Russian version English version
Volume 8   Issue 2   Year 2013
Grinevich A.A., Tankanag A.V., Chemeris N.K.

The study of the dependence of the human heart rate from the frequency of controlled breathing

Mathematical Biology & Bioinformatics. 2013;8(2):537-552.

doi: 10.17537/2013.8.537.

References

  1. Baevskii RM, Berseneva AP. Otsenka adaptatsionnykh vozmozhnostei organizma i risk razvitiia zabolevanii (Evaluation of adaptive capacities of the organism and the risk of disease). Moscow; 1997 (in Russ.).
  2. Task Force of the European Society of Cardiology and North American Society of Pacing and Electrophysiology. Heart rate variability. Standards of measurement, physiological interpretation and clinical use. Circulation. 1996;93:1043-1065. doi: 10.1161/01.CIR.93.5.1043
  3. Berntson GG, Bigger JT, Eckberg DL, Grossman P, Kaufmann PG, Malik M, Nagaraja HN, Porges SW, Saul JP, Stone PH, van der Molen MW. Heart rate variability: origins, methods and interpretive caveats. Psychophysiology. 1997;34:623-648. doi: 10.1111/j.1469-8986.1997.tb02140.x
  4. Riabykina GV, Sobolev AV. Variabel'nost' ritma serdtsa (Heart rate variability). Moscow; 1998. 215 p. (in Russ.).
  5. Fleishman AN. Slow hemodynamic oscillations. The theory, practical application in clinical medicine and prevention. Novosibirsk: "Nauka", Siberian enterprises RAS; 1999.
  6. Kleiger RE, Stain PK, Bigger JT. Heart rate variability: measurement and clinical utility. Ann. Nucl. Eng. 2005;10:88-101. doi: 10.1111/j.1542-474X.2005.10101.x
  7. Angelone A, Coulter NA Jr. Respiratory sinus arrhythemia: a frequency dependent phenomenon. J. Appl. Physiol. 1964;19:479-482.
  8. Bernardi LC, Porta A, Gabutti L, Spicuzza L, Sleight P. Modulatory effects of respiration. Auton. Neurosci. Basic and Clin. 2001;90:47-56. doi: 10.1016/S1566-0702(01)00267-3
  9. Cohen MA, Taylor JA. Short-term cardiovascular oscillations in man: measuring and modeling the physiologies. J. Physiol. 2002;542:669-683. doi: 10.1113/jphysiol.2002.017483
  10. Taylor JA, Myers CW, Halliwill JR, Seidel H, Eckberg DL. Sympathetic restraint of respiratory sinus arrhythmia: implications for vagal-cardiac tone assessment in humans. Am. J. Physiol. Heart Circ. Physiol. 2001;280:2804-2814.
  11. Song H-S, Lehrer PM. The Effects of Specific Respiratory Rates on Heart Rate and Heart Rate Variability. App. Psychophysiology and Biofeedback. 2003;28(1):13-23. doi: 10.1023/A:1022312815649
  12. Kiselev AR, Kirichuk VF, Posnenkova OM, Gridnev VI. Mechanisms of Periodic Heart Rate Oscillations: A Study Using Controlled Breathing Tests. Human Physiology. 2005;31(3):309-315. doi: 10.1007/s10747-005-0050-z
  13. Gridnev VI, Kiselev AR, Kotel’nikova EV, OM Posnenkova, Dovgalevskii PYa, Kirichuk VF. Influence of External Periodic Stimuli on Heart Rate Variability in Healthy Subjects and in Coronary Heart Disease Patients. Human Physiology. 2006;32(5):565-573. doi: 10.1134/S0362119706050100
  14. Krasnikov GV, Piskunova GM, Tankanag AV, Tiurina MI, Chemeris NK. Vestnik novykh meditsinskikh tekhnologii (Journal of New Medical Technologies). 2010;XVII(4):1-17 (in Russ.).
  15. Tyurina MY, Krasnikov GV, Tankanag AV, Piskunova GM, Chemeris NK. Spectra of heart rate deviations under controlled breath conditions in human. Regionarnoe krovoobrashchenie i mikrotsirkuliatsiia (Regional Haemodynamics and Microcirculation). 2011;2:64-70 (in Russ.).
  16. Krasnikov GV, Tyurina MY, Tankanag AV, Piskunova GM, Chemeris NK. Analysis of heart rate variability and skin blood flow oscillations under deep controlled breathing. Respir. Physiol. Neurobiol. 2013;185(3):562-570. doi: 10.1016/j.resp.2012.11.007
  17. Kiselev AR, Gridnev VI. Oscillatory processes in vegetative regulation of cardiovascular system (Review). Saratovskii nauchno-meditsinskii zhurnal (Saratov Journal of Medical Scientific Research). 2011;7(1):34-39 (in Russ.).
