Russian version English version
Volume 14   Issue 2   Year 2019
Nadezhda S. Fialko, Victor D. Lakhno

Dynamics of Large Radius Polaron in a Model Polynucleotide Chain with Random Perturbations

Mathematical Biology & Bioinformatics. 2019;14(2):406-419.

doi: 10.17537/2019.14.406.

References

 

  1. Davydov A.S., Kislukha N.I. Sov. Phys. JETP. 1976;44(3):571–575.
  2. Davydov A.S. Solitons and energy transfer along protein molecules. J. Theor. Biology. 1977;66(2):379–387. doi: 10.1016/0022-5193(77)90178-3
  3. Davydov A.S. Solitons in Molecular Systems. Netherlands: Springer; 1985. 319 p. doi: 10.1007/978-94-017-3025-9
  4. Yakushevich L.V. Metody teoreticheskoi fiziki v issledovaniiakh svoistv biopolimerov (Methods of theoretical physics in the study of the properties of biopolymers). Ed. Klimontovich Iu.L. Pushchino, 1990. 125 p. (in Russ.).
  5. Scott A. Davydov's soliton. Phys. Rep. 1992;217(1):1–67. doi: 10.1016/0370-1573(92)90093-F
  6. Henderson P.T., Jones D., Hampikian G., Kan Y., Schuster G.B. Long-distance charge transport in duplex DNA: The phonon-assisted polaron-like hopping mechanism. PNAS USA. 1999;96(15):8353–8358. doi: 10.1073/pnas.96.15.8353
  7. Nanobioelectronics – for Electronics, Biology, and Medicine. Eds. Offenhausser A., Rinaldi R. New York: Springer; 2009. 337 p. doi: 10.1007/978-0-387-09459-5
  8. Long-Range Charge Transfer in DNA II. Ed. Schuster G.B. Topics in Current Chemistry. Vol. 237. Springer; 2004. 245 p.
  9. Charge Migration in DNA. Perspectives from Physics, Chemistry, and Biology. Ed. Chakraborty T. Berlin: Springer; 2007. 288 p. doi: 10.1007/978-3-540-72494-0
  10. Lakhno V.D. DNA nanobioelectronics. International Journal of Quantum Chemistry. 2008;108(11):1970–1981. doi: 10.1002/qua.21717
  11. Ratner M. A brief history of molecular electronics. Nature Nanotechnology. 2013;8(6):378–381. doi: 10.1038/nnano.2013.110
  12. Astakhova T.Yu., Kashin V.A., Likhachev V.N., Vinogradov G.A. Polaron dynamics on the nonlinear lattice in the Su-Schrieffer-Heeger approximation. Exact and approximate solutions. Acta Physica Polonica A. 2016;129(3):334–339. doi: 10.12693/APhysPolA.129.334
  13. Astakhova T.Yu., Kashin V.A., Likhachev V.N., Vinogradov G.A. Polarons on the One-Dimensional Lattice in the Su-Schrieffer-Heeger Model. Charge Transfer in DNA. Mathematical Biology and Bioinformatics. 2013;8(1):316–339 (in Russ.). doi: 10.17537/2013.8.316
  14. Lakhno V.D., Korshunova A.N. Electron motion in a Holstein molecular chain in an electric field. Eur. Phys. J. B. 2011;79:147–151. doi: 10.1140/epjb/e2010-10565-2
  15. Huang Zh., Chen L., Zhou N., Zhao Y. Transient dynamics of a one-dimensional Holstein polaron under the influence of an external electric field. Ann. Phys. (Berlin). 2017;529:1600367. doi: 10.1002/andp.201600367
  16. Korshunova A.N., Lakhno V.D. Simulation of the stationary and nonstationary charge transfer conditions in a uniform Holstein chain placed in constant electric field. Technical Physics. 2018;63(9):1270–1276. doi: 10.1134/S1063784218090086
  17. Huang Zh., Hoshina M., Ishihara H., Zhao Y. Transient dynamics of super bloch oscillations of a 1D Holstein polaron under the influence of an external AC electric field. Ann. Phys. (Berlin) 2019;531:1800303. doi: 10.1002/andp.201800303
  18. Maniadis P., Kalosakas G., Rasmussen K.O., Bishop A.R. AC conductivity in a DNA charge transport model. Physical Review E. 2005;72:021912. doi: 10.1103/PhysRevE.72.021912
  19. Velarde M.G., Ebeling W., Chetverikov A.P. On the possibility of electric conduction mediated by dissipative solitons. International Journal of Bifurcation and Chaos. 2005;15(1):245–251. doi: 10.1142/S0218127405012144
