Russian version English version
Volume 14   Issue 1   Year 2019
Nisha Singh, Neeru Adlakha

Nonlinear Dynamic Modeling of 2-Dimensional Interdependent Calcium and Inositol 1,4,5-Trisphosphate in Cardiac Myocyte

Mathematical Biology & Bioinformatics. 2019;14(1):290-305.

doi: 10.17537/2019.14.290.

References

 

  1. Allbritton N.L., Meyer T., Stryer L. Range of messenger action of calcium ion and inositol 1,4,5-trisphosphate. Science New York then Washington. 1992;258:1812-1812. doi: 10.1126/science.1465619
  2. Berridge M.J., Bootman M.D., Lipp P. Calcium-a life and death Signal. Nature. 1998;395(6703):645. doi: 10.1038/27094
  3. Berridge M.J. Elementary and global aspects of calcium signalling. The Journal of Physiology. 1997;499(2):291-306. doi: 10.1113/jphysiol.1997.sp021927
  4. Swaminathan D. Mathematical Modeling of Intracellular Calcium Signaling: A Study of IP3 Receptor Models. Ohio University, 2010.
  5. Sneyd J., Sherratt J. On the propagation of calcium waves in an inhomogeneous medium. SIAM Journal on Applied Mathematics. 1997;57(1):73-94. doi: 10.1137/S0036139995286035
  6. Shannon T.R., Wang F., Puglisi J., Weber C., Bers D.M. A mathematical treatment of integrated ca dynamics within the ventricular myocyte. Biophysical Journal. 2004;87(5):3351-3371. doi: 10.1529/biophysj.104.047449
  7. Goonasekera S.A., Hammer K., Auger-Messier M., Bodi I., Chen X., Zhang H., Reiken S., Elrod J.W., Correll R.N., York A.J. et al. Decreased cardiac l-type Ca2+ channel activity induces hypertrophy and heart failure in mice. The Journal of Clinical Investigation. 2012;122(1):280. doi: 10.1172/JCI58227
  8. Dupont G., Erneux C. Simulations of the effects of inositol 1,4,5-trisphosphate 3-kinase and 5-phosphatase activities on Ca2+ oscillations. Cell Calcium. 1997;22(5):321-331. doi: 10.1016/S0143-4160(97)90017-8
  9. Dawson A.P. Calcium signalling: How do IP3 receptors work? Current Biology. 1997;7(9):R544-R547. doi: 10.1016/S0960-9822(06)00277-6
  10. Ciapa B., Pesando D., Wilding M., Whitaker M. Cell-cycle calcium transients driven by cyclic changes in inositol trisphosphate levels. Nature. 1994;368(6474):875-878. doi: 10.1038/368875a0
  11. Dupont G., Goldbeter A. One-pool model for Ca2+ oscillations involving Ca2+ and inositol 1,4,5-trisphosphate as co-agonists for Ca2+ release. Cell Calcium. 1993;14(4):311-322. doi: 10.1016/0143-4160(93)90052-8
  12. Sneyd J., Tsaneva-Atanasova K., Reznikov V., Bai Y., Sanderson M.J., Yule D.I. A method for determining the dependence of calcium oscillations on inositol trisphosphate oscillations. Proceedings of the National Academy of Sciences. 2006;103(6):1675-1680. doi: 10.1073/pnas.0506135103
  13. Politi A., Gaspers L.D., Thomas A.P., Hofer T. Models of IP3 and Ca2+ oscillations: frequency encoding and identification of underlying feedbacks. Biophysical Journal. 2006;90(9):3120-3133. doi: 10.1529/biophysj.105.072249
  14. Hund T.J., Ziman A.P., Lederer W., Mohler P.J. The cardiac IP3 receptor: Uncovering the role of “the other” calcium release channel. Journal of Molecular and Cellular Cardiology. 2008;45(2):159. doi: 10.1016/j.yjmcc.2008.06.001
  15. Wagner J., Fall C.P., Hong F., Sims C.E., Allbritton N.L., Fontanilla R.A., Moraru I.I., Loew L.M., Nuccitelli R. A wave of IP3 production accompanies the fertilization Ca2+ wave in the egg of the frog, xenopus laevis: theoretical and experimental support. Cell Calcium. 2004;35(5):433-447. doi: 10.1016/j.ceca.2003.10.009
  16. Cao P., Falcke M., Sneyd J. Mapping interpuff interval distribution to the properties of inositol trisphosphate receptors. Biophysical Journal. 2017;112(10):2138-2146. doi: 10.1016/j.bpj.2017.03.019
  17. Handy G., Taheri M., White J.A., Borisyuk A. Mathematical investigation of IP3-dependent calcium dynamics in astrocytes. Journal of Computational Neuroscience. 2017;42(3):257-273. doi: 10.1007/s10827-017-0640-1
