Russian version English version
Volume 14   Issue 2   Year 2019
Korshunova A.N., Lakhno V.D.

Two Types of Oscillations of the Holstein Polaron Uniformly Moving Along a Polynucleotide Chain in a Constant Electric Field

Mathematical Biology & Bioinformatics. 2019;14(2):477-487.

doi: 10.17537/2019.14.477.

References

 

  1. Hennig D., Starikov E.B., Archilla J.F.R., Palmero F. Charge Transport in Poly(dG)–Poly(dC) and Poly(dA)–Poly(dT) DNA Polymers. Journal of Biological Physics. 2004;303:227. doi: 10.1023/B:JOBP.0000046721.92623.a9
  2. Davydov A.S. Solitons in Molecular systems. Boston: Reidel Publ. Comp.; 1985. 413 p. doi: 10.1007/978-94-017-3025-9
  3. Scott A.C. Davydov's soliton. Phys. Rep. 1992;217(1):1-67. doi: 10.1016/0370-1573(92)90093-F
  4. De Pablo P.J., Moreno-Herrero F., Colchero J., Herrero J. Gómez, Herrero P., Baró A.M., Ordejón Pablo, Soler José M., Artacho Emilio. Absence of dc-Conductivity in λ–DNA. Phys. Rev. Lett. 2000;85:4992-4995. doi: 10.1103/PhysRevLett.85.4992
  5. Porath D., Bezryadin A., De Vries S., Dekker C. Direct measurement of electrical transport through DNA molecules. Nature. 2000;403:635-638. doi: 10.1038/35001029
  6. Yoo K.-H., Ha D.H., Lee J.-O., ParJ. W.k, Kim Jinhee, Kim J.J., Lee H.-Y., Kawai T., Choi Han Yong. Electrical Conduction through Poly(dA)-Poly(dT) and Poly(dG)-Poly(dC) DNA Molecules. Phys. Rev. Lett. 2001;87:198102. doi: 10.1103/PhysRevLett.87.198102
  7. Kasumov A.Yu., Kociak M., Guéron S., Reulet B., Volkov V.T., Klinov D.V., Bouchiat H. Proximity-Induced Superconductivity in DNA. Science. 2001;291(5502):280-282. doi: 10.1126/science.291.5502.280
  8. Shinwari M.W., Deen M.J., Starikov E.B., Cuniberti G. Electrical Conductance in Biological Molecules. Advanced Functional Materials. 2010;20(12):1865-1883. doi: 10.1002/adfm.200902066
  9. Shigaev A.S., Ponomarev O.A., Lakhno V.D. Theoretical and Experimental Investigations of DNA Open States. Mathematical Biology and Bioinformatics. 2018;13(Suppl.):t162-t267. doi: 10.17537/2018.13.t162
  10. Peyrard M., Cuesta-Lopez S., James G. Modelling DNA at the mesoscale: a challenge for nonlinear science? Nonlinearity. 2008;21:91-100. doi: 10.1088/0951-7715/21/6/T02
  11. Starikov E.B. Electron-phonon coupling in DNA: a systematic study. Philosophical Magazine. 2005;85:3435-3462. doi: 10.1080/14786430500157110
  12. Maniadis P., Kalosakas G., Rasmussen K.O., Bishop A.R. AC conductivity in a DNA charge transport model. Phys. Rev. E. 2005;72:021912. doi: 10.1103/PhysRevE.72.021912
  13. Komineas S., Kalosakas G., Bishop A.R. Effects of intrinsic base-pair fluctuations on charge transport in DNA. Phys. Rev. E. 2002;65:061905. doi: 10.1103/PhysRevE.65.061905
  14. Chepeliaskii A.D., Klinov D., Kasumov A., Guéron S., Pietrement O., Lyonnais S., Bouchiat H. Conduction of DNA molecules attached to a disconnected array of metallic Ga nanoparticles. New J. Phys. 2011;13:063046. doi: 10.1088/1367-2630/13/6/063046
  15. Lakhno V.D. DNA nanobioelectronics. Int. Quantum. Chem. 2008;108:1970-1981. doi: 10.1002/qua.21717
