Русская версия English version   
Том 8   Выпуск 1   Год 2013
Лунин В.Ю., Грум-Гржимайло А.Н., Грызлова Е.В., Синицын Д.О., Балабаев Н.К., Лунина Н.Л., Петрова Т.Е., Терешкина К.Б., Абдулнасыров Э.Г., Степанов А.С., Крупянский Ю.Ф.

Компьютерное моделирование дифракции импульсов рентгеновских лучей на нанокристаллах биологических макромолекул с использованием унитарной аппроксимации нестационарных факторов атомного рассеяния

Математическая биология и биоинформатика. 2013;8(1):93-118.

doi: 10.17537/2013.8.93.

Список литературы

  1. Barletta WA, Bisognano J, Corlett JN, Emma P, Huang Z, Kim KZ, Lindberg R, Murphy JB, Neil GR, Nguyen DC et al. Free electron lasers: Present status and future challenges. Nucl. Instrum. Methods. Sec. A. 2010;618:69-96. doi: 10.1016/j.nima.2010.02.274
  2. Chapman HN, Fromme P, Barty A, White TA, Kirian RA, Aquila A, Hunter MS, Schulz J, DePonte DP, Weierstall U et al. Femtosecond X-ray protein nanocrystallography. Nature. 2011;470:73-78. doi: 10.1038/nature09750
  3. Boutet S, Lomb L, Williams GJ, Barends TRM, Aquila A, Doak RB, Weierstall U, DePonte DP, Steinbrener J, Shoeman RL et al. High resolution protein structure determination by serial femtosecond crystallography. Science. 2012;337:362-364. doi: 10.1126/science.1217737
  4. Krupyanskii YuF, Balabaev NK, Grum-Grzhimailo AN, Lunin VYu, Petrova TE, Sinitsyn DO, Gryzlova EV, Tereshkina KB, Abdulnasyrov EG, Stepanov AS. Femtosecond X-Ray Free-Electron Lasers: New Tool for Study of Nanocrystals and Single Molecules. Russian Journal of Physical Chemistry B. 2013 (in print).
  5. Kern J, Alonso-Mori R, Hellmich J, Tran R, Hattne J, Laksmono H, Glöckner C, Echols N, Sierra RG, Sellberg J et al. Room temperature femtosecond X-ray diffraction of photosystem II microcrystals. Proc. Natl Acad. Sci. USA. 2012;109:9721-9726. doi: 10.1073/pnas.1204598109
  6. Johansson LC, Arnlund D, White TA, Katona G, DePonte DP, Weierstall U, Doak RB, Shoeman RL, Lomb L, Malmerberg E et al. Lipidic phase membrane protein serial femtosecond crystallography. Nature Methods. 2012;9:263-265. doi: 10.1038/nmeth.1867
  7. Redecke L, Nass K, DePonte DP, White TA, Rehders D, Barty A, Stellato F, Liang M, Barends TRM, Boutet S et al. Natively Inhibited Trypanosoma brucei Cathepsin B Structure Determined by Using an X-ray Laser. Science. 2013;339:227-230. doi: 10.1126/science.1229663
  8. Shapiro D, Thibault P, Beetz T, Elser V, Howells M, Jacobsen C, Kirz J, Lima E, Miao H, Neiman AM, Sayre D. Biological imaging by soft x-ray diffraction microscopy. Proc. Natl. Acad. Sci. USA. 2005;102:15343-15346. doi: 10.1073/pnas.0503305102
  9. Seibert MM, Ekeberg T, Maia FRNC, Svenda M, Andreasson J, Jönsson O, Odic D, Iwan B, Rocker A, Westphal D et al. Single mimivirus particles intercepted and imaged with an x-ray laser. Nature. 2011;470:79-81. doi: 10.1038/nature09748
  10. Martin AV, Andreasson J, Aquila A, Bajt S, Barends TRM, Barthelmess M, Barty A, Benner WH, Bostedt C, Bozek JD et al. Single particle imaging with soft X-rays at the Linac Coherent Light source. Proc. SPIE. 2011;8078:807809(1)-807809(9).
  11. Neutze R, Wouts R, van der Spoel D, Weckert E, Hajdu J. Potential for biomolecular imaging with femtosecond X-ray pulses. Nature. 2000;406:752-757. doi: 10.1038/35021099
