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Abstract. Angiogenesis, the formation of new blood vessels, is a critical and rate-

limiting tumor growth step controlled by pro-angiogenic factors and specific 

inhibitors. Tumor angiogenesis is essential for cancer progression and metastasis. 

Platelet growth factors (PDGF) and their receptors (PDGFR) are associated with 

tumor angiogenesis through overexpression of PDGF. Inhibition of PDGF and its 

signaling pathway is a new approach to the discovery of anticancer therapeutic 

agents. The present study focuses on the PDGF-C protein in the identification of 

novel anti-angiogenic compounds. MODELLER 9.10 software allows users to 

create and refine a 3D homology model of the PDGF-C protein (345 AA length). 

Secondary structure analysis of the 3D energy model reveals 16 β sheets held 

together by four cation–π and one π–σ interactions, and three salt bridges. The 

quality of the model is assessed using the Ramachandran plot (90 percent amino 

acids in the favorable region) and the ProSA server (Z-score = –2.28). Active site 

residues are identified using Castp, QSite search engine, site map, and protein 

docking of the protein to its receptor. In addition, virtual screening is performed at 

the active site using the Glide module of the Schrodinger Suite. Glide score, glide 

energy and ADME are being measured to discover new benefits of pyrazolone and 

pyrrolidine-2,3-dione scaffolds as potent PDGF-C antagonists for anti-angiogenic 

cancer chemotherapy drugs. 

 
Key words: angiogenesis, PDGF-C antagonists, tumor pathogenesis, metastasis, 

antiangiogenic, virtual screening. 

 

INTRODUCTION 

The role of angiogenesis in cancer metastasis is an interesting area of research in the 

previous decade [1]. Angiogenesis is a hallmark cancer process in the development of new 

blood vessels in tumors. Pro-angiogenic factors (Growth factors) have a significant role in 

angiogenesis and the development of new vasculature that "nourishes" cancer [2]. These 

proteins are the vascular endothelial growth factor (VEGF), platelet-derived growth factor 

(PDGF), fibroblast growth factor (FGF), and the angiopoietin/Tie2 receptor axis, which are 

significant in molecular pathways in the tumor cell and the focus of the development of anti-

angiogenic therapies. Selective upregulation of angiogenic factors led to the resistance to anti-

VEGF therapy, and antiangiogenic therapy. Resolving the challenges of drug resistance, 

adverse effects, and antiangiogenic drugs; new strategies targeting pericytes (PCs) or smooth 

muscle cells (SMCs) and pro-angiogenic growth factors is essential [3] . 

In studies conducted over the last two decades, PDGF is implicated in human tumors, 

including glioma [4]. platelet-derived growth factors (PDGF) are a pleiotropic family of 

peptides that stimulate cellular functions such as growth, proliferation, and differentiation by 

binding to cell surface tyrosine kinase receptors (PDGFR) [5]. PDGF-C plays a significant 

role in recruiting fibroblasts associated with drug resistance in tumors [6–8], induces 
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monocyte migration, and up-regulates matrix metalloproteinase (MMP–2 and MMP-9) 

expression, implying a critical role in pathological angiogenesis [9]. Figure 1 shows the 

angiogenic activity of PDGF-C, exerted through its effect on fibroblasts [10]. The role of 

PDGF-C is studied in two angiogenic models: chick chorio allantoic membrane (CAM) and 

mouse corneal [11]. Furthermore, increased expression and secretion of PDGF-C in Ewing 

sarcoma cell lines suggested a role for PDGF-C in malignancy [12, 13]. 

 

 

 

Fig. 1. Angiogenic activity of PDGF-C. Fibroblasts are the most abundant mesenchymal cell component 

of angiogenic growth factors (GF), extracellular matrix (ECM), and ECM-degrading proteases including 

matrix metalloproteinases (MMP). Enhanced expression of chemotactic and oncogenic factors, the 

percentage of fibroblasts elevated during disease processes. PDGF-C stimulates fibroblast proliferation, 

migration, and recruitment. The angiogenic activity of PDGF-C is exerted through its effect on fibroblast. 

