Russian version English version
Volume 14   Issue 2   Year 2019
Likhoshvai V.A.1, Khlebodarova T.M.1,2

On Stationary Solutions Of Delay Differential Equations: A Model Of Local Translation In Synapses

Mathematical Biology & Bioinformatics. 2019;14(2):554-569.

doi: 10.17537/2019.14.554.

References

 

  1. Likhoshvai V.A., Fadeev S.I., Demidenko G.V., Matushkin Yu.G. Modeling nonbranching multistage synthesis by an equation with retarded argument. Sib. Zh. Ind. Mat. 2004;7(1):73–94 (in Russ.).
  2. Fadeev S.I., Likhoshvai V.A., Shtokalo D.N. Study of a model of linear biomolecular synthesis with reversible processes. J. Appl. Industr. Math. 2007;1(2):178–189.
  3. Khlebodarova T.M., Kogai V.V., Fadeev S.I., Likhoshvai V.A. Chaos and hyperchaos in simple gene network with negative feedback and time delays. J. Bioinform. Comput. Biol. 2017;15(2). Article No. 1650042. doi: 10.1142/S0219720016500426
  4. Likhoshvai V.A., Kogai V.V., Fadeev S.I., Khlebodarova T.M. Alternative splicing can lead to chaos. J. Bioinform. Comput. Biol. 2015:13. Article No. 1540003. doi: 10.1142/S021972001540003X
  5. Likhoshvai V.A., Kogai V.V., Fadeev S.I., Khlebodarova T.M. Chaos and hyperchaos in a model of ribosome autocatalytic synthesis. Sci. Rep. 2016;6. Article No. 38870. doi: 10.1038/srep38870
  6. Suzuki Y., Lu M., Ben-Jacob E., Onuchic J.N. Periodic, Quasi-periodic and chaotic dynamics in simple gene elements with time delays. Sci. Rep. 2016;6. Article No. 21037. doi: 10.1038/srep21037
  7. Mackey M.C., Glass L. Oscillation and chaos in physiological control systems. Science. 1977;197:287–289. doi: 10.1126/science.267326
  8. Perez F.J., Malta C.P., Coutinho F.A. Qualitative analysis of oscillations in isolated populations of flies. J. Theor. Biol. 1978;71(4):505–514.
  9. Ikeda K., Matsumoto K. High-dimensional chaotic behavior in systems with time-delayed feedback. Physica D. 1987;29:223–235. doi: 10.1016/0167-2789(87)90058-3
  10. Bastos de Figueiredo J.C., Diambra L., Glass L., Malta C.P. Chaos in two-looped negative feedback systems. Phys. Rev. E Stat. Nonlin. Soft. Matter. Phys. 2002;65. Article No. 051905. doi: 10.1103/PhysRevE.65.051905
  11. Kogai V.V., Likhoshvai V.A., Fadeev S.I., Khlebodarova T.M. Multiple scenarios of transition to chaos in the alternative splicing model. Int. J. Bifurcat. Chaos. 2017;27. Article No. 1730006. doi: 10.1142/S0218127417300063
  12. Likhoshvai V.A., Fadeev S.I., Kogai V.V., Khlebodarova T.M. On the chaos in gene networks. J. Bioinform. Comput. Biol. 2013;11(1). Article No. 1340009. doi: 10.1142/S021972001340009X
  13. Fadeev S.I., Kogai V.V., Khlebodarova T.M., Likhoshvai V.A. On numerical study of periodic solutions of a delay equation in biological models. J. Appl. Indust. Math. 2016;10:86–96.
  14. Monk N.A. Oscillatory expression of Hes1, p53, and NF-κB driven by transcriptional time delays. Curr. Biol. 2003;13:1409–1413. doi: 10.1016/S0960-9822(03)00494-9
  15. Jensen M., Sneppen K., Tiana G. Sustained oscillations and time delays in gene expression of protein Hes1. FEBS Lett. 2003;541:176–177. doi: 10.1016/S0014-5793(03)00279-5
