Russian version English version
Volume 8   Issue 2   Year 2013
Ivanisenko N.V., Tregubchak T.V., Saik O.V., Ivanisenko V.A., Shchelkunov S.N., Kolchanov N.A.

Molecular Mechanisms of Interaction between Human Tumor Necrosis Factor and CrmB TNF-binding Proteins of Cowpox and Variola Viruses

Mathematical Biology & Bioinformatics. 2013;8(2):467-479.

doi: 10.17537/2013.8.467.

References

  1. Hsia EC, Ruley KM, Rahman MU. Infliximab (Remicade®): from bench to clinical practice. A paradigm shift in rheumatology practice. APLAR J. Rheumatol. 2006;9:107-118. doi: 10.1111/j.1479-8077.2006.00185.x
  2. Harriman G, Harper LK, Schaible TF. Summary of clinical trials in rheumatoid arthritis using infliximab, an anti-TNFalpha treatment. Ann. Rheum. Dis. 1999;58(1):161-164. doi: 10.1136/ard.58.2008.i61
  3. Mohler KM, Torrance DS, Smith CA, Goodwin RG, Stremler KE, Fung VP, Madani H, Widmer MB. Soluble tumor necrosis factor (TNF) receptors are effective therapeutic agents in lethal endotoxemia and function simultaneously as both TNF carriers and TNF antagonists. J. Immunol. 1993;151(3):1548-1561.
  4. Weinblatt ME, Keystone EC, Furst DE, Moreland LW, Weisman MH, Birbara CA, Teoh LA, Fischkoff SA, Chartash EK. Adalimumab, a fully human anti-tumor necrosis factor alpha monoclonal antibody, for the treatment of rheumatoid arthritis in patients taking concomitant methotrexate: the ARMADA trial. Arthritis Rheum. 2003;48(1):35-45. doi: 10.1002/art.10697
  5. Gartlehner G, Hansen RA, Jonas BL, Thieda P, Lohr KN. The comparative efficacy and safety of biologics for the treatment of rheumatoid arthritis: a systematic review and metaanalysis. J. Rheumatol. 2006;33(12):2398-2408.
  6. Kirou K, Mavragani CP. TNF antagonists in the management of early rheumatoid arthritis: An overview. International Journal of Advances in Rheumatology. 2006;4:49-56.
  7. Gómez-Reino JJ, Carmona L, Angel Descalzo M. Biobadaser Group. Risk of tuberculosis in patients treated with tumor necrosis factor antagonists due to incomplete prevention of reactivation of latent infection. Arthritis Rheum. 2007;15,57(5):756-761.
  8. Calabrese LH, Zein N, Vassilopoulos D. Safety of antitumour necrosis factor (anti-TNF) therapy in patients with chronic viral infections: hepatitis C, hepatitis B, and HIV infection. Ann. Rheum. Dis. 2004;63(2):18-24. doi: 10.1136/ard.2004.028209
  9. Maini RN, Taylor PC. Anti-cytokine therapy for rheumatoid arthritis. Annu. Rev. Med. 2000;51:207-229. doi: 10.1146/annurev.med.51.1.207
  10. Blinov VM, Shchelkunov SN, Sandakhchiev LS. A possible molecular factor responsible for the generalization of smallpox infection. Dokl. Akad. Nauk. 1993;328(1):109-111.
  11. Shchelkunov SN, Blinov VM, Sandakhchiev LS. Genes of variola and vaccinia viruses necessary to overcome the host protective mechanisms. FEBS Lett. 1993;319(1-2):80-83. doi: 10.1016/0014-5793(93)80041-R
  12. Orlovskaia IA, Tsyrendorzhiev DD, Toporkova LB, Kurilin VV, Lopatnikova IuA, Viazovaia EA, Gileva IP, Shchelkunov SN, Sennikov SV. Medizinskaja Immunologia (Medical Immunology). 2012;14(1-2):33-42 (in Russ.).
  13. Massova I, Kollman PA. Computational alanine scanning to probe protein–protein interactions: a novel approach to evaluate binding free energies. J. Am. Chem. Soc. 1999;121:8133-8143. doi: 10.1021/ja990935j