 

The novel PDGF-C ligand is a dormant homodimer with a distinct two entities and 

expression pattern. Activated PDGF-C stimulates its cognate receptor, -PDGFR [14, 15] via 

the extracellular signal-regulated kinase cascade (PI3K/AKT Pathway), resulting in 

overexpression [16]. As a result, inhibiting PDGF-C may create additional therapeutic options 

for treating neovascular diseases. PDGF C appears to be a promising new biomarker and 

potential cancer therapeutic target. Recognizing structural features of PDGF-C is therefore 

beneficial for drug design and development. Since the PDGF-C protein crystal structure is not 

reported in the Brookhaven PDB database, a rational modelled 3D structure of PDGF - C is 

generated using homology modelling. Various servers, such as PROCHECK and PRoSA, 

validate the modeled structure. The natural substrate is docked to the PGDF-C to investigate 

the putative pharmacological profile of PDGF-C protein. Furthermore, structure-based virtual 

screening studies yield novel and selective molecules. 

The literature data shows that the membrane-proximal homotypic PDGFRα interaction, 

albeit required for activation, contributes negatively to ligand binding. The structural and 

biochemical data together offer insights into PDGF-PDGFR signaling, as well as strategies 

for PDGF-antagonism. 
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MATERIALS AND METHODS 

The comparative modeling method can predict the 3D structure of a protein with the same 

accuracy as a low-resolution experimentally determined structure [17]. This method identifies 

one or more known protein structures that are likely to resemble the structure of the query 

sequence to generate an alignment that maps query sequence residues to template sequence 

residues. The structural model of the target is built using sequence alignment and template 

structure. Even though protein structures are more conserved than DNA sequences, detectable 

sequence similarity usually implies significant structural similarity [18]. 

Homology modeling. Template identification and generation of 3D structure 

The amino acid sequence of PDGF-C (345 AA residues) is retrieved from proteomics 

server (UniProtKB, ExPASy Swiss-Prot/TrEMBL) with accession number Q9NRA1.PSI-

BLAST [19], Jpred3 [20], and Domain Fishing [21], were used to search the sequence 

database for the homolog of a known structure from the PDB for PDGF-C template proteins. 

The coordinates of a template (PDB ID: 3KQ4, 3.3 Å resolution) were chosen to design and 

build the preliminary PDGF-C architecture [22]. ClustalW2 was used to perform pairwise 

sequence alignment between PDGF-C and the template protein, defining the major blocks of 

similarity between the query and template sequences using the Gonnet matrix [23–25]. The 

tertiary structure of PDGF-C is built using MODELLER (Version 9.10), an automated 

programme that extracts spatial restraints from two sources (homology derived and 

CHARMm force field derived) [26]. The three-dimensional (3D) model is created by 

generating ideally satisfying spatial restraints from the alignment and expressing them as 

probability density functions (pdfs) for the restrained features [27, 28]. Initially, 25 models 

were built, the model with the lowest modeller objective function being opted for further 

refinement in structurally variable regions (SVRS). The non-conserved residues are refined 

using the build loop and scan loop modules of the Swiss-PDB viewer, which account for bad 

contacts, clashes, and hydrogen bonds [29, 30]. 

Energy minimization and model validation 

The energy minimization was carried out using the Impact refinement module (Impreff) 

(Impact v 5.0, Schrodinger LLC, New York, NY) at the default cut-off RMSD (Root Mean 

Score Deviation) of 0.30, with the force field set to the optimized potential for liquid 

simulations (OPLS 2005) [31, 32]. The 3D model of PDGF-C is validated to assess 

stereochemical quality using the PROCHECK [33] program of the Structural Analysis and 

Verification server (SAVES). To analyze the quality of the 3D model via a Ramachandran 

plot of dihedral angles against amino acid residues [34]. The constructed structure is validated 

further by measuring sequence and structure compatibility using an energy or scoring 

function, such as PRoSA's Z-score. The ProSA tool compares the 3D model to experimental 

protein structures [35]. 

