Russian version English version
Volume 9   Issue 1   Year 2014
Tsukerman V.D., Kharybina Z.S., Kulakov S.V.

A Mathematical Model of Hippocampal Spatial Encoding. II. Neurodynamic Correlates of Mental Trajectories and Decision-Making Problem

Mathematical Biology & Bioinformatics. 2014;9(1):216-256.

doi: 10.17537/2014.9.216.

References

  1. Hafting T, Fyhn M, Molden S, Moser MB, Moser EI. Microstructure of a spatial map in the entorhinal cortex. Nature. 2005;436:801–806.
  2. doi: 10.1038/nature03721
  3. McNaughton BL, Battaglia FP, Jensen O, Moser EI, Moser MB. Path integration and the neural basis of the «cognitive map». Nat. Rev. Neurosci. 2006;7:663–678.
  4. doi: 10.1038/nrn1932
  5. Barry C, Hayman R, Burgess N, Jeffery KJ. Experience-dependent rescaling of entorhinal grids. Nat. Neurosci. 2007;10:682–684.
  6. doi: 10.1038/nn1905
  7. Derdikman D, Moser EI. A manifold of spatial maps in the brain. Trends Cogn. Sci. 2010;14:561–569.
  8. doi: 10.1016/j.tics.2010.09.004
  9. Doeller CF, Barry C, Burgess N. Evidence for grid cells in a human memory network. Nature. 2010;463:657–661.
  10. doi: 10.1038/nature08704
  11. Navratilova J, Giocomo LM, Fellous J-M, Hasselmo ME, McNaughton BL. Phase precession and variable spatial scaling in a periodic attractor map model of medial entorhinal grid cells with realistic after-spike dynamics. Hippocampus. 2012;22:772–789.
  12. doi: 10.1002/hipo.20939
  13. Giocomo LM, Roudi Y. The neural encoding of space in parahippocampal cortices. Front. Neural Circuits. 2012;6:53.
  14. doi: 10.3389/fncir.2012.00053
  15. O’Keefe J, Dostrovsky J. The hippocampus as a spatial map: preliminary evidence from unit activity in the freely moving rat. Brain Res. 1971;34:171–175.
  16. doi: 10.1016/0006-8993(71)90358-1
  17. O’Keefe J, Burgess N. Dual phase and rate coding in hippocampal place cells: theoretical significance and relationship to entorhinal grid cells. Hippocampus. 2005;15:853–866.
  18. doi: 10.1002/hipo.20115
  19. O’Keefe J, Burgess N. Geometric determinants of the place fields of hippocampal neurons. Nature. 1996;381:425–428.
  20. doi: 10.1038/381425a0
  21. Ekstrom AD, Kahana MJ, Caplan JB, Fields TA, Isham EA, Newman EL, Fried I. Cellular networks underlying human spatial navigation. Nature. 2003;425:184–187.
  22. doi: 10.1038/nature01964
  23. Geisler C, Robbe D, Zugaro M, Sirota A, Buzsaki G. Hippocampal place cell assemblies are speed controlled oscillators. PNAS USA. 2007;104:8149–8154.
  24. doi: 10.1073/pnas.0610121104
  25. Diba K, Buzsaki G. Forward and reverse hippocampal place-cell sequences during ripples. Nat. Neurosci. 2007;10:1241–1242.
  26. doi: 10.1038/nn1961
  27. Moser EI, Kropff E, Moser MB. Place cells, grid cells, and the brain’s spatial representation system. Ann. Rev. Neurosci. 2008;31:69–89.
  28. doi: 10.1146/annurev.neuro.31.061307.090723
  29. Taube JS, Muller RU, Ranck JBJr. Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. J. Neurosci. 1990;10:420–435.
  30. Taube JS, Muller RU, Ranck JrJB. Head-direction cells recorded from the postsubiculum in freely moving rats. II. Effects of environmental manipulations. J. Neurosci. 1990;10:436–447.