  18. Lakhno VD. Mathematical Cell. Concepts of Constructing Mathematical Models for Charge Transfer in a Living Cell. Vestnik RUDN, Seriia Prikladnaia i komp'iuternaia matematika (Bulletin of Peoples' Friendship University of Russia. “Applied and Computer Mathematics” Series. 2003;2(2):77-84 (in Russ.).
  19. Karr Jonathan R, Sanghvi Jayodita C, Macklin Derek N, Gutschow Miriam V, Jacobs Jared M, Bolival Benjamin, Assad-Garcia Nacyra, Glass John I, Covert Markus W. A Whole-Cell Computational Model Predicts Phenotype from Genotype. Cell. 2012;150(2):389-401. doi: 10.1016/j.cell.2012.05.044
  20. Cheng L, Ivanova O, Fan H-H, Khoo MCK. An integrative model of respiratory and cardiovascular control in sleep-disordered breathing. Respiratory Physiology & Neurobiology. 2010;174:4-28.
  21. Kiselev IN, Semisalov BV, Biberdorf EA, Sharipov RN, Blokhin AM, Kolpakov FA. Modular Modeling of the Human Cardiovascular System. Matematicheskaya biologiya i bioinformatika (Mathematical Biology and Bioinformatics). 2012;7(2):703-736 (in Russ.). doi: 10.17537/2012.7.703
  22. Daan S, Beersma DG, Borbely AA. Timing of human sleep: recovery process gated by a circadian pacemaker. Am. J. Physiol. 1984;246:R161-R183.
  23. Borbely AA, Achermann P. Sleep homeostasis and models of sleep regulation. In: Principles and Practice of Sleep Medicine. Eds. Kogger MH, Roth T, Dement WC. Philadelphia: Saunders WB; 2000.
  24. Achermann P, Borbely AA. Mathematical models of sleep regulation. Front. Biosci. 2003;8:s683-s693. doi: 10.2741/1064
  25. Riddle W, Younes M. A model for the relation between respiratory neural and mechanical outputs. II. Methods. J. Appl. Physiol. 1981;51:979-989.
  26. Duffin J, Mohan RM, Vasiliou P, Stephenson R, Mahamed S. A model of the chemoreflex control of breathing in humans: model parameters measurement. Respir. Physiol. 2000;120:13-26. doi: 10.1016/S0034-5687(00)00095-5
  27. Ursino M, Magosso E. Acute cardiovascular response to isocapnic hypoxia. I. A mathematical model. Am. J. Physiol. Heart Circ. Physiol. 2000;279:H149-H165.
  28. Magosso E, Ursino M. A mathematical model of CO2 effect on cardiovascular regulation. Am. J. Physiol. Heart Circ. Physiol. 2001;281:H2036-H2052.
  29. Ursino M. Interaction between carotid baroregulation and the pulsating heart: a mathematical model. Am. J. Physiol. 1998;275:H1733-H1747.
  30. Ursino M, Magosso E. Short-term autonomic control of cardiovascular function: a mini-review with the help of mathematical models. J. Integr. Neurosci. 2003;2:219-247. doi: 10.1142/S0219635203000275
  31. Read DJ, Leigh J. Blood-brain tissue Pco2 relationships and ventilation during rebreathing. J. Appl. Physiol. 1967;23:53-70.
  32. Khoo MC. A model-based evaluation of the single-breath CO2 ventilatory response test. J. Appl. Physiol. 1990;68:393-399.
  33. Tankanag A, Chemeris N. Application of adaptive wavelet transform for analysis of blood flow oscillations in the human skin. Phys. Med. Biol. 2008;53(21):5967-5976. doi: 10.1088/0031-9155/53/21/005
  34. Tankanag AV, Chemeris NK. Adaptive wavelet analysis of oscillations in the human peripheral blood flow Biophysics. 2009;54(3):375-380. doi: 10.1134/S0006350909030221
  35. Tankanag AV, Chemeris NK. A method of adaptive wavelet filtering of the peripheral blood flow oscillations under stationary and non-stationary conditions. Phys. Med. Biol. 2009;54(19):5935-5948. doi: 10.1088/0031-9155/54/19/018
  36. Tankanag AV. Applications of the Adaptive Wavelet Transform for Analyzing Peripheral Blood Flow Oscillations in the Human Skin. In: Medical Physics. Ed. Balcerzyk M. NY: Nova Science Publishers; 2013. P. 85-104.
Table of Contents Original Article
Math. Biol. Bioinf.
2013;8(2):537-552
doi: 10.17537/2013.8.537
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)
References

 

  Copyright IMPB RAS © 2005-2024