Русская версия English version   
Том 18   Выпуск 2   Год 2023
Трусов П.В.1,2, Зайцева Н.В.1, Цинкер М.Ю.1,2, Кучуков А.И.1,2

Численное исследование нестационарного течения запыленного воздуха и оседания пылевых частиц различных размеров в нижних дыхательных путях человека

Математическая биология и биоинформатика. 2023;18(2):347-366.

doi: 10.17537/2023.18.347.

Список литературы

  1. Yin P., Brauer M., Cohen A.J., Wang H., Li J., Burnett R.T., Stanaway J.D., Causey K., Larson S., Godwin W., Frostad J., Marks A., Wang L., Zhou M., Murray C.J.L. The effect of air pollution on deaths, disease burden, and life expectancy across China and its provinces, 1990-2017: an analysis for the Global Burden of Disease Study 2017. Lancet Planet Health. 2020;4(9):e386–e398. doi: 10.1016/S2542-5196(20)30161-3
  2. Rakitskii V.N., Avaliani S.L., Novikov S.M., Shashina T.A., Dodina N.S., Kislitsin V.A. Health risk analysis related to exposure to ambuent air contamination as a component in the strategy aimed at reducing global non-infectious epidemics. Health Risk Analysis. 2019(4):30–36. doi: 10.21668/health.risk/2019.4.03
  3. WHO global air quality guidelines: Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. Geneva: World Health Organization. 2021. PMID: 34662007. https://pubmed.ncbi.nlm.nih.gov/34662007/ (accessed 08 October 2023).
  4. Xing Y.-F., Xu Y.-H., Shi M.-H., Lian Y.-X. The impact of PM2.5 on the human respiratory system. Journal of Thoracic Disease. 2016;27(1):E69–E74. doi: 10.3978/j.issn.2072-1439.2016.01.19
  5. Maji K.J., Dikshit A.K., Arora M., Deshpande A. Estimating premature mortality attributable to PM2.5 exposure and benefit of air pollution control policies in China for 2020. Sci. Total Environ. 2018;612:683–693. doi: 10.1016/j.scitotenv.2017.08.254
  6. Tikhonova I.V., Zemlyanova M.A., Kol'dibekova Yu.V., Peskova E.V., Ignatova A.M. Hygienic assessment of aerogenic exposure to particulate matter and its impacts on morbidity with respiratory diseases among children living in a zone influenced by emissions from metallurgic production. Health Risk Analysis. 2020(3):61–69. doi: 10.21668/health.risk/2020.3.07
  7. Grzywa-Celińska A., Krusiński A., Milanowski J. 'Smoging kills' - Effects of air pollution on human respiratory system. Ann. Agric. Environ. Med. 2020;27(1):1–5. doi: 10.26444/aaem/110477
  8. Wei T., Chen C., Yang Y., Li L., Wang J., Ye M., Kan H., Yang D., Song Y., Cai J., Hou D. Associations between short-term exposure to ambient air pollution and lung function in adults. J. Expo. Sci. Environ. Epidemiol. 2023. doi: 10.1038/s41370-023-00550-0
  9. Adamkiewicz G., Liddie J., Gaffin J.M. The Respiratory Risks of Ambient/Outdoor Air Pollution. Clin. Chest Med. 2020;41(4):809–824. doi: 10.1016/j.ccm.2020.08.013
  10. Trusov P.V., Zaitseva N.V., Tsinker M.Yu. Modeling of human breath: conceptual and mathematical statements. Mathematical Biology and Bioinformatics. 2016;11(1):4–80. doi: 10.17537/2016.11.64
  11. Trusov P.V., Zaitseva N.V., Tsinker M.Yu., Nekrasova A.V. Mathematical Model of Airflow and Solid Particles Transport in the Human Nasal Cavity. Mathematical Biology and Bioinformatics. 2021;16(2):349–366. doi: 10.17537/2021.16.349
  12. Trusov P.V., Zaitseva N.V., Tsinker M.Yu., Babuskina A.V. Modelling dusty air flow in the human resperatory tract. Russian Journal of Biomechanics. 2018;22(3):262. doi: 10.15593/RZhBiomeh/2018.3.03
  13. Trusov P.V., Zaitseva N.V., Tsinker M.Y. On modeling of airflow in human lungs: constitutive relations to describe deformation of porous medium. PNRPU Mechanics Bulletin. 2020(4):165–174. doi: 10.15593/perm.mech/2020.4.14