  14. Zoete V, Michielin O. Comparison between computational alanine scanning and per-residue binding free energy decomposition for protein–protein association using MM-GBSA: application to the TCR-p-MHC complex. Proteins: Struct. Funct. Bioinform. 2007;67:1026-1047. doi: 10.1002/prot.21395
  15. Zoete V, Meuwly M, Karplus M. Study of the insulin dimerization: binding free energy calculations and per-residue free energy decomposition. Proteins: Struct. Funct. Bioinform. 2005;61:79-93. doi: 10.1002/prot.20528
  16. Gohlke H, Kiel C, Case DA. Insights into protein–protein binding by binding free energy calculation and free energy decomposition for the Ras–Raf and Ras–RalGDS complexes. J. Mol. Biol. 2003;330:891-913. doi: 10.1016/S0022-2836(03)00610-7
  17. Wang W, Kollman PA. Free energy calculations on dimer stability of the HIV protease using molecular dynamics and a continuum solvent model. J. Mol. Biol. 2000;303:567-582. doi: 10.1006/jmbi.2000.4057
  18. Pintus SS, Ivanisenko NV, Demenkov PS, Ivanisenko TV, Ramachandran S, Kolchanov NA, Ivanisenko VA. Journal of Biomolecular Structure and Dynamics. 2013;31(1):78-89. doi: 10.1080/07391102.2012.691364
  19. Gahoi Sh, Mandal RSh, Ivanisenko N, Shrivastava P, Jain S, Singh AK, Raghunandanan MV, Kanchan S, Taneja B, Mandal Ch, Ivanisenko VA, Kumar A, Kumar R. Open Source Drug Discovery Consortium, Srinivasan Ramachandran. Journal of Biomolecular Structure and Dynamics. 2013;31(1):30-43. doi: 10.1080/07391102.2012.691343
  20. Chong LT, Duan Y, Wang L, Massova I, Kollman PA. Molecular dynamics and free-energy calculations applied to affinity maturation in antibody 48G7. Proc. Natl. Acad. Sci. U.S.A. 1999;96:14330-14335. doi: 10.1073/pnas.96.25.14330
  21. Tsui V, Case DA. Theory and applications of the generalized born solvation model in macromolecular simulations. Biopolymers. 2000;56:275-291. doi: 10.1002/1097-0282(2000)56:4<275::AID-BIP10024>3.0.CO;2-E
  22. Onufriev A, Bashford D, Case DA. Modification of the generalized Born model suitable for macromolecules. J. Phys. Chem. B. 2000;104:3712-3720. doi: 10.1021/jp994072s
  23. Shchelkunov SN, Uvarova EA, Totmenin AV, Safronov PF, Sandakhchiev LS. Species-specific differences in the organization of the complement-binding protein of orthopoxviruses. Dokl. Biochem. Biophys. 2001;379:257-261. doi: 10.1023/A:1011646601409
  24. Shchelkunov SN, Totmenin AV, Babkin IV, Safronov PF, Ryazankina OI, Petrov NA, Gutorov VV, Uvarova EA, Mikheev MV, Sisler JR, Esposito JJ, Jahrling PB, Moss B, Sandakhchiev LS. Human monkeypox and smallpox viruses: genomic comparison. FEBS Lett. 2001;509(1):66-70. doi: 10.1016/S0014-5793(01)03144-1
  25. Shchelkunov SN, Totmenin AV, Safronov PF, Gutorov VV, Ryazankina OI, Petrov NA, Babkin IV, Uvarova EA, Mikheev MV, Sisler JR, Esposito JJ, Jahrling PB, Moss B, Sandakhchiev LS. Multiple genetic differences between the monkeypox and variola viruses. Dokl. Biochem. Biophys. 2002;384:143-147. doi: 10.1023/A:1016016013042
  26. Gileva IP, Nepomnyashchikh TS, Antonets DV, Lebedev LR, Kochneva GV, Grazhdantseva AV, Shchelkunov SN. Properties of the recombinant TNF-binding proteins from variola, monkeypox, and cowpox viruses are different. Biochim. Biophys. Acta. 2006;1764(11):1710-1718. doi: 10.1016/j.bbapap.2006.09.006
