
Mathematical Biology and Bioinformatics
2022. V. 17. № S. P. t42–t52. doi: 10.17537/2022.17.t42

Ttranslation of the original article.
Korshunova A.N., Lakhno V.D. Mathematical Biology and Bioinformatics. 2022;17(2):452–464.
doi: 10.17537/2022.17.452

=================TRANSLATIONS OF PUBLISHED ARTICLES ================

The Incipient Formation of the Internal Dynamics of a
Uniformly Moving Polaron in a Polynucleotide Chain

Subjected To a Constant Electric Field
Korshunova A.N.*, Lakhno V.D.**

Institute of Mathematical Problems of Biology RAS – the Branch of Keldysh Institute of Applied
Mathematics of Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia

Abstract. In this paper, the motion of a polaron in a polynucleotide chain in an
external electric field is considered. The calculations performed show that Bloch
oscillations arising in the course of the polaron oscillatory motion along the chain
do not completely disappear when the polaron motion along the chain becomes
uniform. When the polaron moves uniformly along the chain, Bloch oscillations
are also observed, although in a slightly different form. It is shown that the shape
of the electron density distribution in a polaron during its stationary motion in a
constant electric field takes an explicit structure. In this case, such characteristics
of Bloch oscillations as the period of Bloch oscillations and the maximum Bloch
amplitude demonstrate low-density components of the polaron.

Key words: nanobioelectronics, nanowire, molecular chain, polaron, DNA, charge transfer,
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INTRODUCTION

In this paper we study the stationary motion of a polaron in a molecular chain in an
initial period of time. The nature of Bloch oscillations of a polaron in a stationary mode is
compared to that in an oscillatory mode. The polaron motion is simulated in the presence of
a constant electric field on the basis of the Holstein model [1, 2]. Charge transport in DNA
is considered in many theoretical works [3]–[14], which is mainly due to the possibility of
using one-dimensional molecular chains as nanowires in nanobioelectronic devices [15]–[20].
Moreover, in many works, a polaron is considered to be the main current carrier in synthetic
polynucleotide sequences [21]–[31].

Earlier studies show that the system under consideration can demonstrate complex dynamic
regimes which depend on all the chosen parameters of the system: the frequency, the friction
coefficient, the chain length, the characteristic size of the steady-state polaron in the chain, which
is determined by dimensionless parameters of a bond between the electron and the lattice. It
is also shown [32], that by changing only the initial charge distribution and the electric field
intensity, one can observe a wide variety of modes of motion and charge distribution in a chain.
The possibility for a charge occurring in a uniform Holstein chain in a constant electric field
to move uniformly over very long distances is shown in [32]. Also in [32] a good agreement
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was demonstrated between the theoretical [33] и and numerical dependences of the velocity of
a uniform charge motion on the electric field intensity.

The uniform motion of a polaron along the chain is possible for small values of the electric
field intensity. As the electric field intensity increases the charge starts oscillatory motion with
Bloch oscillations. Depending on the chosen parameters of the chain, a polaron can retain its
shape for some time while performing Bloch oscillations [34]. In other cases, an initial polaron
can quickly disintegrate, and then the charge moves along the chain in the direction of the field,
performing Bloch oscillations.

Earlier, in [35], it was shown that in the course of stationary motion along a chain in a
constant electric field, a polaron executes Peierls - Nabarro oscillations due to discreteness of
the chain. In this paper, it is shown that in the course of stationary motion of a polaron along a
chain, a polaron demonstrates not only Peierls - Nabarro oscillations, but also small oscillations
with a Bloch period.

To simulate a specific mode of charge behavior in an electric field, it is necessary to fit
appropriate parameters of the system. Choosing the model parameters of the chains, we can
significantly speed up and simplify the study of both the motion of a charge in the field and
the nature of the charge distribution along the chain during this motion. Selection of the system
parameters for each particular case is carried out not only as a result of numerical studies, but
also in accordance with the results of an analytical study of the system in the continuum limit
[33].

In this work, it is shown that with a uniform motion of a polaron, immediately after
the instantaneous switching on of a constant electric field, the shape of the electron density
distribution in the polaron takes an explicit structure. Low-density components of the polaron
arise, with their own internal dynamics, different from the dynamics of the macro-part of the
polaron. And, despite the fact that the polaron as a whole moves at a constant velocity, retaining
its shape, the low-density components of the polaron demonstrate such characteristics of Bloch
oscillations as the period of Bloch oscillations and the maximum Bloch amplitude.