  31. Blair HT, Sharp PE. Anticipatory head direction signals in anterior thalamus: evidence for a thalamocortical circuit that integrates angular head motion to compute head direction. J. Neurosci. 1995;15:6260–6270.
  32. Zhang K. Representation of spatial orientation by the intrinsic dynamics of the head direction cell ensemble: a theory. J. Neurosci. 1996;16:2112–2126.
  33. Taube JS. Head direction cells and the neurophysiological basis for a sence of direction. Progr. Neurobiol. 1998;55:225–256.
  34. doi: 10.1016/S0301-0082(98)00004-5
  35. Sharp PE, Blair HT, Cho J. The anatomical and computational basis of the rat head-direction cell signal. Trends Neurosci. 2001;24:289–294.
  36. doi: 10.1016/S0166-2236(00)01797-5
  37. Zugaro MB, Arleo A, Berthoz A, Wiener SI. Rapid spatial reorientation and head direction cells. J. Neurosci. 2003;23:3478–3482.
  38. Taube JS, Bassett JP. Persistent neural activity in head direction cells. Cereb. Cortex. 2003;13:1162–1172.
  39. doi: 10.1093/cercor/bhg102
  40. Taube JS. The head direction signal: origins and sensory-motor integration. Annu. Rev. Neurosci. 2007;30:181–207.
  41. doi: 10.1146/annurev.neuro.29.051605.112854
  42. Sargolini F, Fyhn M, Hafting T, McNaughton BL, Witter MP, Moser MB, Moser EI. Conjunctive representation of position, direction, and velocity in entorhinal cortex. Science. 2006;312:758–762.
  43. doi: 10.1126/science.1125572
  44. Doeller CF, King JA, Burgess N. Parallel striatal and hippocampal systems for landmarks and boundaries in spatial memory. PNAS USA. 2008;105:5915–5920.
  45. doi: 10.1073/pnas.0801489105
  46. Solstad T, Boccara CN, Kropff E, Moser MB, Moser EI. Representation of geometric borders in the entorhinal cortex. Science. 2008;322:1865–1868.
  47. doi: 10.1126/science.1166466
  48. Savelli F, Yoganarasimha D, Knierim JJ. Influence of boundary removal on the spatial representations of the medial entorhinal cortex. Hippocampus. 2008;18:1270–1282.
  49. doi: 10.1002/hipo.20511
  50. Lever C, Burton S, Jeewajee A, O’Keefe J, Burgess N. Boundary vector cells in the subiculum of the hippocampal formation. J. Neurosci. 2009;29:9771–9777.
  51. doi: 10.1523/JNEUROSCI.1319-09.2009
  52. Bird CM, Capponi C, King JA, Doeller CF, Burgess N. Establishing the boundaries: the hippocampal contribution to imagining scenes. J. Neurosci. 2010;30:11688–11695.
  53. doi: 10.1523/JNEUROSCI.0723-10.2010
  54. Itskov V, Curto C, Pastalkova E, Buzsaki G. Cell assembly sequences arising from spike threshold adaptation keep track of time in the hippocampus. J. Neurosci. 2011;31:2828–2834.
  55. doi: 10.1523/JNEUROSCI.3773-10.2011
  56. MacDonald CJ, Lepage KQ, Eden UT, Eichenbaum H. Hippocampal «time cells» bridge the gap in memory for discontiguous events. Neuron. 2011;71:737–749.
  57. doi: 10.1016/j.neuron.2011.07.012
  58. Kraus BJ, Robinson RJ, White JA, Eichenbaum H, Hasselmo ME. Hippocampal «time cells»: time versus path integration. Neuron. 2013;78:1–12.
