Russian version English version
Volume 14   Issue 1   Year 2019
Aleksandr S. Lelekov, Andrey B. Borovkov, Tatiana M. Novikova, Irina N. Gudvilovich, Anna L. Avsiyan, Olga A. Memetshayeva

Modeling the Dynamics of Pigment Content in Cells of Dunaliella Salina Teod. Unicellular Alga at the Stage of Carotenogenesis

Mathematical Biology & Bioinformatics. 2019;14(1):279-289.

doi: 10.17537/2019.14.279.

References

 

  1. Sánchez-Saavedra M.P., Castro-Ochoa F.Y., Nava-Ruiz V.M., Ruiz-Güereca D.A., Villagómez-Aranda A.L., Siqueiros-Vargas F., Molina-Cárdenas C.A. Effects of nitrogen source and irradiance on Porphyridium cruentum. J. Appl. Phycol. 2018;30(2):783–792. doi: 10.1007/s10811-017-1284-2
  2. Silva C.E., Sforza E., Bertucco A. Stability of carbohydrate production in continuous microalgal cultivation under nitrogen limitation: effect of irradiation regime and intensity on Tetradesmus obliquus. J. Appl. Phycol. 2018;30(1):261–270. doi: 10.1007/s10811-017-1252-x
  3. Lamers P.P., Janssen M., De Vos R.C., Bino R.J., Wijffels R.H. Carotenoid and fatty acid metabolism in nitrogen-starved Dunaliella salina, a unicellular green microalga. J. Biotechnol. 2012;162(1):21–27. doi: 10.1016/j.jbiotec.2012.04.018
  4. Lv H., Cui X., Wahid F., Xia F., Zhong C. Jia S. Analysis of the physiological and molecular responses of Dunaliella salina to macronutrient deprivation. PLoS ONE. 2016;11(3). Article No. e0152226. doi: 10.1371/journal.pone.0152226
  5. Minhas A. K., Hodgson P., Barrow C. J., Adholeya A. A review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids. Frontiers in Microbiology. 2016;7:546. doi: 10.3389/fmicb.2016.00546
  6. Ben-Amotz A., Shaish A., Avron M. Mode of action of the massively accumulated β-carotene of Dunaliella bardawil in proteting the algae aqainst damaqe by excess irradiation. Plant. Physiol. 1989;91(3):1040–1043.
  7. Cloern J. E., Grenz C., Vidergar-Lucas L. An empirical model of the phytoplankton chlorophyll:carbon ratio – the conversation between productivity and growth. Limnol. Oceanogr. 1995;40(7):1310–1321. doi: 10.4319/lo.1995.40.7.1313
  8. Finenko Z.Z., Hoepffner N., Williams R., Piontkovski, S.A. Phytoplankton carbon to chlorophyll a rario: response to light, temperature and nutrient limitation. Marine Ekological Journal. 2003;2(2):40–64 (in Russ.).
  9. Geider R.J. Light and temperature dependence of the carbon to chlorophyll a ratio in microalgae and cyanobacteria: implications for physiology and growth of phytoplankton. New Phytol. 1987;106(1):1–34. doi: 10.1111/j.1469-8137.1987.tb04788.x
  10. Trenkenshu R.P. Kinetika substratzavisimykh reaktsii pri razlichnoi organizatsii metabolicheskikh sistem (Kinetics of substrate dependent reactions in various organization of metabolic systems). Sevastopol; 2005. 89 p. (in Russ.).
  11. Borovkov A.B. Mathematical model light depended pigments contents in microalgae cells for stationary dynamic balance chemostat cultures. Ekologiya Moray. 2010;80:17–24 (in Russ.).
  12. Nelson J.R. Rates and possible mechanism of light-dependent degradation of pigments in detritus derived from phytoplankton. J. Mar. Res. 1993;51(1):155–179.
  13. Rubin A.B. In: Biofizika (Biophysics). Vol. 2. Moscow; 1999 (in Russ.).
  14. Trenkenshu R.P., Lelekov A.S. Modelirovanie rosta mikrovodoroslei v kul'ture (Modeling microalgae growth in culture). Sevastopol'; 2017. 152 p. (in Russ.).
  15. Shaish A., Avron M., Ben-Amotz A. Effect of ingibitors on the formation of stereoisomers in the biosynthesis of β-carotene in Dunaliella bardawil. Plant. Cell. Physiol. 1990;31(5):689–696.
  16. Sirenko L.A., Sakevich A.I., Osipov L.F. et al. Metody fiziologo-biokhimicheskogo issledovaniia vodoroslei v gidrobiologicheskoi praktike (Methods of physiological and biochemical research of algae in hydrobiological practice). Kiev; 1975. 247 p. (in Russ.).
  17. Wellburn A.R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Phys. 1994;144:307–313. doi: 10.1016/S0176-1617(11)81192-2
  18. Solovchenko A.E. Physiology and adaptive significance of secondary carotenogenesis in green microalgae. Russian Journal of Plant Physiology. 2013;60(1):1-13. doi: 10.1134/S1021443713010081
  19. Solovchenko A.E., Selivanova E.A., Chekanov K.A., Sidorov R.A., Nemtseva N.V., Lobakova E.S. Induction of secondary carotenogenesis in new halophile microalgae from the genus Dunaliella (Chlorophyceae). Biochemistry (Moscow). 2015;80(11):1508–1513. doi: 10.1134/S0006297915110139
  20. Trenkenshu R.P., Lelekov A.S. Modeling of Dynamics of Nitrogenous Compounds in Microalgae Cells. 1. Batch Culture. Mathematical Biology and Bioinformatics. 2018;13(2):348–359 (in Russ.). doi: 10.17537/2018.13.348
Table of Contents Original Article
Math. Biol. Bioinf.
2019;14(1):279-289
doi: 10.17537/2019.14.279
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)
References

 

  Copyright IMPB RAS © 2005-2024