Active site and protein–protein docking 

The prediction of ligand-binding sites is an important step in understanding the molecular 

recognition mechanism and function of a protein [36]. The three-dimensional structure of 

proteins provides the required shape and physicochemical texture for binding interactions. 

The identification of putative binding residues, active site prediction servers such as CASTp 

[37], Q-Site finder[38], and Sitemap module [39] from Schrodinger LLC, New York, and 

literary studies are used. 

In silico predictions of protein interactions using protein-protein docking studies enable 

the identification of significant residue-residue contacts involving target interactions. ZDOCK 

(V 3.1) [40], a Fast Fourier Transform-based docking algorithm, is used to interpret the key 
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interacting residues of PDGF-C and its receptor PDGFR- (treated as rigid bodies) involved in 

angiogenesis signaling activation. The amino acid residues not involved in the active site were 

blocked using ZDOCK 3.1's block.pl. The top 2000 predictions generated at 6° rotational and 

translational degrees of freedom were thoroughly explored using the scoring function – 

"pairwise shape complementarity function," and docked complexes generated with creating pl 

were ranked further based on z-score. 

The complexes with the highest z-scores were re-ranked using ZRANK [41]. Another 

geometry-based molecular docking algorithm, PATCHDOCK (V 1.3), is used to obtain high 

accuracy interaction predictions based on docking transformations evaluated by a scoring 

function that yields good molecular shape complementarity [42]. The predicted top 20 

solutions were downloaded, analyzed, and the solvent accessible surface area (SASA) 

calculated using Discovery Studio version 3.5, Accelrys program [43]. 

Structure-based virtual screening using molecular docking  

Computational approaches that 'dock' small molecules with macromolecules and score 

their complementarity to binding sites are extensively used in hit identification and lead 

optimization [44]. The primary objectives of drug discovery are to find new chemical entities 

that are highly capable of binding to the target protein and elicit the desired biological 

response. Virtual screening necessitates knowledge of the receptor's spatial and energetic 

requirements [45]. 

Docking is a crucial conformational sampling technique that is quite often used to predict 

the binding perspective of small molecule drug candidates to their protein targets [46]. As a 

result, docking is extremely important in rational drug design. GLIDE (Grid Based Ligand 

Docking with Energetics) is a computational method for rapidly docking ligands to protein 

sites and estimating the binding affinities of the docked compounds. It uses a series of 

hierarchical filters to search for possible ligand locations in the target protein's active-site 

region [47, 48]. 

The energy-minimized PDGF-C protein was further considered for structure-based virtual 

screening using the GLIDE (v 5.6) programme [49]. The scaling factor was 1.0, and the 

partial charge cut-off was set to 0.25 in Van Der Waal’s Radius Scaling. The scoring Grid 

dimensions are 32 Å × 32 Å × 32 Å so that the ligands bind in that groove [50]. Secondly, a 

small molecule OTAVA prime screen and NCI cancer ligand dataset were used for docking 

studies. The 3D coordinates of ligands were generated at a physiological pH of 7.0 ± 2.0 

using Ligprep Module (v 4.0) in Maestro v 9.1 (Schrödinger, LLC, 20, New York, NY) using 

an OPLS_2005 force field [51]. Generation of Ionizers, tautomer, and retention of Specified 

chiralities to generate low energy conformers was at default parameters. 

The ligands with the lowest energy were then subjected to flexible docking against the 

putative active site of the PDGF-C protein in a sequential flow using the GLIDE module 

(V 5.6) [52], first in HTVS (High throughput virtual screening) mode to screen a multiple-

ligand file for structures that interact favorably with the protein's active site. The top-scoring 

10 % of ligand poses evaluated in SP mode (Standard Precision) were further refined in XP 

mode (Extra Precision) to obtain the best ligand poses for docking simulations [53]. The top-

ranked poses are post-docked to optimize bond lengths and angles, as well as torsional angles, 

and the poses are rescored using the Glide Score.The ADME properties of the hits with the 

highest Glide score were investigated. 

