (7) in the chain. We place the center of the polaron on the site with the number n0.

The value of n0 is chosen so that at the beginning of the calculations the polaron be far enough

from the ends of the chain. Similarly, the length of the chain is chosen so that at the end of the

calculations the polaron would not come too close to the end of the chain. The motion of a charge

in an electric field is modeled in a homogeneous open chain with two ends. The field turns on

”instantly” at the initial moment of time.

Figure 1 shows seven graphs of the functions |bn(0)|2 of the form (7) in a chain ofN = 100
sites for different values of the coupling constant κ = 1, 2, ..., 7. In the example presented, the

following dimensionless values of the chain parameters were chosen: η = 2.4,ω = 1,ω′ = 1.
The graphs of functions |bn(0)|2 shown in 1 clearly demonstrate the dependence of the initial

polaron state of the form (7) on the value of the coupling constant κ.

Functions |bn(0)|2 of the form (7) are a solution of the system of equations (5), (6) in the

continuum limit, but for discrete chains, this solution is only an approximation to the function

413

Mathematical Biology and Bioinformatics. 2021. V. 16.№ 2. doi: /10.17537/2021.16.411



KORSHUNOVA, LAKHNO

Fig. 1. Graphs of the functions |bn(0)|2 of the form (7) in a chain of N = 100 sites for different

values of the coupling constant κ = 1, 2, 3, 4, 5, 6, 7.

|bn|2 2 in a discrete chain in the absence of an electric field and external excitations. That is,

the form of a polaron in a discrete chain is slightly different from the initial polaron state of the

form (7). For chains with small values of the coupling constant κ ≤ 4 for given values of the

matrix elements of the transition through the sites η = 2.4 the functions |bn(0)|2 of the form (7)

practically coincide with the shape of a polaron in a discrete chain. In chains with a coupling

constant κ ≥ 5 the discrete polaron is slightly higher and narrower than the function |bn(0)|2 of
the form (7), but in this study it is not of fundamental importance, so we will use the function

|bn(0)|2 of the form (7) as the initial polaron state.

In the example in Figure 1, as in the examples below, the sites in the chain are numbered

from left to right. We set the values of the electric field intensity to be positive: Ẽ > 0, the
charges move along the chain in the direction of the field from right to left, therefore the values

of n0 (the position of the initial polaron) are set near the right-hand end of the chain.

UNIFORM POLARONMOTIONAND OSCILLATORYREGIME OFACHARGE
MOTION

Figure 2 shows the examples of the evolution of a charge from the initial polaron state of

the form (7) in seven chains with different values of the coupling constant κ. The graphs of

the initial polaron state of the form (7) for each value of the coupling constant κ are shown in

Figure 1. As mentioned above, the values of the following parameters are set to be the same in

all the chains: matrix elements of the transition through sites η = 2.4, oscillation frequency of
sitesω = 1, friction coefficientω′ = 1. The initial values of |bn(0)| are given in the form of an

inverse hyperbolic cosine of the form (7), the center of which is located at the site of the chain

with the number n0 = 6500. The length of the chain is N = 7001 sites.

Fig. 2. Graphs of functions X(t̃) for different values of the coupling constant κ = 1, 2, ..., 7. The

chain length is N = 7001 The center of the initial polaron state of the form (7) n0 = 6500. The

values of the chain parameters are: η = 2.4,ω = 1,ω′ = 1. The value of the electric field intensity

is E = 0.03.
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Figure 2 shows the graphs of the functionX(t̃), which describes the position of the center of
mass of a charge for the value of the electric field intensity E = 0.03,X(t̃) =

∑
n | bn(t̃)|2 · n.

The graphs of the function X(t̃) in Figure 2 in chains with large values of κ = 5, 6, 7
demonstrate a linear dependence on t̃ for the specified value of the electric field intensity

E = 0.03 during the dimensionless time t̃ ≈ 30000, therefore, for the chosen value of the

electric field intensity, a uniform motion is observed in chains with the specified values of the

coupling constant κ, while the charge moves along the chain, retaining its original shape, that

is, in these cases, a uniform motion of the polaron is observed. The graphs of the functionsX(t̃)
presented in Figure 2 for κ = 5, 6, 7 suggest that the velocity of polaron motion in the course of

its uniform motion along the chain increases as the coupling constant κ decreases.