MATHEMATICAL MODEL

The dynamic behavior of a polaron in the presence of a constant external field in a
homogeneous molecular chain is modeled by a system of coupled quantum-classical dynamic
equations with dissipation. In our model, DNA is considered as a homogeneous chain composed
of N sites. Each site is a nucleotide pair, which is considered as a harmonic oscillator [31]. To
simulate the dynamics of a quantum particle in a chain of N nucleotide pairs, we will use the
Holstein Hamiltonian, where each site is a diatomic molecule [1, 2]:

Ĥ = −
∑N

n ν
(
|n⟩⟨n− 1|+ |n⟩⟨n+ 1|

)
+
∑N

n αqn|n⟩⟨n|

+
∑N

n Mq̇2n/2 +
∑N

n kq2n/2 +
∑N

n eEn|n⟩⟨n|, (1)

where ν – is the matrix element of the charge transition between neighboring sites (nucleotide
pairs), α – is a constant of interaction of the charge with displacements qn,M – is the effective
mass of the site, k – is the elastic constant,
e – is the electron charge, E – is the electric field intensity.

The equations of motion for the Hamiltonian Ĥ lead to the following system of differential
equations:

i~ḃn = −ν(bn−1 + bn+1) + αqnbn + eEanbn, (2)
Mq̈n = −γq̇n − kqn − α|bn|2 , (3)
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where bn – is the amplitude of the probability of charge’s occurrence on the n-th site,
∑

n |bn|2 =
1, ~ = h/2π, h – is Planck’s constant. The classical motion equations (3) involve dissipation
determined by the friction coefficient γ.

Equations (2) are Schrödinger equations for the probability amplitudes bn, which describe the
evolution of a particle in a deformed chain. Equations (3) represent classical motion equations
which describe the dynamics of nucleotide pairs with allowance for dissipation.

To simulate numerically the motion of a polaron, we turn to dimensionless variables using
the relations:

η = τν/~ , ω2 = τ 2K/M ,

ω′ = τγ/M , qn = βun , E = Eeaτ
/
~, (4)

κω2 = τ 3(α)2/M~ , β = τ 2α/M , t = τ t̃ ,

where τ – is an arbitrary time scale which relates the time t and the dimensionless variable t̃.
In dimensionless variables of (4) equations (2), (3) take on the form:

i
dbn

dt̃
= −η

(
bn+1 + bn−1

)
+ κω2unbn + Enbn, (5)

d2un

dt̃2
= −ω′dun

dt̃
− ω2un − |bn|2 , (6)

where bn – are the amplitudes of the probability of charge’s occurrence at the n-th site, η – are
matrix elements of the transition over the sites, ω – is the frequency of oscillations of the n-th
site, κ – is the coupling constant, ω′ – is a friction coefficient, un – are displacements of sites
from their equilibrium positions, E – is the electric field intensity, t̃ = t/τ , τ = 10−14 sec
(arbitrary time scale).

The model introduced in this way is the simplest model of the dynamics of a charged particle
in a polynucleotide chain, which explicitly takes into account dissipation in the system under
consideration. The system of nonlinear differential equations (5), (6) is solved by fourth-order
Runge–Kutta method.

In this work, we investigate the motion of polaron states in an electric field in a uniform open
chain. For this study, it is essential that the chain is open and has two ends.

INITIAL DATA

In this work, to simulate the motion of a charge in an electric field, the following values of
the dimensionless parameters were chosen: κ = 4, η = 2.4.

In the absence of an external field the stationary solution of equations (5), (6) corresponds
to the following function in the form of an inverse hyperbolic cosine:

| bn(0)| =
√
2

4

√ κ
| η|

ch−1
(κ(n− n0)

4| η|

)
, (7)

un(0) = | bn(0)|2
/
ω2, dun(0)

/
dt̃ = 0.

Let us determine the characteristic size of the charge distribution in the chain as limt̃→∞ d(t̃),
where

d(t̃) =
∑

|bn(t̃)|2
/∑

|bn(t̃)|4 = 1
/∑

|bn(t̃)|4. (8)

The polaron corresponding to a stationary solution of equations (5), (6) in the continuum
limit is not a steady polaron for a discrete chain with any given parameters. We call a steady
polaron, if it does not shift from its position in the chain and does not change its shape in the

t44
Mathematical Biology and Bioinformatics. 2022. V. 17. № S. doi: 10.17537/2022.17.t42



DYNAMICS OF A UNIFORMLY MOVING POLARON IN A CONSTANT ELECTRIC FIELD

absence of an electric field or additional excitations in the chain. For large-radius polarons (for
example, d(t̃) > 15), a polaron of the form of (7) is very close to the steady-state one, but differs
significantly from narrower polarons.