ADME/Pharmacokinetic prediction 

Additional research on the computational ADME properties of ligand molecules leads us 

down an intriguing path that provides information to predict drug-able properties. As a result, 

drug discovery research is under intense pressure to improve the chances of a drug's success 
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in clinical trials [54]. Ineffective drug candidates with poor ADME (Absorption, Distribution, 

Metabolism, and Excretion) properties were eliminated.  

Potential ligands with acceptable Glide score and Glide Energy values were further 

checked for ADME. The new Swiss ADME web tool uses a robust in-house methods like 

BOILEDEgg, iLOGP, and Bioavailability Radar to adapt quick predictive models for 

physicochemical properties, pharmacokinetics, drug-like, and drug-chemical friendliness [55].  

The best docked ligand molecules are identified as the new potent leads against PGDF-C 

protein inhibition based on physicochemical properties (Swiss ADME), binding score, 

RMSD, and visual inspection, were identified as new hits. 

RESULTS AND DISCUSSION 

The present investigation looks at PDGF-C as a novel target protein for identifying new 

leads as drug candidates to inhibit pathological angiogenesis. Diverse validation techniques 

were used for the analysis of the 3D model of target protein. Protein-protein docking 

confirmed the active site residues. Virtual screening was used to find the best-docked 

molecule. 

Homology modelling of PGDF-C 

The ExPASy server was used to retrieve the FASTA sequence of human PDGF-C 

(Accession: Q9NRA1). The target protein is of 345 residues in length, molecular weight of 

39,029 Da, cytogenetic location is 4q32.1 with genomic coordinates (GRCh38) 

4:156 760 453–156 971 798. 

The template search was carried out on servers, such as NCBI-Blast, JPred, and Domain 

fishing; the results of the predicted template are shown in Table 1. Position-Specific Iterative 

Basic Local Alignment Search Tool (PSI-BLAST), a tool used to identify a template, a 

homologous amino acid sequence with the PGDF-C protein sequence [56]. The BLAST 

program employs a stochastic method to identify the template with the highest similarity to 

the target protein [57]. The low E-value of 3KQ4-B indicates a strong biological relationship 

with the PGDF-C amino acid sequence. 

 
Table 1. The template search results for the PDGF-C protein 

S. No. 
Name of the protein 

database search server 

Parameters (s) considered for 

template selection 
E- value PDB code 

1 BLAST Sequence position specificity. 7 × 10–10 3KQ4-B 

2 Jpred3 

Secondary structure prediction, solvent 

accessibility and coiled-coil region 

prediction 

4 × 10–9 3KQ4-B 

3 Domain fishing Protein fold recognition 5 × 10–48 3KQ4-B 

 

The Jpred 3 server tool identified template proteins of homologous secondary structural 

elements (-helices, -sheets, and loops) with solvent accessibility, and coiled-coil region 

prediction for proteins in the RCSPDB using the JNet algorithm. The JPred server also 

identified 3KQ4-B as a PGDF-C template [58].  

Domain fishing uses a sequence to split into domains, and the search template from 

PFAM plus PDB and SCOP is ranked based on sequence identity (percent ID), coverage, and 

resolution with an E-value = 5 × 10–48, and the predicted template structure is 3KQ4-B [21].   

The percent identity of bases that are identical to the reference sequence and query 

sequence can still be a true hit. While looking for homology between conserved regions, the 

E-value is critical [59]. The template has a query coverage of 33 %, a percent identity of 
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37.07 %, and is chosen as a template protein (retrieved from the RSC protein data bank) based 

on the lowest E-score to build a reliable model for the PGDF-C protein. 

 
  

 

Fig. 2. Sequence alignment (pairwise) of PDGF-C with the template protein 3KQ4-B by using Clustal-

W2. The conserved residues are indicated with purple, strongly similar residues with green, weakly 

similar residues with cyan, and white for diversity. 
 