In chains with smaller values of the coupling constant κ = 1, 2, 3, 4, the charge immediately

starts an oscillatory motion. In what follows we will show that the charge performs Bloch

oscillations. In the course of oscillatory motion along the chain, the charge quickly loses its

original shape and, being distributed along the chain, moves in the direction of the field. The

graphs of the functionsX(t̃) for κ = 1, 2, 3, 4 in Figure 2 show that it would be incorrect to

compare the velocity of an oscillatorily moving charge with that of a uniformly moving polaron

for κ = 5, 6, 7.We can only notice that during the computation time shown in Figure 2, the charge

with a large value of κ = 4 has travelled a greater distance along the chain. As the coupling

constant κ decreases, for κ → 0, the total velocity of the charge tends to zero, the charge,

maintaining its shape, performs Bloch oscillations near the center of the initial position of the

charge, being located at the chain sites, whose number is approximately equal to one maximum

Bloch amplitude for a given value of the electric field intensity. This corresponds to the fact that

in a rigid chain, for κ = 0, the charge performs Bloch oscillations maintaining its form/shape

and position in the chain, that is, at the end of each oscillation period, the charge returns to its

initial position. In a deformed chain, when the charge interacts with the displacements of the

chain, for κ > 0, the charge loses its original shape and, performing Bloch oscillations, moves

along the chain in the direction of the field, see [29].

Thus, the total velocity of a charge during its oscillatory motion decreases with a decrease

in the coupling constant κ, while the velocity of a uniformly moving polaron increases with a

decrease in κ.

Figure 3 demonstrates some examples of a uniform motion of a polaron in chains with

different values of the coupling constant: κ = 1, 1.5, 2, 2.5, 3, 3.5, 4. The electric field intensity
is E = 0.0005. The center of the initial polaron state of the form (7) is located at the site

n0 = 14500 in a chain consisting of N = 15001 sites. The initial polaron of the form (7)

moves uniformly along the chain keeping its shape. Therefore, Figure 3 shows the graphs of the

functions Peak(t̃), which demonstrate the position of the polaron peak, or the number of the

site at which the maximum of the function |bn(t̃)|2 occurs. With this mode of motion, the graphs

of the functions Peak(t̃) practically coincide with the graphs of the functions X(t̃).
The graphs of the functions Peak(t̃) shown in 3 clearly demonstrate that the velocity of

a uniform motion of a polaron along the chain increases sharply as the coupling constants κ.

decreases. Note also that in chains with large values of the coupling constant κ > 4, the initial
polaron does not shift from its initial position at the electric field intensityE = 0.0005. Figure 2
shows that when the electric field intensity is E = 0.03 the initial polaron does not shift in a

chain with κ ≥ 7.
Figures 4 and 5 illustrate the oscillatory regime of the charge motion in a constant electric

field of intensity E = 0.03. For the intensity value E = 0.03 the period of Bloch oscillations

is TBL = 2π/E ≈ 209. The maximum Bloch amplitude ABL = 4η/E ≈ 320. The maximum

charge velocity in the course of Bloch oscillations VBL = 2η ≈ 4.8. The graphs of the functions
X(t̃) and |bn(t̃)|2 shown in Figure 4 and Figure 5 demonstrate good agreement between the
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Fig. 3. Graphs of the functions Peak(t̃) for different values of the coupling constant

κ = 1, 1.5, 2, 2.5, 3, 3.5, 4. The chain length is N = 15001 sites. The center of the initial

polaron state of the form (7) is n0 = 14500. The values of the chain parameters are:

η = 2.4,ω = 1,ω′ = 1. The value of the electric field intensity is E = 0.0005.

numerical and theoretical characteristics of Bloch oscillations.

Figure 4 shows some examples of the oscillatory regime of a charge motion in chains with

the same values of the coupling constant as in Figure 3: κ = 1, 1.5, 2, 2.5, 3, 3.5, 4. In this case,
the charge loses its original shape/form and, being distributed along the chain, moves in the

direction of the field. When the value of the electric field intensity is E = 0.03 no uniform

motion in chains with the indicated values of the coupling constant is observed. For this value

of the electric field intensity E = 0.03 the charge can move uniformly in chains with a coupling

constant κ = 5 and larger, see Figure 2. The graphs of the functions X(t̃) in Figures 4,a and

