Russian version English version
Volume 14   Issue 2   Year 2019
Konstantin K. Avilov1,3, Alexei A. Romanyukha1,3, Evgeny M. Belilovsky2, Sergey E. Borisov2

Comparison Of Modeling Schemes for Natural Course Of Pulmonary Tuberculosis

Mathematical Biology & Bioinformatics. 2019;14(2):570-587.

doi: 10.17537/2019.14.570.

References

 

  1. Anderson R.M., May R.M. Infektsionnye bolezni cheloveka. Dinamika i kontrol'. Moscow; 2004. 784 p. (Translation of: Anderson R.M., May R.M. Infectious diseases of humans: dynamics an control. Oxford University Press, 1991).
  2. Avilov K.K., Romanyukha A.A. Mathematical Models of Tuberculosis Extension and Control of it. Mathematical Biology and Bioinformatics. 2007;2(2):188-318. doi: 10.17537/2007.2.188
  3. Ftiziatriia: natsional'noe rukovodstvo (Phthisiology: national guidance). Ed. M.I. Perel'man. Moscow; 2010. 512 p. (in Russ.).
  4. Litvinov V.I. Latentnaia tuberkuleznaia infektsiia: svoistva vozbuditelia; reaktsii makroorganizma; epidemiologiia i diagnostika (IGRA-testy, Diaskintest i drugie podkhody), lechenie (Latent tuberculosis infection: properties of the pathogen; macroorganism reactions; epidemiology and diagnosis (IGRA tests, Diaskintest and other approaches), treatment). Moscow; 2016. 194 p. (in Russ.).
  5. Tiemersma E.W., van der Werf M.J., Borgdorff M.W., Williams B.G., Nagelkerke N.J.D. Natural history of tuberculosis: duration and fatality of untreated pulmonary tuberculosis in HIV negative patients: a systematic review. PLOS One. 2011;6. Article No. e17601. doi: 10.1371/journal.pone.0017601
  6. Dannenberg A.M. Jr. Pathophysiology: basic aspects. In: Tuberculosis and non-tuberculous mycobacterial infections. Ed. Schlossberg D. Philadelphia, PA, USA: WB Saunders; 1999. P. 17-47.
  7. Blower S.M., McLean A.R., Porco T.C., Small P.M., Hopewell P.C., Sanchez M.A., Moss A.R. The intrinsic transmission dynamics of tuberculosis epidemics. Nature Medcine. 1995;1(8):815-821. doi: 10.1038/nm0895-815
  8. Baltussen R., Floyd K., Dye C. Cost effectiveness analysis of strategies for tuberculosis control in developing countries. BMJ. 2005;331(7529):1364. doi: 10.1136/bmj.38645.660093.68
  9. Brogger S. Systems analysis in tuberculosis control: a model. Am. Rev. Respir. Dis. 1967;95:419–434.
  10. Perelman M.I., Marchuk G.I., Borisov S.E., Kazennykh B.Ya., Avilov K.K., Karkach A.S., Romanyukha A.A. Tuberculosis epidemiology in Russia: the mathematical model and data analysis. Russ. J. Numer. Anal. Math. Modelling. 2004;19:305-314. doi: 10.1515/1569398041974905
  11. Yaesoubi R., Cohen T. Identifying dynamic tuberculosis casefinding policies for HIV/TB coepidemics. Proc. Natl. Acad. Sci. USA. 2013;110:9457–9462. doi: 10.1073/pnas.1218770110
  12. Avilov K.K., Romanyukha A.A., Borisov S.E., Belilovsky E.M., Nechaeva O.B., Karkach A.S. An approach to estimating tuberculosis incidence and case detection rate from routine notification data. The International Journal of Tuberculosis and Lung Disease. 2015;19(3):288-294. doi: 10.5588/ijtld.14.0317
  13. Rossiiskaia baza dannykh po rozhdaemosti i smertnosti. (Russian fertility and mortality database). http://demogr.nes.ru/index.php/ru/demogr_indicat/data (accessed 20 August 2019) (in Russ.).
  14. WHO. Guideline: Nutritional Care and Support for Patients With Tuberculosis. Geneva: World Health Organization; 2013. ISBN: 978-92-4-150641-0.
  15. Narasimhan P., Wood J., Macintyre C. R., Mathai D. Risk factors for tuberculosis. Pulmonary medicine. 2013. Article ID 828939. doi: 10.1155/2013/828939
Table of Contents Original Article
Math. Biol. Bioinf.
2019;14(2):570-587
doi: 10.17537/2019.14.570
published in Russian

Abstract (rus.)
Abstract (eng.)
Full text (rus., pdf)
References

 

  Copyright IMPB RAS © 2005-2024