For the chosen values of the parameters κ = 4 и η = 2.4, the initial polaron state of the
form of (7) differs insignificantly from the steady-state polaron for a given chain. With such
parameters of the chain, the characteristic size of a polaron in the chain is d(t̃) ≈ 6.88.

We will set the initial values of the function | bn(0)| in the form of a stretched inverse
hyperbolic cosine:

| bn(0)| =
√
2

4

√ κ
ξ| η|

ch−1
(κ(n− n0)

4ξ| η|

)
, (9)

where ξ – is the stretching coefficient, with the help of which we can choose the initial polaron
of the form of (9) as close to the steady-state polaron as possible, besides, we can take the initial
polaron narrower or wider than the steady-state one for the formation of various variations of the
charge motion along the chain. Thus, an expression of the form of (9), with a properly chosen
value of ξ, can be considered an approximate solution to the stationary solution of equations
(5), (6). For a chain with parameters κ = 4 и η = 2.4 the inverse hyperbolic cosine or initial
polaron of the form of (9) is as close as possible to the steady-state polaron for ξ = 0.95.

Figure 1 shows graphs of the functions |bn(0)|2 and un(0) of the form of (9) for ξ = 0.95,
which practically coincide with the corresponding functions of the steady polaron in a given
chain, therefore it is quite possible to say that Figure 1 shows the graphs of the functions of
probabilities and displacements for the steady polaron.

Fig. 1. Graphs of the functions |bn(0)|2 and un(0) for the steady polaron in the center of a chain
consisting of N = 101 sites for the values of the chain parameters κ = 4, η = 2.4, ω = 1.

Thus, to simulate themotion of a polaron in a constant electric field, wewill place in the chain
the initial polaron state of the form of (9) for the required values of the stretching coefficient ξ.
We place the center of the polaron on the site of the chain with the number n0. The value of n0

is chosen so that at the beginning of the calculations the polaron be far enough from the ends of
the chain. Similarly, the length of the chain is chosen so that at the end of the calculations the
polaron would not come too close to the end of the chain. The field turns on ”instantly” at the
initial moment of time.

BLOCH OSCILLATIONS OF A POLARON DURING AN OSCILLATORY REGIME
OF MOTION

In [34] we considered in detail Bloch oscillations of a polaron in a constant electric field in a
chain with parameters η = 1.276, ω = 0.1, ω′ = 0.006 for various values of the parameter κ. In
particular, for the value κ = 1 it is shown that the polaron in the initial period of time performs
Bloch oscillations, retaining its shape, and loses its shape gradually over time. In this case, a very
good agreement between the numerical and theoretical characteristics of Bloch oscillations was
observed.

t45
Mathematical Biology and Bioinformatics. 2022. V. 17. № S. doi: 10.17537/2022.17.t42



KORSHUNOVA, LAKHNO

Fig. 2. Evolution of a polaron in a constant electric field of intensity E = 0.1 in a chain with
parameters κ = 4, η = 2.4, ω = 1, ω′ = 1 and length N = 301 sites. The center of the
polaron at the initial moment of time is located at the site of the chain with the number n0 = 250.
Graph (a) shows the functionX(t̃), graph (b) shows its derivative – the functionX ′(t̃). Graph (c)
demonstrates the dynamics of the amplitudes of the probabilities of charge localization at the nth
site – the function |bn(t̃)|2. Graph (d) shows the displacements of the chain sites during polaron
motion – the function un(t̃).

The characteristics of Bloch oscillations are as follows. The period of Bloch oscillations is
TBL = 2π/E. The maximum Bloch amplitude is ABL = 4η/E. The maximum charge rate in
the process of Bloch oscillations is VBL = 2η.

Figure 2 shows graphs of functions that characterize the motion and distribution of a polaron
along a chain in an electric field. In the presented example, the following values of the chain
parameters were selected: κ = 4, η = 2.4, ω = 1, ω′ = 1. We chose the dimensionless value of
the electric field intensityE = 0.1 such that there is no uniformmotion, the polaron immediately
falls apart and starts oscillatory motion. The initial values of | bn(0)| were chosen in the form
of an inverse hyperbolic cosine of the form of (9) for ξ = 0.95, that is, the initial polaron is
as close as possible to the steady polaron in the chain, which is shown in Figure 1. The center
of the polaron at the initial moment of time is located at the site of the chain with the number
n0 = 250.