  59. doi: 10.1016/j.neuron.2013.04.015
  60. Eichenbaum H. Memory on time. Trends Cogn. Sciences. 2013;17:81–88.
  61. doi: 10.1016/j.tics.2012.12.007
  62. Tsukerman VD, Kharybina ZS, Kulakov SV. In: trudy III Vserossiiskoi konf. «Nelineinaia dinamika v kognitivnykh issledovaniiakh-2013» (III All-Russian conference proceedings. "Nonlinear dynamics in cognitive studies 2013"). Nizhny Novgorod: IAP RAS; 2013. P. 183–186 (in Russ.).
  63. Burgess N, Barry C, O'Keefe J. An oscillatory interference model of grid cell firing. Hippocampus. 2007;17:801–812.
  64. doi: 10.1002/hipo.20327
  65. Burgess N. Grid cells and theta as oscillatory interference: theory and predictions. Hippocampus. 2008;18:1157–1174.
  66. doi: 10.1002/hipo.20518
  67. Jeewajee A, Barry C, O’Keefe J, Burgess N. Grid cells and theta as oscillatory interference: electrophysiological data from freely moving rats. Hippocampus. 2008;18:1175–1185.
  68. doi: 10.1002/hipo.20510
  69. Samsonovich A, McNaughton BL. Path integration and cognitive mapping in a continuous attractor neural network model. J. Neurosci. 1997;17:5900–5920.
  70. Battaglia FP, Treves A. Attractor neural networks storing multiple space representations: a model for hippocampal place fields. Physical Rev. E. 1998;58:7738–7753.
  71. doi: 10.1103/PhysRevE.58.7738
  72. Fuhs MC, Touretzky DS. A spin glass model of path integration in rat medial entorhinal cortex. J. Neurosci. 2006;26:4266–4276.
  73. doi: 10.1523/JNEUROSCI.4353-05.2006
  74. McNaughton BL, Battaglia FP, Jensen O, Moser EI, Moser M-B. Path integration and the neural basis of the «cognitive map». Nat. Rev. Neurosci. 2006;7:663–678.
  75. doi: 10.1038/nrn1932
  76. Guanella A, Kiper D, Verschure P. A model of grid cells based on a twisted torus topology. Int. J. Neural Syst. 2007;17:231–240.
  77. doi: 10.1142/S0129065707001093
  78. Burak Y, Fiete IR. Accurate path integration in continuous attractor network models of grid cells. PLoS Comput. Biol. 2009;5(2):e1000291.
  79. doi: 10.1371/journal.pcbi.1000291
  80. Hasselmo ME, Brandon MP. A model combining oscillations and attractor dynamics for generation of grid cell firing. Front. Neur. Circuits. 2012;6:30.
  81. doi: 10.3389/fncir.2012.00030
  82. Pastoll H, Solanka L, van Rossum MCW, Nolan MF. Feedback inhibition enables theta-nested gamma oscillations and grid firing fields. Neuron. 2013;77:141–154.
  83. doi: 10.1016/j.neuron.2012.11.032
  84. Tsukerman VD, Cheshkov GN. In: Neirokomp'iutery: razrabotka,  primenenie (Neurocomputers: Development and Application). 2002;7-8:65-72 (in Russ.).
  85. Tsukerman VD, Kulakov SV.  In: Neirokomp'iutery: razrabotka,  primenenie (Neurocomputers: Development and Application). 2004;11:15-25 (in Russ.).
  86. Tsukerman VD. Mathematical Model of Phase Coding of Events in the Brain. Matematicheskaya biologiya i bioinformatika (Mathematical Biology and Bioinformatics). 2006;1(1):97–107 (in Russ.).
  87. doi: 10.17537/2006.1.97
  88. Tsukerman VD, Kulakov SV, Karimova OV. Rippling Codes of Event Sequences. Matematicheskaya biologiya i bioinformatika (Mathematical Biology and Bioinformatics). 2006;1(1):108–122 (in Russ.).