The prerequisite for creating a reliable 3D structure is to reliably align PGDF-C with its 

phylogenetically related protein sequence, 3KQ4-B. The pairwise alignment of the PGDF-C 

protein sequence with the template protein sequence using CLUSTAL-W software is shown 

in Figure 2, with a 40.57 % similarity between the target and template sequences. 

Structural analysis of the protein  

The generated 3D model of the protein (PGDF-C) secondary structure is shown in Figure 

3.  

 

Fig. 3. 3D-structure of PDGF-C protein showing the 3 domains: Cub domain (violet color), hinge domain 

(green color), growth factor domain (maroon color). 

 

Two long, highly twisted antiparallel pairs of β-strands in an antiparallel side-by-side 

mode characterize these growth factor domains. They all have eight highly conserved 
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cysteines (I-VIII).The three loops connecting the monomeric antiparallel ββ-strands are 

referred to as loops 1, 2, and 3; due to the head-to-tail arrangement, loop 2 of one monomer 

will be close to loops 1 and 3. Table 2 contains information on the 16 β-sheets. 

 
Table 2. Outline of residues representing the secondary structure of PDGF-C protein 

Β sheets Aminoacids* 

Sheet 1 

Sheet 2 

Sheet 3 

Sheet 4 

Sheet 5 

Sheet 6 

Sheet 7 

Sheet 8 

Sheet 9 

Sheet 10 

Sheet 11 

Sheet 12 

Sheet 13 

Sheet 14 

Sheet 15 

Sheet 16 

FGL 

VQD 

IHS 

TVLVWRL 

IQL 

YDFVEVEE 

TILGRW 

QIS 

IRIRFVSD 

FCI 

AITAFST 

YLEPERW 

WQLLGKA 

DLN 

FSVSIREE 

WPGCLLV 

*single letter codes are used for amino acid residues 

 

Protein tertiary structure (3D) is critical for their function as well as their interaction with 

drugs [39]. Among the PGDF homologs, the binding domain is the most divergent in both 

sequence and structure, this growth factor site is important for ligand binding for most CUB 

domain-containing proteins. The 3D model of PGDF-C contains 16 ß-sheets that are required 

for the separation of the growth factor domain from the CUB domain. 

Salt bridges and π-π interactions preserve the amino acids in the PGDF-C protein structure 

together. The model includes four π-cation interactions and one π–σ interaction, as well as 

three salt bridges (Table 3), which increase the protein's stability. 

Ramachandran plot (from PROCHECK server) measures the angular distribution of ψ/φ 

torsion angles of the protein model's backbone residues. The Figure 4 reveals that 242 (80.4 

%) of the residues have φ/ψ angles in the favored regions, 52 (17.5 %) in the additional 

allowed region, 7 (2.3 %) in the generously allowed region, and none (0 %) in the disallowed 

region. The stereo-chemical quality of any protein structure of a good quality model is 

expected to have over 90 % in the most favored regions [A, B, L]. 
 

Table 3. The hydrophobic interactions and salt bridges in the protein* 

Bond 
π–cation 

interactions 

π–σ 

interactions 
salt bridges (A0) 

Residue name and number 

Phe 270 - Arg 207 

Phe 32 - Lys 36 

Phe 30 - Arg 76 

Tyr 248 - Lys225 

Tyr 202 - Cys 250 

Asp 102 - Lys 105 (3.439) 

Asp 198 - Lys 278 (3.988) 

Arg 201 - Glu 307 (2.671) 

*three letter codes are used for amino acid 
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Fig.4. Ramachandran plot of PDGF-C protein. The favored region is in red, the additionally allowed 

region in the yellow, the generously allowed region in light yellow, and the disallowed region in white.  

 

The Figure S1 (see Supplementary Material) depicts the Verify3D compatibility of the 

PDGF-C protein model (3D) with its own amino acid sequence (1D). The Verify3D server 

ascertained whether an atomic PDGF-C model (3D) was compatible with its amino acid 

sequence (1D). For each of the 345 residues, the scores of a sliding 21-residue window (from 

–10 to +10) are added and plotted. The average 3D-1D score of 51.73 % of the residues is 

greater than 0.2.  