Figure 2,a shows the graph of the function

X(t̃) =
∑

n
| bn(t̃)|2 · n, (10)

which describe the motion of the center of mass of the particle. The figure 2,b shows the graph
of the derivative of the function X(t̃) – the graph of the function X ′(t̃). The period of Bloch
oscillations for E = 0.1 is equal to TBL = 2π/E ≈ 62.83, the maximum Bloch amplitude is
ABL = 4η/E = 96, the maximum velocity of a charge in the process of Bloch oscillations
is VBL = 2η = 4.8. Thus, the graphs shown in Fig. 2 clearly demonstrate that the main
characteristics of Bloch oscillations approximately correspond to theoretical characteristics.
Graphs of functions X(t̃) and |bn(t̃)|2 presented in figure 2,a and figure 2,c respectively, show
that in the initial period of time the center of mass of the charge shifts by approximately
the maximum Bloch amplitude, over time the amplitude of oscillations decreases, the charge
continues to move along the chain in the direction of the field, performing Bloch oscillations.

The maximum charge velocity in the course of Bloch oscillations in the example considered
VBL ≈ 4.7 (see Fig. 2,b) differs only slightly from the theoretical one VBL = 2η = 4.8, which
will not be observed when the polaron moves uniformly along the chain. Figure 2,d shows the
graphs of the function un(t̃), which describes the displacements of the chain sites during the
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polaron motion. Figures 2,с and 2,d clearly demonstrate that the displacements of the chain sites
correspond to the probabilities of the charge distribution along the chain. Notice that such a good
correspondence of the graphs of the functions un(t̃) and |bn(t̃)|2 is observed for large values of
the parameters ω = 1 and ω′ = 1. For small values of ω and ω′ such a good correspondence of
these plots is not observed.

ELEMENTS OF BLOCH POLARON OSCILLATIONS IN THE COURSE OF ITS
UNIFORMMOTION ALONG A CHAIN IN A CONSTANT ELECTRIC FIELD

In this section, we will show that elements of Bloch oscillations also appear in the case of
a stationary motion of a polaron along a chain. To simulate the uniform motion of a charge
in a constant electric field, the following values of the dimensionless parameters were chosen:
κ = 4, η = 2.4, ω = 1, ω′ = 1.

Fig. 3. Polaron motion in a constant electric field for different values of the field intensity. The
graphs of the function X(t̃) are presented for E = 0.004 (top graph), 0.006, ...0.026. Uniform
polaron motion of are observed for E = 0.004, ... 0.018. The values of the chain parameters are
κ = 4, η = 2.4, ω = 1, ω′ = 1. The center of the polaron at the initial moment of time is at the
site of the chain with the number n0 = 5500. The chain length is N = 7001 sites.

The graphs of the functionX(t̃) shown in Figure 3 demonstrate a linear dependence on t̃ for
the values of the electric field intensity E = 0.004, E = 0.006, ...E = 0.018. The maximum
computation time for the graphs shown exceeds the dimensionless time t̃ = 40000. For each
graph of the functionX(t̃) in Figure 3 the duration of calculations exceeds tens of Bloch periods
corresponding to a given electric field intensity. This undoubtedly suggests that for the indicated
values of the electric field intensity, we observe a uniform motion of a polaron along the chain,
at least on the time intervals shown.

Let us consider in greater detail the distribution of the initial polaron along the chain during
its uniform motion in an electric field of intensityE = 0.018. Figure 3 shows that for the chosen
value of the electric field intensity, the duration of the uniform motion is t̃ > 25000.

Figure 4 shows the graphs of the functions X(t̃), X ′(t̃), |bn(t̃)|2, which characterize the
motion and distribution of a polaron along a chain in an electric field of intensity E = 0.018.
The initial values of |bn(0)| were chosen in the form of an inverse hyperbolic cosine as (9) for
ξ = 0.95. Such a polaron is as close as possible to the steady polaron in the chain. The chain
length is N = 1101 sites. The center of the polaron at the initial moment of time is located
at the site of the chain with the number n0 = 900. For the chosen value of the electric field
intensity E = 0.018 the period of Bloch oscillations is TBL = 2π/E ≈ 349. The maximum
Bloch amplitude is ABL = 4η/E ≈ 533. The graphs shown in Figure 4 demonstrate that the
main characteristics of Bloch oscillations are approximately observed. The graph of the function
X ′(t̃) in Figure 4,b demonstrates the period of Bloch oscillations, approximately equal to the
theoretical period: TBL ≈ 349. The oscillation amplitude of the function X ′(t̃) is very small.
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Fig. 4. Uniform motion of a polaron in a constant electric field of intensity E = 0.018. Graphs
of the functions X(t̃), X ′(t̃), |bn(t̃)|2 during the motion of a polaron in a chain with parameters
κ = 4, η = 2.4, ω = 1, ω′ = 1 and length N = 1101 sites. The center of the polaron at the initial
moment of time is located at the site of the chain with the number n0 = 900.