4,b show that the charge quickly passes into an oscillatory regime of motion. In a chain with

the largest value of the coupling constant κ = 4 the charge starts an oscillatory motion with

a certain delay. The charge loses its shape not instantaneously. This leads to an increase in the

oscillation period and the maximum amplitude of the charge displacement along the sites in the

initial period of time, see Figure 4,b. But as time goes on, the period of charge oscillations in

all the chains with the values of the coupling constant κ chosen in Figure 4 becomes close to

the theoretical value of the period of Bloch oscillations for a given value of the electric field

intensity E = 0.03 – TBL ≈ 209.
The theoretical values of the main characteristics of Bloch oscillations do not depend on the

value of the coupling constant κ. In discrete chains, the maximum amplitude and the period of

oscillations differ slightly from the corresponding theoretical values when the coupling constant

κ changes. This fact is clearly seen in Figure 4,b: in a chain with a coupling constant κ = 1
the oscillation period and the maximum oscillation amplitude almost exactly coincide with the

relevant characteristics of Bloch oscillations for a given value of the electric field intensity. Thus,

it can be seen that the smaller is the value of the coupling constant in the chain, the closer are the

characteristics of charge oscillations to the corresponding characteristics of Bloch oscillations.

The examples in Figure 4 represent charge oscillations in different chains. Therefore,

we can consider the instantaneous charge velocity and the average velocity. The maximum

instantaneous charge velocity in all the chains in Figure 4,b almost exactly coincides with the

theoretical value of the maximum charge velocity in the course of Bloch oscillations VBL =
2η ≈ 4.8.

In Figure 4,c, the graphs of the functions X(t̃) are shown at the end of the computation

period. Obviously, the value of X(t̃) is not equal to the site reached by the charge in the chain,
since the function X(t̃) describes the position of the center of mass of the charge. In all the

examples shown in Figure 4,c the charges did not reach the end of the chains, since all the graphs

of the functions X(t̃) demonstrate the same oscillation period, close to the Bloch oscillation
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a)

b) c)

Fig. 4. Graphs of the functions X(t̃) for different values of the coupling constant

κ = 1, 1.5, 2, 2.5, 3, 3.5, 4. The chain length is N = 7001 sites. The center of the initial polaron

state of the form (7) is n0 = 6500. The values of the chain parameters are η = 2.4,ω = 1,ω′ = 1.

The value of the electric field intensity is E = 0.03. In fig. b) the graphs of the functionsX(t̃) are

shown at the initial period of time; in fig. c) – at the end of calculations.

period. If the charge had reached the edge of the chain, then the oscillations would quickly fail,

the period of oscillations would immediately begin to decrease and completely disappear. Thus,

the examples in Figure 4 show that the charge moves along the chain in the direction of the field,

performing Bloch oscillations. In chains with greater values of the coupling constant, the charge

travels a greater distance. The average charge velocity decreases in the course of motion, at the

end of the calculation period shown (see Fig. 4,c) the average charge velocity in all the chains

is almost the same and, obviously, it will further approach zero.

Figure 5 shows two examples of the oscillatory regime of the charge motion in the initial

period of time in chains with different values of the coupling constant. Figures 5,a and 5,b

demonstrate a chain with a coupling constant κ = 0.5. Figures 5,c and 5,d – a chain with a

coupling constant κ = 2. The value of the electric field intensity is the same as in the previous

example: E = 0.03. The center of the initial polaron state of the form (7) is located at the site

n0 = 700 in a chain consisting of N = 801 sites.
In a chain with a coupling constant κ = 0.5, see Fig. 5,b, the initial polaron state of the form

(7) is much wider than the initial polaron state in the chain with the coupling constant κ = 2, see
Fig. 5,d. In a chain with a coupling constant κ = 2 the charge quickly loses its original shape,

the period of charge oscillations and the maximum oscillation amplitude being sufficiently close

to the corresponding characteristics of Bloch oscillations.

In a chain with a small value of the coupling constant κ = 0.5, Fig. 5,a and 5,b, the broad

initial polaron state moves along the chain keeping its shape during the first oscillation period,

then the charge gradually loses its original shape and, being distributed along the chain, moves

on average in the direction of the field, performing Bloch oscillations. In this case, the period

of charge oscillations and the maximum oscillation amplitude practically coincide with the

417

Mathematical Biology and Bioinformatics. 2021. V. 16.№ 2. doi: /10.17537/2021.16.411



KORSHUNOVA, LAKHNO

a) c)

b) d)

Fig. 5. Graphs of the functions X(t̃) and |bn(t̃)|2 in the course of the oscillatory motion of a

charge in the chains with different values of the coupling constant. In figures a) and b) κ = 0.5, in

figures c) and d) κ = 2. The chain length is N = 801 sites. The center of the initial polaron state

of the form (7) is n0 = 700. The values of the chain parameters are: η = 2.4,ω = 1,ω′ = 1. The

value of the electric field intensity is E = 0.03.