  14. Ertbruggen C.V., Hirsch C., Paiva M. Anatomically based three-dimensional model of airways to simulate flow and particle transport using computational fluid dynamics. Journal of Applied Physiololgy. 2004;98:970–980. doi: 10.1152/japplphysiol.00795.2004
  15. Zhang Z., Kleinstreuer C., Donohue J.F., Kim C.S. Comparison of micro- and nano-size particle depositions in a human upper airway model. Journal of Aerosol Science. 2005;36(2):211–233. doi: 10.1016/j.jaerosci.2004.08.006
  16. Huang J., Zhang L. Numerical simulation of micro-particle deposition in a realistic human upper respiratory tract model during transient breathing cycle. Particuology. 2011;9(4):424–431. doi: 10.1016/j.partic.2011.02.004
  17. Ou C., Hang J., Deng Q. Particle Deposition in Human Lung Airways: Effects of Airflow, Particle Size, and Mechanisms. Aerosol and Air Quality Research. 2020;20:2846–2858. doi: 10.4209/aaqr.2020.02.0067
  18. Rahman Md.M., Zhao M., Islam M. S., Dong K., Saha S.C. Nanoparticle transport and deposition in a heterogeneous human lung airway tree: An efficient one path model for CFD simulations. European Journal of Pharmaceutical Sciences. 2022;177:06279. doi: 10.1016/j.ejps.2022.106279
  19. Choi J. Multiscale numerical analysis of airflow in CT-based subject specific breathing human lungs: PhD Dissertation. Iowa: University of Iowa, 2011. 259 p.
  20. Wall W.A., Rabczuk T. Fluid structure interaction in lower airways of CT-based lung geometries. Int. J. Num. Methods in fluids. 2008(57):653–675. doi: 10.1002/fld.1763
  21. Lambert A.R., O’Shaughnessy P., Tawhai M.H., Hoffman E.A., Lin C.-L. Regional deposition of particles in an image-based airway model: large-eddy simulation and left-right lung ventilation asymmetry. Aerosol Sci. Technol. 2011;45(1):11–25. doi: 10.1080/02786826.2010.517578
  22. Rahman M., Zhao M., Islam M. S., Dong K., Saha S.C. Numerical study of nano and micro pollutant particle transport and deposition in realistic human lung airways. Powder Technology. 2022;402:117364. doi: 10.1016/j.powtec.2022.117364
  23. Katz I., Pichelin M., Montesantos S., Murdock A., Fromont S., Venegas J., Caillibotte G. The influence of lung volume during imaging on CFD within realistic airway models. Aerosol Science and Technology. 2017;51(2):214–223. doi: 10.1080/02786826.2016.1254721
  24. Rahimi-Gorji M., Pourmehran O., Gorji-Bandpy M., Gorji T.B. CFD simulation of airflow behavior and particle transport and deposition in different breathing conditions through the realistic model of human airways. Journal of Molecular Liquids. 2015;209:121–133. doi: 10.1016/j.molliq.2015.05.031
  25. Lin J., Fan J.R., Zheng Y.Q., Hu G.L., Pan D. Numerical simulation of inhaled aerosol particle deposition within 3D realistic human upper respiratory tract. AIP Conference Proceedings. 2010;1207(1):992–997. doi: 10.1063/1.3366500
  26. Naseri A., Shaghaghian S., Abouali O., Ahmadi G. Numerical investigation of transient transport and deposition of microparticles under unsteady inspiratory flow in human upper airways. Respir. Physiol. Neurobiol. 2017;244:56–72. doi: 10.1016/j.resp.2017.06.005
  27. Kiasadegh M., Emdad H., Ahmadi G., Abouali O. Transient numerical simulation of airflow and fibrous particles in a human upper airway model. Journal of Aerosol Science. 2019;140:105480. doi: 10.1016/j.jaerosci.2019.105480
  28. Qi S., Zhang B., Teng Y., Li J., Yue Y., Kang Y., Qian, W. Transient dynamics simulation of airflow in a CT-scanned human airway tree: More or fewer terminal bronchi? Comput. Math. Methods Med. 2017;2017:1969023. doi: 10.1155/2017/1969023