The ProSA server calculates the energy required for protein folding architecture as a 

function of the amino acid sequence. The low Z-score indicates a high overall model quality 

and compares the deviation of the ProSA server to calculate the energy required for protein 

folding architecture as a function of the amino acid sequence. ProSA-Web Z-score determined 

by X-ray crystallography (light blue) and NMR spectroscopy for all proteins in the PDB (dark 

blue). The black spot in Figure 5,a corresponds to the PDGF-C protein and has the Z-score 

value of –2.28. 

 

 

Fig. 5. ProSA profile of PDGF-C protein. a) The overall model quality of PDGF-C by ProSA plot. 

b) Energy profile of residue energies as a function of amino acid sequence position.  
 

The low Z-score indicates good overall model quality and compares the structure's total 

energy deviation from an energy distribution derived from native conformations [60].  Overall 
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folding energies of the protein residues are highly negative, with the folding energy for the 

model protein in the range of native conformations having a Z-score of –2.28. This value is 

very close to the template value (–6.45), indicating that the obtained model is reliable and 

closely matches the experimentally determined structures. The C-terminal domain contains a 

large number of residues with an energy distribution that is entirely below the zero baselines, 

which is consistent with protein parameters. The ProSA plot (Fig. 5,b) shows that the 

modelled PGDF-C and the native structure are well correlated in almost all parts of the 

sequence. 

In recent years, inhibiting PDGF-PDGFR signaling has become an attractive pursuit in 

anticancer therapy, and combined inhibition of PDGF and VEGF has emerged as a promising 

strategy for suppressing angiogenesis in tumor progression [61, 62]. Several strategies have 

been utilized to block PDGF/PDGFR signaling at the extracellular level: neutralizing 

antibodies for PDGF ligands and receptors, aptamers, N-terminal processing-deficient 

PDGFs, and soluble receptors without the kinase domain [63]. The development of such 

therapies would greatly benefit from a detailed structural model of PDGF/PDGFR interaction. 

All members of the PGDF family share a growth factor core domain containing a 

conserved set of cysteine residues. The core domain is necessary and sufficient for receptor 

binding and activation. Activation in the extracellular space requires dissociation of the 

growth factor domain from the CUB domain. Plasmin and tissue plasminogen activator (tPA) 

has been demonstrated to proteolytically remove the CUB domain in PDGF-C, rendering it 

biologically active [64]. TPA needs to interact with both the CUB domain and the core 

domain in order for cleavage and activation of PDGF-C to occur, which likely explains this 

specificity. The Figure 6 show the conserved CUB domain of PDGF-C, implicated in protein-

protein and protein-carbohydrate interactions and may regulate the extracellular distribution 

of latent PDGF-C [65].  

 

 

Fig.6. Conserved domains in the PDGF-C protein sequence. PDGF-C sequence representation N-terminal 

CUB Domain (46–63 residues) shown in blue and C-terminal growth factor domain (235–345 residues) 

shown in red. 

 

The region of PGDF-C protein binding to its receptor was taken as a reference to determine 

the putative active site. The active site residues and pocket volumes were identified using 

CASTp site map and Qsite finder servers as shown in Table 4.  

A pictorial representation of the site is shown in Figure 7. The CASTp analysis shows a 

binding cavity which possess the following residues: 288, 289, 291, 292, 305, 307, 309, 311–

314, 319, 320, 323, 337, 339,342, 344, 345; The Q site analysis identified a cavity the protein 

with 294-296, 300, 302, 303, 305, 306, 307 amino acid residues and site map identified 284-

288, 290, 292-294, 317-321 amino acid being present. The amino acid residues in the region 

of Tyr304 – Gly 307, Leu311 – Lys314, His331 – Cys 335 and Arg 340 to Gly 345 of PDGF-
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C protein have putative binding interactions with these PGDFR. At the active site region, a 

grid with dimensions of 24 Å3 was created for virtual screening studies.  