theoretical values of the period of Bloch oscillations and the maximum Bloch amplitude for a

given value of the electric field intensity E = 0.03: TBL = 2π/E ≈ 209, ABL = 4η/E ≈ 320.
As κ → 0 the charge, retaining its original shape, performs Bloch oscillations near the initial

position of the charge. At that, the graphs of the functions X(t̃) and |bn(t̃)|2, during a large

number of oscillations, are similar to the corresponding graphs during the first Bloch period

shown in Figures 5,a and 5,b, that is, after each period of oscillations, the charge returns to its

initial position.

The maximum instantaneous charge velocity in the examples in Figure 5 is practically the

same and is equal to the maximum charge velocity in the process of Bloch oscillations VBL =
2η ≈ 4.8. The average charge velocity at the initial period of time is much higher in the chain

with a larger value of the coupling constant κ = 2, see Fig. 5,a and Fig. 5,c. Recall that when

a charge moves uniformly, the velocity is higher in chains with smaller values of the coupling

constant κ.

CONCLUSION

In this work, we studied various regimes of a charge motion in a constant electric field

in polynucleotide chains with different values of the coupling constant κ. The values of the

following chain parameters: matrix elements of the transitions over sites η = 2.4, site oscillation
frequencyω = 1, friction coefficientω′ = 1, did not changed in all the above examples.

In the course of a uniform motion, the charge moves along the chain at a constant velocity
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maintaining its shape, therefore, a polaron moves along the chain. The calculations showed that

the velocity of a uniform motion of a polaron along the chain increases sharply with a decrease

in the coupling constant κ, that is, “wider” (see Fig. 1) polarons move faster.

It is shown that for a fixed value of the electric field intensityE,a sufficiently narrow polaron

does not shift from its initial position, or, in other words, for a given value of the electric field

intensityE, one can choose a chain with such a (sufficiently large) value of the coupling constant

κ, in which the initial polaron will remain stationary (see Fig. 2 and Fig. 3).

Since the character of the motion and distribution of a charge along the chain in the course

of the oscillatory motion is completely different from the uniform motion of a polaron, the

dependence of the character of the motion of the oscillating charge on the coupling constant

κ is completely different. In the oscillatory mode, the charge loses its original shape and, being

distributed along the chain, moves in the direction of the field, performingBloch oscillations. It is

shown that the total velocity of a charge during its oscillatory motion decreases as the coupling

constant κ diminishes; the charge travels a greater distance in a chain with a larger value of

the coupling constant κ. It is also shown that the maximum instantaneous charge velocity in

chains with different values of the coupling constant κ is practically the same and is equal to the

maximum charge velocity in the course of Bloch oscillations VBL = 2η.
The chosen values of the parameters of the chains: η = 2.4, ω = 1, ω′ = 1, are model.

With such parameters, numerical simulation can be carried out much faster. The PolyA/PolyT
chain corresponds to the following dimensionless values of the chain parameters: κ = 4,
η = 2.4, ω = 0.01, ω′ = 0.006. With these parameters, much more time is required to

carry out calculations. But the dependence of the character of the charge motion on the value

of the coupling constant κ in chains with DNA parameters is similar to the corresponding

dependence in the model examples considered. In the examples in Figures 2, 4 and 5, the

motion of a charge in a field with a dimensionless intensity E = 0.03 was considered. In

dimensional units, this value of the electric field intensity is approximately equal to the value

E ≈ E·1.88·106V /cm ≈ 5.64·104V /cm. Preliminary calculations show that for small values

of the parameters ω = 0.01, ω′ = 0.006, which correspond to the parameters of the DNA

chain, in order to carry out similar studies, it is necessary to set significantly lower values of the

electric field intensity. In dimensional units, the value of the electric field intensity E should be

of the order of E ≈ 5.·103V /cm and less. As the value of the electric field intensity dicreases,

the velocity of a uniform motion of the polaron decreases, the amplitude and period of Bloch

oscillations increase, and, as a consequence, the computational costs increase significantly.

In the future, we are planning to conduct similar studies for chains with DNA parameters

and evaluate in physical terms the charge velocity and electric field intensity in various motion

regimes.

The work was done using the computing resources of The Joint Supercomputer Center of the Russian

Academy of Sciences (JSCC RAS).
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