And yet, the graphs of the functions X(t̃) in Figure 4,a and |bn(t̃)|2 in Figure 4,c indicate the
uniform motion of the polaron along the chain. The oscillation amplitude of the function X ′(t̃)
is very small, its values vary from X ′(t̃) ≈ −0.212 to X ′(t̃) ≈ −0.214. The view of smaller
oscillations X ′(t̃) in Figure 4,b is due to the discreteness of the output of the function on the
graph and, mainly, the proximity of the location of the charge to the end of the chain. When
these conditions for plotting the graph of the functionX ′(t̃) change, only the form of the smallest
oscillations changes. For example, when the values of X ′(t̃) are displayed more frequently, the
small oscillations merge (at the scale of the graph in Fig. 4,b) and the graph X ′(t̃) looks like a
solid line. At the same time, the larger oscillations with the Bloch period fully correspond to the
oscillations in Figure 4,b.

Figure 4,d shows the same graph of the function |bn(t̃)|2, as in Figure 4,c, but on a different
scale. The mark on the left-hand scale indicates a value of 10−4. Besides, only those values of
the function |bn(t̃)|2, which are less than 5 · 10−5, are displayed on the graph. The values of
|bn(t̃)|2 > 5 · 10−5 in Figure 4,d are as if truncated so that the low-density components of the
function |bn(t̃)|2 be visible.

The graph of the function |bn(t̃)|2 in Figure 4,d shows that, in the very initial period of time,
approximately equal to half the Bloch period, during the dimensionless time t̃ ≈ 175 ≈ 349/2,
the low-density part of the polaron is pushed out in front of the polaron itself in the direction
of the polaron motion over the sites by the width approximately equal to the maximum Bloch
amplitude ABL ≈ 533. During the second half of the Bloch period from the beginning of the
motion, this part that emerged in front of the polaron returns to the initial position in the center
of the polaron. During this first Bloch period, the center of the polaron travelled several sites,
and since we cut off most of the polaron, we can see that the excitation that came out in front
of the polaron passed back through the main part of the polaron exactly to the initial position
of the center of the polaron. Notice that when the charge moves oscillatorily along the chain,
in the initial period of time, the charge is also displaced by approximately the maximum Bloch
amplitude, but in this case the center of mass of the charge is also displaced by approximately
the same value, see Figure 2. With further motion of the polaron along the chain the initial
excitation oscillates with a Bloch period, being at the chain sites located from the center of
the initial polaron to the side in the direction of the field by the width of approximately one
maximum Bloch amplitude.

Figure 4,d clearly demonstrates how a low-density polaron component emerges in front of
the polaron in the first half of the first Bloch period. But during the second half of the first
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Bloch period, only part of the excitation comes back. That is, in the second half of the first
Bloch period, we already observe two low-density components of the polaron. One of them is
oscillating low-density component. The other excitation moves in front of the polaron, with the
velocity of the polaron, has a constant distribution width over the sites which is approximately
equal to the maximum Bloch amplitude for a given value of the electric field. No oscillations
are observed in the second low-density component. We have called this low-density component
precursor component. Obviously, the precursor low-density component is formed due to the
presence of a polaron in the chain, which retains its shape.

Graphs of the functions un(t̃) in Figure 5 illustrate displacements of the sites of the chain in
the same computational experiment which is shown in Figure 4. In Figure 5,a the graphs of the
functions un(t̃) are shown full-scale. In Figure 5,b, by analogy with Figure 4,d, truncated graphs
of the functions un(t̃) are shown. The bottom mark on the left scale is equal −10−4.

Fig. 5.Graphs of the functions un(t̃) in the course of a uniform motion of a polaron in a chain with
the parameters κ = 4, η = 2.4, ω = 1, ω′ = 1 and the length of N = 1101 1101 sites. The center
of the polaron at the initial moment of time is at the site of the chain with the number n0 = 900.
The electric field intensity is E = 0.018.