  27. Alejo A, Ruiz-Argüello MB, Ho Y, Smith VP, Saraiva M, Alcami A. A chemokine-binding domain in the tumor necrosis factor receptor from variola (smallpox) virus. Proc. Natl. Acad. Sci. USA. 2006;103(15):5995-6000. doi: 10.1073/pnas.0510462103
  28. Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK - a program to check the stereochemical quality of protein structures. J. App. Cryst. 1993;26:283-291. doi: 10.1107/S0021889892009944
  29. Laskowski RA, Rullmannn JA, MacArthur MW, Kaptein R, Thornton JM. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR. 1996;8:477-486. doi: 10.1007/BF00228148
  30. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang J, Kollman P. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J. Comput. Chem. 2003;24:1999-2012. doi: 10.1002/jcc.10349
  31. Case DA, Darden TA, Cheatham III TE, Simmerling CL, Wang J, Duke RE, Luo R, Walker RC, Zhang W, Merz KM, Roberts S, Hayik S, Roitberg A, Seabra G, Swails J, Götz AW, Kolossvry I, Wong KF, Paesani F, Vanicek J, Wolf RM, Liu J, Wu X, Brozell SR, Steinbrecher T, Gohlke H, Cai Q, Ye X, Wang J, Hsieh M-J, Cui G, Roe DR, Mathews DH, Seetin MG, Salomon-Ferrer R, Sagui C, Babin V, Luchko T, Gusarov S, Kovalenko A, Kollman PA. AMBER 12. San Francisco, University of California; 2012.
  32. Darden T, York D, Pedersen L. Particle mesh Ewald: an N log(N) method for Ewald sums in large systems. J. Chem. Phys. 1993;98:10089-10092. doi: 10.1063/1.464397
  33. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen L. A smooth particle mesh ewald potential. J. Chem. Phys. 1995;103:8577-8592. doi: 10.1063/1.470117
  34. Coleman TG, Mesick HC, Darby RL. Ann. Biomed. Eng. 1977;5:322. doi: 10.1007/BF02367312
  35. Hou T, Wang J, Li Y, Wang W. Assessing the Performance of the MM/PBSA and MM/GBSA Methods. 1. The Accuracy of Binding Free Energy Calculations Based on Molecular Dynamics Simulations. J. Chem. Inf. Model. 2011;51:69-82. doi: 10.1021/ci100275a
  36. Miller BR, Dwight McGee T, Swails JM, Homeyer N, Gohlke H, Roitberg AE. MMPBSA.py: An Efficient Program for End-State Free Energy Calculations. J. Chem. Theory Comput. 2012;8 (9):3314-3321. doi: 10.1021/ct300418h
  37. Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS-MODEL Workspace: A web-based environment for protein structure homology modelling. Bioinformatics. 2006;22:195-201. doi: 10.1093/bioinformatics/bti770
  38. Kiefer F, Arnold K, Künzli M, Bordoli L, Schwede T. The SWISS-MODEL Repository and associated resources. Nucleic Acids Research. 2009;37:D387-D392. doi: 10.1093/nar/gkn750
  39. Peitsch MC. Protein modeling by E-mail Bio/Technology. Nature Biotechnology. 1995;13:658-660. doi: 10.1038/nbt0795-658
  40. Nepomniashchikh TS, Antonets DV, Lebedev LR, Gileva IP, Shchelkunov SN. Modeling spatial structures of variola and cowpox virus TNF-binding CrmB proteins bound to murine or human TNF. Mol. Biol. (Moscow). 2010;44(6):1054-1063.
  41. Gileva IP, Riazankin IA, Nepomniashchikh TS, Totmenin AV, Maksiutov ZA, Lebedev LR, Afinogenova GN, Pustoshiliva NM, Shchelkunov SN. Expression of genes for orthopoxviral TNF-binding proteins and study resulted recombinant proteins. Mol. Biol. (Moscow). 2005;39(2):245-254.
Table of Contents Original Article
Math. Biol. Bioinf.
2013;8(2):467-479
doi: 10.17537/2013.8.467
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)
References

 

  Copyright IMPB RAS © 2005-2024