  16. Momiji H., Monk N. Dissecting the dynamics of the Hes1 genetic oscillator. J. Theor. Biol. 2008;254:784–798. doi: 10.1016/j.jtbi.2008.07.013
  17. Bernard S., Cajavec B., Pujo-Menjouet L., Mackey M.C., Herzel H. Modelling transcriptional feedback loops: the role of Gro/TLE1 in Hes1 oscillations. Philos. Trans. A Math. Phys. Eng. Sci. 2006;364:1155–1170.
  18. Bodnar M., Bartlomiejczyk A. Stability of delay induced oscillations in gene expression of Hes1 protein model. Nonlinear Analysis: Real World Applications. 2012;13:2227–2239. doi: 10.1016/j.nonrwa.2012.01.017
  19. Khlebodarova T.M., Kogai V.V., Likhoshvai V.A. On the Chaotic Potential of the Local Translationat Activated Synapses. In: Proceedings of the International Conference “Mathematical Biology and Bioinformatics”. Ed. V.D. Lakhno. Vol. 7. Pushchino: IMPB RAS, 2018. Paper No. e69. doi: 10.17537/icmbb18.6
  20. Klein M.E., Monday H., Jordan B.A. Proteostasis and RNA binding proteins in synaptic plasticity and in the pathogenesis of neuropsychiatric disorders. Neural. Plast. 2016;2016. Article No 3857934. doi: 10.1155/2016/3857934
  21. Louros S.R., Osterweil E.K. Perturbed proteostasis in autism spectrum disorders. J. Neurochem. 2016;139:1081–1092.
  22. Fadeev S.I., Likhoshvai V.A. On hypothetical gene networks. Sib. Zh. Ind. Mat. 2003;6(3):134–153 (in Russ.).
  23. Shan B., Chang C.Y., Jones D., Lee W.H. The transcription factor E2F-1 mediates the autoregulation of RB gene expression. Mol. Cell. Biol. 1994;14:299–309.
  24. Hirata H., Yoshiura S., Ohtsuka T., Bessho Y., Harada T., Yoshikawa K., Kageyama R. Oscillatory expression of the bHLH factor Hes1 regulated by a negative feedback loop. Science. 2002;298:840–843. doi: 10.1126/science.1074560
  25. Trieu M., Ma A., Eng S.R., Fedtsova N., Turner E.E. Direct autoregulation and gene dosage compensation by POU-domain transcription factor Brn3a. Development. 2003;130:111–121. doi: 10.1242/dev.00194
  26. Magenheim J., Hertz R., Berman I., Nousbeck J., Bar-Tana J. Negative autoregulation of HNF-4alpha gene expression by HNF-4alpha1. Biochem. J. 2005;388:325–332.
  27. Monteiro R., Pouget C., Patient R. The gata1/pu.1 lineage fate paradigm varies between blood populations and is modulated by tif1γ. EMBO. J. 2011;30:1093–1103.
  28. Bonev B., Stanley P., Papalopulu N. MicroRNA-9 Modulates Hes1 ultradian oscillations by forming a double-negative feedback loop. Cell. Rep. 2012;2:10–18.
  29. Navarro P., Festuccia N., Colby D., Gagliardi A., Mullin N.P., Zhang W., Karwacki-Neisius V., Osorno R., Kelly D., Robertson M., Chambers I. OCT4/SOX2-independent Nanog autorepression modulates heterogeneous Nanog gene expression in mouse ES cells. EMBO. J. 2012;31:4547–4562.
  30. Fidalgo M., Faiola F., Pereira C.F., Ding J., Saunders A., Gingold J., Schaniel C., Lemischka I.R., Silva J.C., Wang J. Zfp281 mediates Nanog autorepression through recruitment of the NuRD complex and inhibits somatic cell reprogramming. Proc. Natl. Acad. Sci. USA. 2012;109:16202–16207. doi: 10.1073/pnas.1208533109