  16. Nanobioelectronics - for Electronics, Biology and Medicine. Eds. Offenhausser A., Rinald R. N.-Y.: Springer-Verlag, 2009.
  17. Eudres R.G., Cox D.L., Singh R.R.P. Colloquium: The quest for high-conductance DNA. Rev. Mod. Phys. 2004;76:195-214. doi: 10.1103/RevModPhys.76.195
  18. Taniguchi M., Kawai T. DNA electronics. Physica E. 2006;33:1-12. doi: 10.1016/j.physe.2006.01.005
  19. Porath D., Cuniberti G., Di Felice R. Charge transport in DNA-based devices. Top. Curr. Chem. 2004;237:183-227. doi: 10.1007/b94477
  20. Lakhno V.D., Sultanov V.B. On the Possibility of Electronic DNA Nanobiochips. J. Chem. Theory Comput. 2007;3:703-705 doi: 10.1021/ct6003438
  21. Conwell E.M., Rakhmanova S.V. Polarons in DNA. Proc. Natl. Acad. Sci. 2000;97:4556-4560. doi: 10.1073/pnas.050074497
  22. Maniadis P., Kalosakas G., Rasmussen K.O., Bishop A.R. Polaron normal modes in the Peyrard-Bishop-Holstein model. Phys. Rev. B. 2003;68:174304. doi: 10.1103/PhysRevB.68.174304
  23. Lakhno V.D., Korshunova A.N., Formation of stationary electronic states in finite homogeneous molecular chains. Math. Biol. Bioinf. 2010;5:1-29. doi: 10.17537/2010.5.1
  24. Astakhova T.Yu., Vinogradov G.A. Polaron in Electric Field and Vibrational Spectrum of Polyacetylene. Mathematical Biology and Bioinformatics. 2019;14(1):150–159 (in Russ.). doi: 10.17537/2019.14.150
  25. Lakhno V.D. Soliton-like Solutions and Electron Transfer in DNA. J. Biol. Phys. 2000;26:133-147. doi: 10.1023/A:1005275211233
  26. Holstein T. Studies of polaron motion: Part I. The molecular-crystal model. Annals of Phys. 1959;8:325-342. doi: 10.1016/0003-4916(59)90002-8
  27. Holstein T. Studies of polaron motion: Part II. The “small” polaron. Annals of Phys. 1959;8:343-389. doi: 10.1016/0003-4916(59)90003-X
  28. Korshunova A.N., Lakhno V.D. A new type of localized fast moving electronic excitations in molecular chains. Physica E. 2014;60:206. doi: 10.1016/j.physe.2014.02.025
  29. Lakhno V.D., Korshunova A.N. Electron motion in a Holstein molecular chain in an electric field. Eur. Phys. J. B. 2011;79:147. doi: 10.1140/epjb/e2010-10565-2
  30. Korshunova A.N., Lakhno V.D. Simulation of the Stationary and Nonstationary Charge Transfer Conditions in a Uniform Holstein Chain Placed in Constant Electric Field. Technical Physics. 2018;63(9):1270-1276. doi: 10.21883/JTF.2018.09.46414.14-18
  31. Lakhno V.D., Korshunova A.N. Bloch oscillations of a soliton in a molecular chain. Eur. Phys. J. B. 2007;55:85. doi: 10.1140/epjb/e2007-00045-3
  32. Bagraev N.T., Klyachkin L.E., Malyarenko A.M., Chernev A.L., Emel’yanov A.K., Dubina M.V. Terahertz response of DNA oligonucleotides on the surface of silicon nanostructures. Semiconductors . 2016;50(9):1208-1215. doi: 10.1134/S1063782616090037
Table of Contents Original Article
Math. Biol. Bioinf.
2019;14(2):477-487
doi: 10.17537/2019.14.477
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)
References

 

  Copyright IMPB RAS © 2005-2024