  18. Pathak K., Adlakha N. Finite element model to study two dimensional unsteady state calcium distribution in cardiac myocytes. Alexandria Journal of Medicine. 2016;52(3):261-268. doi: 10.1016/j.ajme.2015.09.007
  19. Jagtap Y., Adlakha N. Simulation of buffered advection diffusion of calcium in a hepatocyte cell. Mathematical Biology. 2018;13(2):609-619.
  20. Jha A., Adlakha N. Analytical solution of two dimensional unsteady state problem of calcium diffusion in a neuron cell. Journal of Medical Imaging and Health Informatics. 2014;4(4):547-553. doi: 10.1166/jmihi.2014.1282
  21. Jha A., Adlakha N. Two-dimensional finite element model to study unsteady state Ca2+ diffusion in neuron involving er, leak and serca. International Journal of Biomathematics. 2015;8(1):1550002. doi: 10.1142/S1793524515500023
  22. Jha B.K., Adlakha N., Mehta M. Two-dimensional finite element model to study calcium distribution in astrocytes in presence of excess buffer. International Journal of Biomathematics. 2014;7(3):1450031. doi: 10.1142/S1793524514500314
  23. Jha B.K., Adlakha N., Mehta M. Two-dimensional finite element model to study calcium distribution in astrocytes in presence of vgcc and excess buffer. International Journal of Modeling, Simulation, and Scientific Computing. 2013;4(2):1250030. doi: 10.1142/S1793962312500304
  24. Kotwani M., Adlakha N., Mehta M. Numerical model to study calcium diffusion in fibroblasts cell for one dimensional unsteady state case. Applied Mathematical Sciences. 2012;6(102):5063-5072.
  25. Kotwani M., Adlakha N. Modeling of endoplasmic reticulum and plasma membrane Ca2+ uptake and release fluxes with excess buffer approximation (eba) in fibroblast cell. International Journal of Computational Materials Science and Engineering. 2017;6(1):1750004. doi: 10.1142/S204768411750004X
  26. Manhas N., Sneyd J., Pardasani K. Modelling the transition from simple to complex Ca2+ oscillations in pancreatic acinar cells. Journal of Biosciences. 2014;39(3):463-484. doi: 10.1007/s12038-014-9430-3
  27. Manhas N., Pardasani K. Modelling mechanism of calcium oscillations in pancreatic acinar cells. Journal of Bioenergetics and Biomembranes. 2014;46(5):403-420. doi: 10.1007/s10863-014-9561-0
  28. Naik P.A., Pardasani K.R. Finite element model to study calcium distribution in oocytes involving voltage gated Ca2+ channel, ryanodine receptor and buffers. Alexandria Journal of Medicine. 2016;52(1):43-49. doi: 10.1016/j.ajme.2015.02.002
  29. Michailova A., DelPrincipe F., Egger M., Niggli E. Spatiotemporal features of Ca2+ buffering and diffusion in atrial cardiac myocytes with inhibited sarcoplasmic reticulum. Biophysical Journal. 2002;83(6):3134-3151. doi: 10.1016/S0006-3495(02)75317-4
  30. Adkins C.E., Taylor C.W. Lateral inhibition of inositol 1,4,5-trisphosphate receptors by cytosolic Ca2+. Current biology. 1999;9(19):1115-1118. doi: 10.1016/S0960-9822(99)80481-3
  31. De Young G.W., Keizer J. A single-pool inositol 1,4,5-trisphosphate-receptor-based model for agonist-stimulated oscillations in Ca2+ concentration. Proceedings of the National Academy of Sciences. 1992;89(20):9895-9899. doi: 10.1073/pnas.89.20.9895
  32. Stewart B.D., Scott C.E., McCoy T.P., Yin G., Despa F., Despa S., Kekenes-Huskey P.M. Computational modeling of amylin-induced calcium dysregulation in rat ventricular cardiomyocytes. Cell Calcium. 2018;71:65-74. doi: 10.1016/j.ceca.2017.11.006
  33. Sneyd J. Calcium buffering and diffusion: on the resolution of an outstanding problem. Biophysical Journal. 1994;67(1):4. doi: 10.1016/S0006-3495(94)80448-5
  34. Wagner J., Keizer J. Effects of rapid buffers on Ca2+ diffusion and Ca2+ oscillations. Biophysical Journal. 1994;67(1):447-456. doi: 10.1016/S0006-3495(94)80500-4
  35. Brown S.-A., Morgan F., Watras J., Loew L.M. Analysis of phosphatidylinositol-4, 5-bisphosphate signaling in cerebellar purkinje spines. Biophysical Journal. 2008;95(4):1795-1812. doi: 10.1529/biophysj.108.130195