  31. Foka P., Singh N.N., Salter R.C., Ramji D.P. The tumour necrosis factor-alpha-mediated suppression of the CCAAT/enhancer binding protein-alpha gene transcription in hepatocytes involves inhibition of autoregulation. Int. J. Biochem. Cell. Biol. 2009;41:1189–1197.
  32. Kageyama R., Niwa Y., Isomura A., González A., Harima Y. Oscillatory gene expression and somitogenesis. Wiley. Interdiscip. Rev. Dev. Biol. 2012;1:629–641. doi: 10.1002/wdev.46
  33. Holley S.A., Jülich D., Rauch G.J., Geisler R., Nüsslein-Volhard C. Her1 and the notch pathway function within the oscillator mechanism that regulates zebrafish somitogenesis. Development. 2002;129:1175–1183.
  34. Bessho Y., Hirata H., Masamizu Y., Kageyama R. Periodic repression by the bHLH factor Hes7 is an essential mechanism for the somite segmentation clock. Genes. Dev. 2003;17:1451–1456.
  35. Dale J.K., Maroto M. A Hes1-based oscillator in cultured cells and its potential implications for the segmentation clock. Bioessays. 2003;25:200–203. doi: 10.1002/bies.10253
  36. Hirata H., Bessho Y., Kokubu H., Masamizu Y., Yamada S., Lewis J., Kageyama R. Instability of Hes7 protein is crucial for the somite segmentation clock. Nat. Genet. 2004;36:750–754.
  37. Mara A., Holley S.A. Oscillators and the emergence of tissue organization during zebrafish somitogenesis. Trends. Cell. Biol. 2007;17:593–599.
  38. Harima Y., Kageyama R. Oscillatory links of Fgf signaling and Hes7 in the segmentation clock. Curr. Opin. Genet. Dev. 2013;23:484–490. doi: 10.1016/j.gde.2013.02.005
  39. Takashima Y., Ohtsuka T., Gonzalez A., Miyachi H., Kageyama R. Intronic delay is essential for oscillatory expression in the segmentation clock. Proc. Natl. Acad. Sci. USA. 2011;108:3300–3305. doi: 10.1073/pnas.1014418108
  40. Harima Y., Takashima Y., Ueda Y., Ohtsuka T., Kageyama R. Accelerating the tempo of the segmentation clock by reducing the number of introns in the Hes7 gene. Cell. Rep. 2012;3:1–7.
  41. Khlebodarova TM., Kogai VV., Trifonova EA., Likhoshvai VA. Dynamic landscape of the local translation at activated synapses. Mol. Psychiatry. 2018;23:107–114. doi: 10.1038/mp.2017.245
  42. Likhoshvai V., Ratushny A. Generalized Hill function method for modeling molecular processes. J. Bioinform. Comput. Biol. 2007;5:521–531.
  43. Pougnet JT., Toulme E., Martinez A., Choquet D., Hosy E., Boué-Grabot E. ATP P2X receptors downregulate AMPA receptor trafficking and postsynaptic efficacy in hippocampal neurons. Neuron. 2014;83:417–430. doi: 10.1016/j.neuron.2014.06.005
  44. Narayanan U., Nalavadi V., Nakamoto M., Pallas D.C., Ceman S., Bassell G.J., Warren S.T. FMRP phosphorylation reveals an immediate-early signaling pathway triggered by group I mGluR and mediated by PP2A. J. Neurosci. 2007;27:14349–14357. doi: 10.1523/JNEUROSCI.2969-07.2007
  45. Narayanan U., Nalavadi V., Nakamoto M., Thomas G., Ceman S., Bassell G.J., Warren S.T. S6K1 phosphorylates and regulates fragile X mental retardation protein (FMRP) with the neuronal protein synthesis-dependent mammalian target of rapamycin (mTOR) signaling cascade. J. Biol. Chem. 2008;283:18478–18482. doi: 10.1074/jbc.C800055200
