Russian version English version
Volume 11   Issue 2   Year 2016
Galitskii V.V.

Fractal Model of the Protoplant's Appearance

Mathematical Biology & Bioinformatics. 2016;11(2):225-232.

doi: 10.17537/2016.11.225.

References

 

  1. Galitskii V.V. Dynamics of the Distribution of Free-Growing Tree Biomass with Respect to Height: Model Analysis. Doklady Biological Sciences. 2006;407(4):166-168. doi: 10.1134/S0012496606020153
  2. Galitskii V.V. Sectional structure of a tree. Model analysis of the vertical biomass distribution. Biology Bulletin Reviews. 2010;71(1):19-29 (in Russ.).
  3. Galitskii V.V. Model Analysis of Dynamics of the Long-Distance Assimilates Transport in the Freely Growing Tree. Mathematical Biology and Bioinformatics. 2009;4(1):1-20. doi: 10.17537/2009.4.1
  4. Galitskii V.V. Models of Tree Dynamics and Tree Community Dynamics: Progressing from Two-Dimensional to Three-Dimensional Models. Mathematical Biology and Bioinformatics. 2012;7(1):54-80. doi: 10.17537/2012.7.54
  5. Galitskii V.V. Sectional model of non-free tree growth. Computer Research and Modeling. 2016;8(2):307-322. http://crm.ics.org.ru/uploads/crmissues/crm_2016_2/16.08.09.pdf (accessed 28.02.2016) (in Russ.).
  6. Galitskii V.V. Biomass Dynamics of Higher-Order Tree Branches: An Analysis of the Model. Biology Bulletin Reviews. 2013;3(5):412-421. doi: 10.1134/S2079086413050034
  7. Tsel'niker Iu.L. Struktura krony eli. Lesovedenie (Russian Journal of Forest Science). 1994;4:35-44 (in Russ.).
  8. Kazimirov N.I. El'niki Karelii (Spruce forests of Karelia). Leningrad; 1971. 139 s. (in Russ.).
  9. Kramer P.D., Kozlovskii T.T. Fiziologiia drevesnykh rastenii. Moscow; 1983. 462 s. (Translation of: Kramer P.J., Kozlowski T.T. Physiology of trees. NY: Academic Press.
  10. Treskin P.P. In: Struktura i produktivnost' elovykh lesov iuzhnoi taigi (Structure and productivity of spruce forests of southern taiga). Leningrad; 1973:222-240 (in Russ.).
  11. Feder E. Fraktaly. Moscow; 1991. 260 s. (Translation of: Feder J. Fractals. NY: PLENUM PRESS; 1988).
  12. Galitskii V.V. On the evolution of the tree form with the fractal parameter. Quantitative Biology. 2013. http://vixra.org/abs/1311.0105 (accessed 28.02.2016) (in Russ.).
  13. Margelis L. Rol' simbioza v evoliutsii kletki. Moscow; 1983. 351 s. (Translation of: Margulis L. Symbiosis in Cell Evolution. W.H. Freeman and Company. 1981).
  14. Borisov N.M., Vorob'ev F.Iu., Giliarov A.M, Es'kov K.Iu., Zhuravlev A.Iu., Markov A.V., Oskol'skii A.A., Petrov P.N., Shipunov A.B. Evidence of evolution. In: Problemy Evoliutsii. (Problems of Evolution). Eds. A.V. Markov. 2010. http://evolbiol.ru/evidence.htm (accessed 28 February 2016) (in Russ.).
  15. Gamalei Yu.V. The nature of the trophic tract in vascular plants. Tsitologiya. 2009;51(5):375-387 (in Russ.).
  16. Hanson M.R., Kohler R.H. A Novel View of Chloroplast Structure. Plant physiology online. 2006. http://6e.plantphys.net/essay07.01.html (accessed 28 February 2016).
  17. Malakhov V.V. V mire nauki (Scientific American). 2004;2:70-79 (in Russ.).
  18. Zhukova G.Ia. Plastidy zarodysha tsvetkovykh rastenii (Embryo plastids of flowering plants): thesis abstract on competition of a doctoral degree in Biology. Saint Petersburg; 1992 (in Russ.).
  19. Serebriakova T.I., Voronin N.S., Elenevskii A.G, Batygina T.B., Shorina R.I., Savinykh N.P. Botanika s osnovami fitotsenologii: Anatomiia i morfologiia rastenii (Botany with fundamentals of phytocenology: Anatomy and morphology of plants). Moscow; 2006. 543 s. (in Russ.).
  20. Tejos R.I., Mercado A.V., Meisel L.A. Analysis of chlorophyll fluorescence reveals stage specific patterns of chloroplast-containing cells during Arabidopsis embryogenesis. Biol. Res. 2010;43:99-111. doi: 10.4067/S0716-97602010000100012
  21. Allorent G., Courtois F., Chevalier F., Lerbs-Mache S. Plastid gene expression during chloroplast differentiation and dedifferentiation into non-photosynthetic plastids during seed formation. Plant Mol Biol. 2013;82:59-70. doi: 10.1007/s11103-013-0037-0
  22. Nakajima S., Ito H., Tanaka R., Tanaka A. Chlorophyll b Reductase Plays an Essential Role in Maturation and Storability of Arabidopsis Seeds. Plant Physiology. 2012;160:261-273. doi: 10.1104/pp.112.196881
  23. Smolikova G.N., Medvedev S.S. Photosynthesis in the seeds of chloroembryophytes. Russian Plant Physiology. 2016;63(1):1-12. doi: 10.1134/S1021443715060163
Table of Contents Original Article
Math. Biol. Bioinf.
2016;11(2):225-232
doi: 10.17537/2016.11.225
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)
References

 

  Copyright IMPB RAS © 2005-2022