A library of compounds (from the OTAVA prime screen and NCI cancer ligand 

databases, respectively) was subjected to energy minimization using the Schrödinger Software 

LigPrep module in Maestro 9.1. Virtual screening studies were conducted against the PDGF-

C protein using a library of molecular structures obtained after ligand preparation. 10 % 

structures were screened in each docking stage, namely HTVS, SP, and XP dockings. As a 

result of the virtual screening, a total of 22 docked complexes were obtained. In the virtual 

screening study, the Glide module of the Schrödinger suite employs the default Monte Carlo 

simulation search method to generate the best candidates [48].  
 

Table 4. Active site residues are determined by using various servers and their corresponding 

volume of cavities in Å 

Name of the 

server 

The volume 

of cavity (Å) 
No. of amino acid 

CASTp 2494.9 

288, 289, 291, 292, 305, 307, 309, 

311–314, 319, 320, 323, 337, 339, 

342, 344, 345 

Q-site Finder 137 294–296, 300, 302, 303, 305, 306, 307 

Site map 175.3 284–288, 290, 292–294, 317–321 

 

 

 

Fig. 7. Active site of PDGF-C protein Putative active site residues (Tyr304 – Gly 307, Leu311 – Lys314, 

His331 – Cys 335 and Arg 340 to Gly 345) of PDGF-C protein shown in ball and stick (orange, green) 

and protein is represented in the violet color ribbon.  

 

The binding interactions, specifically the H-bond distances, (< 2.5Å) and π-cations 

interactions, were investigated for all docked complexes, and ligands were prioritized based 

on the glide score and energy. Table S1 contains data on the total output (22 docked) 

complexes. The docking scores of the ligands range from 10.96 to 9.01 kcal/mol. Accelrys DS 

visualizer 3.5 is used to display the docked structures and H-bonds. The best four compounds 

with the highest binding energies and significant affinities with the PGDF-C target protein are 

shown in Figure S2. 

All the ligands embedded within the target protein's active site form hydrogen bonds with 

the same position as the target protein's established active site. At the default condition of 

glide, the ligand molecules M1 to M8 are docked flexibly to the PGDF-C protein, which is 

held rigid in the docking process. Table 5 displays the best-docked compound data for a 

sample of 8 prioritized docked complexes from a total output of 22 docked complexes with 

permissible ADME. 
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Based on the Glide score, Glide Energy, and a review of the ligand structures in Table 5, it 

is clear that the ligands share common pharmacophore properties, which may be attributed to 

their bioisosteric character. The pyrazolone, pyrrolidine-2,3-dione, and pyrimidine acetamide 

moieties are present in the majority of the ligands.  

 
Table 5. Predicted ADME of the docked molecules* 

Molecule 

No. ( ID) 

Glide 

Energy 
HBA HBD log P MW 

TPSA 

(Å) 

Lead 

likeness 

M1 

(Ligand-82) 

–57.54 7 2 2.09 454.47 128.39 2 

M2 

(Ligand -67) 

–54.69 6 3 2.94 429.47 83.06 1 

M3 

(Ligand-1 

34) 

–57.67 4 3 1.39 311.74 120.38 0 

M4  

(Ligand-133) 

–57.90 4 3 1.39 311.74 120.38 0 

M5 

(Ligand-85) 

–55.18 5 2 3.81 472.51 99.05 3 

M6 

(Ligand-86) 

–55.13 6 2 4.11 495.59 89.74 3 

M7 

(Ligand-132) 

–45.65 5 2 1.84 363.43 118.61 2 

M8 

(Ligand-161) 

–48.68 4 2 3.73 407.49 108.56 2 

*The permissible ADME values are as follows: molecular weight (MW) < 500, hydrogen bond donor 

(HBD) < 5, hydrogen bond acceptor (HBA) <10, lipophilicity (log P) < 5.6, total polar surface area 

(TPSA) <=120 Å. 
 