  46. Chen E., Sharma M.R., Shi X., Agrawal R.K., Joseph S. Fragile X mental retardation protein regulates translation by binding directly to the ribosome. Mol. Cell. 2014;54:407–417. doi: 10.1016/j.molcel.2014.03.023
  47. Sharma K., Fong D.K., Craig A.M. Postsynaptic protein mobility in dendritic spines: long-term regulation by synaptic NMDA receptor activation. Mol. Cell. Neurosci. 2006;31:702–712. doi: 10.1016/j.mcn.2006.01.010
  48. Okabe S. Molecular anatomy of the postsynaptic density. Mol. Cell. Neurosci. 2007;34:503–518. doi: 10.1016/j.mcn.2007.01.006
  49. Darnell J.C., Van Driesche S.J., Zhang C., Hung, K.Y., Mele A., Fraser C.E., Stone E.F., Chen C., Fak J.J., Chi S.W. et al. FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell. 2011;146:247–261. doi: 10.1016/j.cell.2011.06.013
  50. Napoli I., Mercaldo V., Boyl P.P., Eleuteri B., Zalfa F., De Rubeis S., Di Marino D., Mohr E., Massimi M., Falconi M. et al. The fragile X syndrome protein represses activity-dependent translation through CYFIP1, a new 4E-BP. Cell. 2008;134:1042–1054. doi: 10.1016/j.cell.2008.07.031
  51. Pandey S., Mahato P.K., Bhattacharyya S. Metabotropic glutamate receptor 1 recycles to the cell surface in protein phosphatase 2A-dependent manner in non-neuronal and neuronal cell lines. J. Neurochem. 2014;131:602–614. doi: 10.1111/jnc.12930
  52. Majumder P., Chu J.F., Chatterjee B., Swamy K.B., Shen C.J. Co-regulation of mRNA translation by TDP-43 and Fragile X Syndrome protein FMRP. Acta. Neuropathol. 2016;132:721–738. doi: 10.1007/s00401-016-1603-8
  53. Bartley C.M., O'Keefe R.A., Blice-Baum A., Mihailescu M.R., Gong X., Miyares L., Karaca E., Bordey A. Mammalian FMRP S499 is phosphorylated by CK2 and promotes secondary phosphorylation of FMRP. eNeuro. 2016;3. doi: 10.1523/ENEURO.0092-16.2016
  54. Ceman S., O'Donnell W.T., Reed M., Patton S., Pohl J., Warren S.T. Phosphorylation influences the translation state of FMRP-associated polyribosomes. Hum. Mol. Genet. 2003;12:3295–3305.
  55. Likhoshvai V.A., Kogai V.V., Fadeev S.I., Khlebodarova T.M. On The Correlation between Properties of One-Dimensional Mappings of Control Functions and Chaos in a Special Type Delay Differential Equation. Mathematical Biology and Bioinformatics. 2017;12(2):385–397. doi: 10.17537/2017.12.385
  56. Pramparo T., Pierce K., Lombardo M.V., Carter Barnes C., Marinero S., Ahrens-Barbeau C., Murray S.S., Lopez L., Xu R., Courchesne E. Prediction of autism by translation and immune/inflammation coexpressed genes in toddlers from pediatric community practice. JAMA. Psychiatry. 2015;72:386–394.
  57. Onore C., Yang H., Van de Water J., Ashwood P. Dynamic Akt/mTOR signaling in children with autism spectrum disorder. Front. Pediatr. 2017;5. Article No. 43. doi: 10.3389/fped.2017.00043
Table of Contents Original Article
Math. Biol. Bioinf.
2019;14(2):554-569
doi: 10.17537/2019.14.554
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)
References

 

  Copyright IMPB RAS © 2005-2024