  89. doi: 10.17537/2006.1.108
  90. Tsukerman VD, Karimova OV, Kulakov SV, Sazykin AA. In: Neirokomp'iutery: razrabotka,  primenenie (Neurocomputers: Development and Application). 2010;2:17-27 (in Russ.).
  91. Tsukerman VD. In: Nelineinye volny-2010 (Nonlinear Waves-2010). Eds. Gaponova-Grekhova AV, Nekorkina VI. Nizhny Novgorod; 2011. P. 396-411 (in Russ.).
  92. Tsukerman VD, Eremenko ZS, Karimova OV, Sazykin AA, Kulakov SV. Mathematical Model of Spatial Encoding in Hippocampal Formation. I. Grid Cells Neurodynamics. Matematicheskaya biologiya i bioinformatika (Mathematical Biology and Bioinformatics). 2012;7(1):87–124 (in Russ.).
  93. Stensola H, Stensola T, Solstad T, Froland K, Moser M-B, Moser EI. The entorhinal grid map is discretized. Nature. 2012;492:72–78.
  94. doi: 10.1038/nature11649
  95. Kim S, Lee J, Lee I. The hippocampus is required for visually cued contextual response selection, but not for visual discrimination of contexts. Front. Behav. Neurosci. 2012;6:66.
  96. doi: 10.3389/fnbeh.2012.00066
  97. Brun VH, Solstad T, Kjelstrup KB, Fyhn M, Witter MP, Moser EI, Moser M-B. Progressive increase in grid scale from dorsal to ventral medial entorhinal cortex. Hippocampus. 2008;18:1200–1212.
  98. doi: 10.1002/hipo.20504
  99. Maurer AP, McNaughton BL. Network and intrinsic cellular mechanisms underlying theta phase precession of hippocampal neurons. Trends Neurosci. 2007;30:325–333.
  100. doi: 10.1016/j.tins.2007.05.002
  101. van der Meer MAA, Redish AD. Theta phase precession in rat ventral striatum links place and reward information. J. Neurosci. 2011;31:2843–2854.
  102. doi: 10.1523/JNEUROSCI.4869-10.2011
  103. Cheng S, Frank LM. New experiences enhance coordinated neural activity in the hippocampus. Neuron. 2008;57:303–313.
  104. doi: 10.1016/j.neuron.2007.11.035
  105. Kubie JL, Fenton AA. Linear look-ahead in conjunctive cells an entorhinal mechanism for vector-based navigation. Front. Neur. Circuits. 2012;6:20.
  106. doi: 10.3389/fncir.2012.00020
  107. Burgess N, Becker S, King JA, O’Keefe J. Memory for events and their spatial context: models and experiments. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2001;356:1493–1503.
  108. doi: 10.1098/rstb.2001.0948
  109. Burgess N. Spatial memory: how egocentric and allocentric combine. Tren. Cog. Sci. 2006;10:551–557.
  110. doi: 10.1016/j.tics.2006.10.005
  111. Waller D, Hodgson E. Transient and enduring spatial representations under disorientation and self-rotation. J. Exp. Psychol. Learn. Mem. Cogn. 2006;32:867–882.
  112. doi: 10.1037/0278-7393.32.4.867
  113. Burgess N, Jackson A, Hartley T, O’Keefe J. Predictions derived from modelling the hippocampal role in navigation. Biol. Cybern. 2000;83:301–312.
  114. doi: 10.1007/s004220000172
  115. Hartley T, Burgess N, Lever C, Cacucci F, O’Keefe J. Modeling place fields in terms of the cortical inputs to the hippocampus. Hippocampus. 2000;10:369–379.
  116. doi: 10.1002/1098-1063(2000)10:4<369::AID-HIPO3>3.0.CO;2-0
  117. Save E, Poucet B. Involvement of the hippocampus and associative parietal cortex in the use of proximal and distal landmarks for navigation. Behav. Brain Res. 2000;109:195–206.