The pyrrolidine-2,3-dione (M5 and M6) and pyrazolone (M2) scaffolds are shown in this 

study to act as selective pharmacophores for binding with the PGDF-C. The NH group of the 

pyrazolone moiety in M2 and the pyrrolidine-2,3-dione moiety in M5 and M6 ligand 

molecules binds to the amino acid residues  Ala 285, Arg253, Leu311 and Ser 323 of the 

PGDF-C active site. Competitive binding of ligand molecules at the active site can prevent 

the formation of the PDGF-C-PDGFR complex. 

The Figure S3 depicts the Bioavailability Radar plots for the M1–M8 demonstrating rapid 

assessment of drug-likeness. The bioavailability plot considers six physicochemical 

properties: lipophilicity, size, polarity, solubility, flexibility, and saturation. A 

physicochemical range on each axis defines the adapted descriptors and is depicted as a pink 

area into which the molecule's radar plot had to fall entirely to be considered drug-like [66]. 

The pink area represents the optimal range for each properties (Lipophilicity: XLOGP3 

between −0.7 and +5.0, size: MW between 150 and 500 g/mol, polarity: TPSA between 20 

and 120 Å2, solubility: log S not higher than 6, saturation: fraction of carbons in the sp3 

hybridization not less than 0.25, and flexibility: no more than 9 rotatable bonds). The M1–M8 

are predicted to be orally bioavailable, but M1, M3 and M4 are too polar and none of the 

compound molecules crosses the BBB. 

The Figure 8 illustrates a BOILED-Egg predictive model for gastrointestinal and BBB 

prediction. The TPSA vs. WlogP plot shows a white region indicating the physicochemical 

space of molecules with the highest probability of being absorbed by the gastrointestinal tract, 

and the yellow region (yolk) is the physicochemical space of molecules with the highest 

probability of permeating to the brain. P-glycoprotein (PGA) substrates are susceptible to 

pharmacokinetic changes caused by drug interactions with PGA inhibitors or inducers; key 
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mechanism underlying decreased intracellular drug accumulation in various cancers is PGA 

overexpression [67]. 

 

 

Fig. 8. BOILED-Egg predictive model. The BOILED-Egg model plot based on TPSA vs WLogP for the 

gastrointestinal and BBB prediction. 

 

Except for M3, the molecules M1 - M8 are PGA+, indicating that they are PGA-inducing 

drug-like molecules. The Jorgensen Lipinski law (as most anti-cancer agents demonstrate 

cardiovascular toxicity and obey the Lipinski rule of five, Jorgensen rule of three) and drug-

like properties (Table 5) are mentioned [68]. The study of pharmacokinetic properties reveals 

molecules with permissible ADME properties and lower scaffold toxicity. A critical stage of 

the drug development process is ADMET assessment before a pre-clinical trial. Polar surface 

area values (120 Å) are within an acceptable range for all known ligands and have strong 

overall ADME properties. The results show that the M2, M5, and M6 molecules have 

synthetic viability compared to other molecules and can thus be considered as novel leads for 

the design of new PGDF-C protein inhibitors and scaffolds for further development of new 

lead against pathogenic angiogenesis and cancer. 

CONCLUSIONS 

The 3D structure of the PDGF-C protein generated using 3KQ4-B as a template is 

comparable to the X-ray resolved protein structure. Protein-protein docking of PDGF-C with 

its natural receptor (PDGFR) confirmed the binding residues in the active site region. Virtual 

screening studies show that the lead molecules have putative binding interactions with the 

amino acid residues Asn292, Leu309, Leu311, Lys322, Gly341, Thr434, Ser332, and Ser342 

of the PDGF - C protein. The studies revealed that pyrazolone and pyrrolidine-2,3-dione 

scaffolds (Glide Energy = –10.56, –10.12, and –10.04 kcal/mol) with acceptable ADME will 

inhibit PGDF-C protein by blocking the active site residues and act as leads in the design of 

inhibitors against pathological angiogenesis in cancer. 
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