  20. Diaz E., Lima R.P.A., Dominguez-Adame F. Bloch-like oscillations in the Peyrard-Bishop-Holstein model. Physical Review B. 2008;78(13):134303. doi: 10.1103/PhysRevB.78.134303
  21. Berashevich J.A., Bookatz A.D., Chakraborty T. The electric field effect and conduction in the Peyrard-Bishop-Holstein model. J. Phys.: Condens. Matter. 2008;20(3):035207. doi: 10.1088/0953-8984/20/03/035207
  22. Cantu Ros O.G., Cruzeiro L., Velarde M.G., Ebeling W. On the possibility of electric transport mediated by long living intrinsic localized solectron modes. Eur. Phys. J. B. 2011;80:545–554. doi: 10.1140/epjb/e2011-10880-0
  23. Lakhno V.D. Davydov's solitons in homogeneous nucleotide chain. International Journal of Quantum Chemistry. 2010;110:127–137. doi: 10.1002/qua.22264
  24. Lomdahl P.S., Kerr W.C. Do Davydov solitons exost at 300K? Phys. Rev. Lett. 1985;55(11):1235–1238. doi: 10.1103/PhysRevLett.55.1235
  25. Vitali D., Allegrini P., Grigolini P. Nonlinear quantum mechanical effects: real or artefact of inaccurate approximations? Chemical Physics. 1994;180(2–3):297–318. doi: 10.1016/0301-0104(93)E0416-S
  26. Salkola M.I., Bishop A.R., Kenkre V.M., Raghavan S. Coupled quasiparticle-boson systems: The semiclassical approximation and discrete nonlinear Schrodinger equation. Physical Review B. 1995;52(6):R3824. doi: 10.1103/PhysRevB.52.R3824
  27. Savin A.V., Zolotaryuk A.V. Dynamics of the amide-I excitation in a molecular chain with thermalized acoustic and optical modes. Physica D: Nonlinear Phenomena. 1993;68(1):59–64. doi: 10.1016/0167-2789(93)90029-Z
  28. Cruzeiro-Hansson L., Takeno S. Davydov model: The quantum, mixed quantum-classical, and full classical systems. Physical Review E. 1997;56(1):894–906. doi: 10.1103/PhysRevE.56.894
  29. Ebeling W., Velarde M.G., Chetverikov A.P. Bound states of electrons with soliton-like excitations in thermal systems. Adiabatic approximations. Condensed Matter Physics. 2009;12(4):633–645. doi: 10.5488/CMP.12.4.633
  30. Lakhno V.D., Fialko N.S. Journal of Experimental and Theoretical Physics Letters. 2003;78(5):336. doi: 10.1134/1.1625737
  31. Lakhno V.D., Fialko N.S. Journal of Experimental and Theoretical Physics Letters. 2004;79(10):464–467. doi: 10.1134/1.1780553
  32. Lakhno V.D., Fialko N.S. Journal of Experimental and Theoretical Physics Letters. 2015;120:125. doi: 10.7868/S0044451015010125
  33. Fialko N.S., Sobolev E.V., Lakhno V.D. Journal of Experimental and Theoretical Physics Letters. 2017;124(4):635–642. doi: 10.1134/S1063776117040124
  34. Holstein T. Studies of polaron motion: Part I. The molecular-crystal model. Annals of Physics. 1959;8(3):325–342. doi: 10.1016/0003-4916(59)-90002-8
  35. Fialko N.S., Lakhno V.D. Numerical simulation of small radius polaron in a chain with random perturbations. Mathematical Biology and Bioinformatics. 2019;14(1):126–136 (in Russ.). doi: 10.17537/2019.14.126
  36. Voityuk A.A., Rosch N., Bixon M., Jortner J. Electronic coupling for charge transfer and transport in DNA. J. Phys. Chem. B. 2000;104(41):9740–9745. doi: 10.1021/jp001109w
  37. Lewis F.D., Wu Ya. Dynamics of superexchange photoinduced electron transfer in duplex DNA. J. Photochem. Photobiol. C. 2001;2(1):1–16. doi: 10.1016/S1389-5567(01)00008-9
  38. Jortner J., Bixon M., Voityuk A.A., Roesh N. Superexchange Mediated Charge Hopping in DNA. J. Phys. Chem. A. 2002;106(33):7599–7606. doi: 10.1021/jp014232b
  39. Greenside H.S., Helfand E. Numerical integration of stochastic differential equations-II. Bell System Technical Journal. 1981;60:1927–1940. doi: 10.1002/j.1538-7305.1981.tb00303.x
Table of Contents Original Article
Math. Biol. Bioinf.
2019;14(2):406-419
doi: 10.17537/2019.14.406
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)
References

 

  Copyright IMPB RAS © 2005-2024