  29. Weibel E.R. Morfometriia legkikh cheloveka. Moscow: 1970. 176 p.(Translation of: Weibel E.R. Morphometry of the Human Lung. Springer Verlag, Berlin-Göttingen-Heidelberg; 1963).
  30. Bradshaw K., Warfield-McAlpine P., Vahaji S., Emmerling J., Salati H., Sacks R., Fletcher D.F., Singh N., Inthavong K. New insights into the breathing physiology from transient respiratory nasal simulation. Physics of Fluids. 2022;34(11):115103. doi: 10.1063/5.0112223
  31. Luo H.Y., Liu Y. Modeling the bifurcating flow in a CT-scanned human lung airway. Journal of Biomechanics. 2008;41(12):2681–2688. doi: 10.1016/j.jbiomech.2008.06.018
  32. Qi S., Zhang B., Yue Y., Shen J., Teng Y., Qian W., Wu J. Airflow in Tracheobronchial Tree of Subjects with Tracheal Bronchus Simulated Using CT Image Based Models and CFD Method. J. Med. Syst. 2018;42(4):65. doi: 10.1007/s10916-017-0879-0
  33. Rahimi-Gorji M., Gorji T.B., Gorji-Bandpy M. Details of regional particle deposition and airflow structures in a realistic model of human tracheobronchial airways: two-phase flow simulation. Computers in Biology and Medicine. 2016;74:1–17. doi: 10.1016/j.compbiomed.2016.04.017
  34. Borzyak E.I., Volkova L.I., Dobrovol'skaya E.A., Revazov V.S. Human Anatomy. Vol.1. Ed. Sapin M.R. Moscow: Medicine; 1993;1. 544 p. (in Russ.).
  35. Kukes V.G., Marinin V.F. Clinical Diagnostic Methods (inspection, palpation, percussion, auscultation): Student’s Manual. Moscow: GEOTAR-Media; 2006. 720 p. (in Russ.).
  36. Zolotko Yu.L. Topographic Atlas of Human Anatomy. Moscow: Medicine; 1967. 272 p. (in Russ.).
  37. Morgan G.E., Michael M.S. Klinicheskaia anesteziologiia. M.-SPb.: BINOM-Nevskii Dialekt; 2001. 396 p. (Translation of: Morgan G.E., Michael M.S. Clinical Anesthesiology. v. 2. Appleton & Lange A Simon & Schuster Company;1996. 747 p.).
  38. West J.B. Fiziologiia dykhaniia. Osnovy. Moscow: Mir; 1988. 196 p. (Translation of: West J.B. Respiratory Physiology - The Essentials. Lippincott Williams and Wilkins, USA; 1985).
  39. Giannaccini M.E., Yue K., Graveston J., Birchall M., Conn A., Rossiter J. Respiratory simulator for robotic respiratory tract treat-mentsinProc. IEEE Int. Conf. Robot. Biomimet. (ROBIO). 2017:2314–2319. doi: 10.1109/ROBIO.2017.8324764
  40. Wilcox D.C. Reassessment of the Scale-Determining Equation for Advanced Turbulence Models. AIAA Journal. 1988;26(11):1299–1309. doi: 10.2514/3.10041
  41. Schiller L., Naumann A. Über die grundlegenden Berechnungen bei der Schwerkraft aufbereitung. Z Verein Deutsch Ing. 1933;77:318–320.
  42. Kostiuk I.F., Kapustnik V.A., Brykallin V.P., Kalmykov A.A. Professional'nye bolezni: uchebnoe posobie (Occupational diseases: textbook). Khar'kov, 2007. 155 p. (in Russ.).
  43. Artemova L.V., Baskova N.V., Burmistrova T.B., Buriakina E.A., Bukhtiiarov I. V., Bushmanov A. Iu., Vasil'eva O. S., Vlasov V. G., Gorblianskii Iu. Iu., Zhabina S. A. et al. Federal'nye klinicheskie rekomendatsii po diagnostike, lecheniiu i profilaktike pnevmokoniozov (Federal clinical guidelines for the diagnosis, treatment and prevention of pneumoconiosis). Ed. N.F. Izmerova. Moscow, 2014. 46 p. (in Russ.).
  44. Artemova L.V., Baskova N.V., Burmistrova T.B., Buryakina E.A., Buhtiyarov I.V., Bushmanov A.Yu., Vasilyeva O.S., Vlasov V.G., Gorblyansky Y.Y., Zhabina S.A. et al. Federal clinical recommendations on diagnosis, treatment and prevention of pneumoconiosis. Russian Journal of Occupational Health and Industrial Ecology. 2016(1):36–49.
Содержание Оригинальная статья
Мат. биол. и биоинф.
2023;18(2):347-366
doi: 10.17537/2023.18.347
опубликована на рус. яз.

Аннотация (рус.)
Аннотация (англ.)
Полный текст (рус., pdf)
Список литературы

 

  Copyright ИМПБ РАН © 2005-2024