  118. doi: 10.1016/S0166-4328(99)00173-4
  119. Zugaro MB, Berthoz A, Wiener SI. Background, but not foreground, spatial cues are taken as references for head direction responses by rat anterodorsal thalamus neurons. J. Neurosci. 2001;21(14):RC154.
  120. Knierim JJ, Rao G. Distal landmarks and hippocampal place cells: effects of relative translation versus rotation. Hippocampus. 2003;13:604–617.
  121. doi: 10.1002/hipo.10092
  122. Yoganarasimha D, Knierim JJ. Coupling between place cells and head direction cells during relative translations and rotations of distal landmarks. Exp. Brain Res. 2005;160:344–359.
  123. doi: 10.1007/s00221-004-2016-9
  124. Knierim JJ, Hamilton DA. Framing spatial cognition: neural representations of proximal and distal frames of reference and their roles in navigation. Physiol. Rev. 2011;91:1245–1279.
  125. doi: 10.1152/physrev.00021.2010
  126. Fuhs MC, Touretzky DS. A spin glass model of path integration in rat medial entorhinal cortex. J. Neurosci. 2006;26:4266–4276.
  127. doi: 10.1523/JNEUROSCI.4353-05.2006
  128. Barry C, Hayman R, Burgess N, Jeffery KJ. Experience-dependent rescaling of entorhinal grids. Nat. Neurosci. 2007;10:682–684.
  129. doi: 10.1038/nn1905
  130. Yoganarasimha D, Yu X, Knierim JJ. Head direction cell representations maintain internal coherence during conflicting proximal and distal cue rotations: comparison with hippocampal place cells. J. Neurosci. 2006;26:622–631.
  131. doi: 10.1523/JNEUROSCI.3885-05.2006
  132. Fyhn M, Hafting T, Treves A, Moser MB, Moser EI. Hippocampal remapping and grid realignment in entorhinal cortex. Nature. 2007;446:190–194.
  133. doi: 10.1038/nature05601
  134. Markus EJ, Qin YL, Leonard B, Skaggs WE, McNaughton BL, Barnes CA. Interactions between location and task affect the spatial and directional firing of hippocampal neurons. J. Neurosci. 1995;15:7079–7094.
  135. Wood ER, Dudchenko PA, Robitsek RJ, Eichenbaum H. Hippocampal neurons encode information about different types of memory episodes occurring in the same location. Neuron. 2000;27:623–633.
  136. doi: 10.1016/S0896-6273(00)00071-4
  137. Griffin AL, Eichenbaum H, Hasselmo ME. Spatial representations of hippocampal CA1 neurons are modulated by behavioral context in a hippocampus-dependent memory task. J. Neurosci. 2007;27:2416–2423.
  138. doi: 10.1523/JNEUROSCI.4083-06.2007
  139. Foster DJ, Knierim JJ. Sequence learning and the role of the hippocampus in rodent navigation. Curr. Opin. Neurobiol. 2012;22:294–300.
  140. doi: 10.1016/j.conb.2011.12.005
  141. Pfeiffer BE, Foster DJ. Hippocampal place-cell sequences depict future paths to remembered goals. Nature. 2013;497:74–80.
  142. doi: 10.1038/nature12112
  143. Morris RG, Garrud P, Rawlins JN, O’Keefe J. Place navigation impaired in rats with hippocampal lesions. Nature. 1982;297:681–683.
  144. doi: 10.1038/297681a0
  145. Redish AD, Touretzky DS. The role of the hippocampus in solving the Morris water maze. Neural Comput. 1998;10:73–111.
  146. doi: 10.1162/089976698300017908
  147. Koene RA, Gorchetchnikov A, Cannon RC, Hasselmo ME. Modeling goal directed spatial navigation in the rat based on physiological data from the hippocampal formation. Neural Netw. 2003;16:577–584.