From the presented in Figure 5 graphs of the functions un(t̃) follows, that the site
displacements correspond to the probability distribution functions |bn(t̃)|2 shown in Figure 4.
Such a good correspondence between the site displacements un(t̃) and the probability
distribution functions |bn(t̃)|2 is observed for large values of the oscillation frequency of the
chain sites ω = 1 and a large value of the friction coefficient ω′ = 1. For small values of these
parameters, for example, for ω = 0.01 ω′ = 0.006, which correspond to the parameters of the
DNA chain, the forms of the graphs of the functions un(t̃) and |bn(t̃)|2 are slightly different from
each other. Thus, in the case of a uniform motion of a polaron along the chain, the low-density
components of the polaron form displacements of the chain sites, the shape of which depends
on the chain parameters.

CONCLUSION

The calculations performed showed that the elements of Bloch oscillations are also observed
in the case of stationary motion of a polaron along a chain. It is shown that for stationary motion
of a polaron along a chain in a constant electric field, the graphs of the functions X(t̃), which
describe the position of the center of mass of the polaron, demonstrate a linear dependence on t̃
for sufficiently large values of the parameters ω and ω′, for example, for ω = 1, ω′ = 1. In this
case, the derivative of the functionX(t̃) performs very insignificant amplitude oscillations with
a Bloch period. For small values of the parametersω иω′, for example, forω = 0.01, ω′ = 0.006,
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low-amplitude oscillations with a Bloch period are noticeable on the graph of the functionX(t̃),
while the polaron maximum moves strictly in the direction of the field, without performing
oscillations, in the same way as for large values of the parameters ω and ω′.

It is shown that in the case of a uniform motion of a polaron along a chain in the initial
period of time, two low-density components of the polaron are formed: oscillating low-density
component, which retains its position in the chain, and the precursor low-density component
moving in front of the polaron per se.

The oscillating low-density component of the polaron is located between the site at which the
center of the initial polaron have placed and the site that is spaced from the initial position by the
value of the maximum Bloch amplitude in the direction of the field. The width of the oscillating
low-density component distribution over the sites is approximately equal to onemaximumBloch
amplitude. At the initial instant of time, the width of the oscillating low-density component can
slightly increase with a change in the shape of the initial polaron state or with a decrease in
the parameters ω and ω′. When the values of the parameters ω and ω′ decrease, the values of
the functions |bn(t̃)|2, related to the oscillating low-density component, increase. Over time,
oscillating low-density component of the polaron spreads out a little, but retains its position in
the chain within approximately one maximum Bloch amplitude. From the very beginning of the
motion, this low-density polaron component performs oscillations, the period of which is close
to the period of Bloch oscillations for a given electric field intensity.

The precursor low-density component also depends on the values of the parameters ω and
ω′. The values of the functions |bn(t̃)|2, corresponding to the precursor component depend in
direct proportion on the values of the friction coefficient: the smaller is the value of the friction
coefficient, the smaller is the values of the functions |bn(t̃)|2 in the precursor component.

Modeling of a uniform motion of a polaron along a chain for different values of the electric
field intensity demonstrates that the width of the distribution over the sites of the low-density
components of the polaron - the oscillating and the precursing one - is approximately equal to
one maximum Bloch amplitude corresponding to a given value of the electric field intensity.
Period of the oscillating low-density component of the polaron is preserved during the entire
time of modeling the uniform motion of the polaron and is approximately equal to the period of
Bloch oscillations for a given value of the electric field intensity.

In this work, we have considered the incipient formation of low-density components of the
polaron in the initial period of motion. Longer calculations show that the macropart of the
polaron passes through the region where the oscillating component of the polaron is located
and moves further along the chain in the direction of the field together with the precursing
component. Between the polaron macropart and the oscillating component remaining in place,
we observe a region of nonzero values of the electron density distribution, these values are
also very small. Thus, the macropart of the polaron, together with the precursor low-density
component, are move away from the oscillating component of the polaron. The duration of
this phase of motion depends on the electric field intensity, the greater the value of the electric
field intensity, the shorter the duration of this motion. Then the polaron, namely, its macro part,
begins to slowly collapse and, having lost its shape, passes into an oscillatory mode of motion
with Bloch oscillations. In the course of the oscillatory mode of charge motion, the low-density
components of the polaron, of course, are not observed, since there is no polaron itself.
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