  36. Fink C.C., Slepchenko B., Moraru I.I., Watras J., Schaff J.C., Loew L.M. An image-based model of calcium waves in differentiated neuroblastoma cells. Biophysical Journal. 2000;79(1):163-183. doi: 10.1016/S0006-3495(00)76281-3
  37. Pathak K.B., Adlakha N. Finite element model to study calcium signalling in cardiac myocytes involving pump, leak and excess buffer. Journal of Medical Imaging and Health Informatics. 2015;5(4):683-688. doi: 10.1166/jmihi.2015.1443
  38. Malho R. Spatial characteristics to calcium signalling; the calcium wave as a basic unit in plant cell calcium signalling. Philosophical Transactions of the Royal Society of London B: Biological Sciences. 1998;353(1374):1463-1473. doi: 10.1098/rstb.1998.0302
  39. Blatter L.A., Kockskamper J., Sheehan K.A., Zima A.V., Huser J., Lipsius S.L. Local calcium gradients during excitation-contraction coupling and alternans in atrial myocytes. The Journal of Physiology. 2003;546(1):19-31. doi: 10.1113/jphysiol.2002.025239
  40. Maxwell J.T., Blatter L.A. Facilitation of cytosolic calcium wave propagation by local calcium uptake into the sarcoplasmic reticulum in cardiac myocytes. The Journal of Physiology. 2012;590(23):6037-6045. doi: 10.1113/jphysiol.2012.239434
  41. Bezprozvanny L., Watras J., Ehrlich B.E. Bell-shaped calcium-response curves of Ins (1, 4, 5)P3-and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature. 1991;351(6329):751-754. doi: 10.1038/351751a0
  42. Pathak K.B., Adlakha N. Finite element model to study one dimensional calcium dyanmics in cardiac myocytes. Journal of Multiscale Modelling. 2015;6(2):1550003. doi: 10.1142/S1756973715500031
  43. Hirose K., Kadowaki S., Tanabe M., Takeshima H., Iino M. Spatiotemporal dynamics of inositol 1,4,5-trisphosphate that underlies complex Ca2+ mobilization patterns. Science. 1999;284(5419):1527-1530. doi: 10.1126/science.284.5419.1527
  44. Proven A., Roderick H.L., Conway S.J., Berridge M.J., Horton J.K., Capper S.J., Bootman M.D. Inositol 1,4,5-trisphosphate supports the arrhythmogenic action of endothelin-1 on ventricular cardiac myocytes. Journal of Cell Science. 2006;119(16):3363-3375. doi: 10.1242/jcs.03073
  45. Young K.W., Nash M.S., Challiss R.J., Nahorski S.R. Role of Ca2+ feedback on single cell inositol 1,4,5-trisphosphate oscillations mediated by g-protein-coupled receptors. Journal of Biological Chemistry. 2003;278(23):20753-20760. doi: 10.1074/jbc.M211555200
  46. Cuthbertson K., Chay T. Modelling receptor-controlled intracellular calcium oscillators. Cell Calcium. 1991;12(2-3):97-109. doi: 10.1016/0143-4160(91)90012-4
  47. Hisatsune C., Nakamura K., Kuroda Y., Nakamura T., Mikoshiba K. Amplification of Ca2+ signaling by diacylglycerol-mediated inositol 1,4,5-trisphosphate production. Journal of Biological Chemistry. 2005;280(12):11723-11730. doi: 10.1074/jbc.M409535200
  48. Meyer T., Stryer L. Molecular model for receptor-stimulated calcium spiking. Proceedings of the National Academy of Sciences. 1988;85(14):5051-5055. doi: 10.1073/pnas.85.14.5051
  49. Kummer U., Olsen L.F., Dixon C.J., Green A.K., Bornberg-Bauer E., Baier G. Switching from simple to complex oscillations in calcium signaling. Biophysical Journal. 2000;79(3):1188-1195. doi: 10.1016/S0006-3495(00)76373-9
  50. Kehat I., Molkentin J.D. Molecular pathways underlying cardiac remodeling during pathophysiological stimulation. Circulation. 2010;122(25):2727-2735. doi: 10.1161/CIRCULATIONAHA.110.942268
  51. Gorski P.A., Ceholski D.K., Hajjar R.J. Altered myocardial calcium cycling and energetics in heart failure–a rational approach for disease treatment. Cell Metabolism. 2015;21(2):183-194. doi: 10.1016/j.cmet.2015.01.005
Table of Contents Original Article
Math. Biol. Bioinf.
2019;14(1):290-305
doi: 10.17537/2019.14.290
published in English

Abstract (eng.)
Abstract (rus.)
Full text (eng., pdf)
References

 

  Copyright IMPB RAS © 2005-2024