  148. doi: 10.1016/S0893-6080(03)00106-0
  149. Hok V, Lenck-Santini P-P, Roux S, Save E, Muller RU, Poucet B. Goal-related activity in hippocampal place cells. J. Neurosci. 2007;27:472–482.
  150. doi: 10.1523/JNEUROSCI.2864-06.2007
  151. Ferbinteanu J, Shapiro ML. Prospective and retrospective memory coding in the hippocampus. Neuron. 2003;40:1227–1239.
  152. doi: 10.1016/S0896-6273(03)00752-9
  153. O’Keefe J, Recce ML. Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus. 1993;3:317–330.
  154. doi: 10.1002/hipo.450030307
  155. Skaggs WE, McNaughton BL, Wilson MA, Barnes CA. Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus. 1996;6:49–172.
  156. doi: 10.1002/(SICI)1098-1063(1996)6:2<149::AID-HIPO6>3.0.CO;2-K
  157. Foster DJ, Wilson MA. Hippocampal theta sequences. Hippocampus. 2007;17:1093–1099.
  158. doi: 10.1002/hipo.20345
  159. Johnson A, Redish AD. Neural ensembles in CA3 transiently encode paths forward of the animal at a decision point. J. Neurosci. 2007;27:12176–12189.
  160. doi: 10.1523/JNEUROSCI.3761-07.2007
  161. Dragoi G, Buzsaki G. Temporal encoding of place sequences by hippocampal cell assemblies. Neuron. 2006;50:145–157.
  162. doi: 10.1016/j.neuron.2006.02.023
  163. Lisman J, Redish AD. Prediction, sequences and the hippocampus. Phil. Trans. R. Soc. B. 2009;364:1193–1201.
  164. doi: 10.1098/rstb.2008.0316
  165. Lee AK, Wilson MA. Memory of sequential experience in the hippocampus during slow wave sleep. Neuron. 2002;36:1183–1194.
  166. doi: 10.1016/S0896-6273(02)01096-6
  167. Foster DJ, Wilson MA. Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature. 2006;440:680–683.
  168. doi: 10.1038/nature04587
  169. Csicsvari J, O'Neill J, Allen K, Senior T. Place-selective firing contributes to the reverse-order reactivation of CA1 pyramidal cells during sharp waves in open-field exploration. Eur. J. Neurosci. 2007;26:704–716.
  170. doi: 10.1111/j.1460-9568.2007.05684.x
  171. Diba K, Buzsaki G. Forward and reverse hippocampal place-cell sequences during ripples. Nat. Neurosci. 2007;10:1241–1242.
  172. doi: 10.1038/nn1961
  173. Davidson TJ, Kloosterman F, Wilson MA. Hippocampal replay of extended experience. Neuron. 2009;63:497–507.
  174. doi: 10.1016/j.neuron.2009.07.027
  175. Karlsson MP, Frank LM. Awake replay of remote experiences in the hippocampus. Nat. Neurosci. 2009;12:913–918.
  176. doi: 10.1038/nn.2344
  177. Gupta AS, van der Meer MA, Touretzky DS, Redish AD. Hippocampal replay is not a simple function of experience. Neuron. 2010;65:695–705.
  178. doi: 10.1016/j.neuron.2010.01.034
  179. Packard MG, Knowlton BJ. Learning and memory functions of the basal ganglia. Annu. Rev. Neurosci. 2002;25:563–593.
  180. doi: 10.1146/annurev.neuro.25.112701.142937
  181. Igloi K, Doeller CF, Berthoz A, Rondi-Reig L, Burgess N. Lateralized human hippocampal activity predicts navigation based on sequence or place memory. PNAS USA. 2010;107:14466–14471.
  182. doi: 10.1073/pnas.1004243107
Table of Contents Original Article
Math. Biol. Bioinf.
2014;9(1):216-256
doi: 10.17537/2014.9.216
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)
References

 

  Copyright IMPB RAS © 2005-2024