  12. Harker D, Kasper JS. Phases of Fourier coefficients directly from crystal diffraction data. Acta Crystallographica. 1948;1:70-75. doi: 10.1107/S0365110X4800020X
  13. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The Protein Data Bank. Nucleic Acids Res. 2000;28:235-242. doi: 10.1093/nar/28.1.235
  14. Urzhumtsev AG, Afonine PV, Adams PD. On the use of logarithmic scales for analysis of diffraction data. Acta Crystallographica. Sec. D. 2009;65:1283-1291. doi: 10.1107/S0907444909039638
  15. Landau LD, Lifshitz EM. Mechanics. Vol. 1 (3rd ed.). Butterworth-Heinemann; 1976.
  16. Landau LD, Lifshitz EM. The Classical Theory of Fields. Vol. 2 (4th ed.). Butterworth-Heinemann; 1975.
  17. Slater JC. A Simplification of the Hartree-Fock Method. Phys. Rev. 1951;81:385-390. doi: 10.1103/PhysRev.81.385
  18. Brown PJ, Fox AG, Maslen EN, O'Keefe MA, Willis BTM. Intensity of diffracted intensities. In: International Tables for Crystallography Volume C. Ed. Prince E. 2006. P. 554-595. http://it.iucr.org/C/ (accessed 07 March 2013).
  19. Coppens P. X-ray Charge Densities Chemical Bonding. New York: Oxford University Press; 1997.
  20. Coppens P, Su Z, Becker PG. Analysis of charge and spin densities. In: International Tables for Crystallography. Volume C. Ed. Prince E. 2006. P. 713-734. http://it.iucr.org/C/ (accessed 07 March 2013).
  21. Housset D, Benabicha F, Pichon-Pesme V, Jelsch C, Maierhofer A, David S, Fontecilla-Camps JC, Lecomte C. Towards the charge-density study of proteins: a room-temperature scorpion-toxin structure at 0.96 Å resolution as a first test case. Acta Crystallographica. Sec. D. 2000;56:151-160. doi: 10.1107/S0907444999014948
  22. Grosse-Kunstleve RW, Sauter NK, Adams PD. Cctbx news. Newsletter of the IUCr Commission on Crystallographic Computing. 2004;3:22-31. http://www.iucr.org/iucr-top/comm/ccom/newsletters/ (accessed 18 February 2013).
  23. Trueblood KN, Bürgi H-B, Burzlaff H, Dunitz JD, Gramaccioli CM, Schulz HH, Schmueli U, Abrahams. Atomic Displacement Parameter Nomenclature. Report of a Subcommitee on Atomic Displacement Parameter Nomenclature. Acta Crystallographica. 1996;A52:770-781. doi: 10.1107/S0108767396005697
  24. Grosse-Kunstleve RW, Adams PD. On the handling of atomic anisotropic displacement parameters. J. of Applied Crystallography. 2002;35:477-480. doi: 10.1107/S0021889802008580
  25. Afonine PV, Urzhumtsev A, Grosse-Kunstleve RW, Adams PD. Atomic Displacement Parameters (ADPs), their parameterization and refinement in PHENIX. Computational Crystallography Newsletter. 2010;1:24-31. http://www.phenix-online.org/newsletter/CCN_2010_07.pdf (accessed 18 February 2013).
  26. Phillips SEV. Structure and refinement of oxymyoglobin at 1•6 Å resolution. J. Mol. Biol. 1980;142:531-554. doi: 10.1016/0022-2836(80)90262-4
  27. Jiang J-S, Brünger AT. Protein Hydration Observed by X-ray Diffraction: Solvation Properties of Penicillopepsin and Neuraminidase Crystal Structures. J. Mol. Biol. 1994;243:100-115. doi: 10.1006/jmbi.1994.1633
  28. Fokine A, Urzhumtsev A. Flat bulk-solvent model: obtaining optimal parameters. Acta Crystallographica Sec. D. 2002;58:1387-1392. doi: 10.1107/S0907444902010284
  29. Fenn TD, Schnieders MJ, Brunger AT. A smooth and differentiable bulk-solvent model for macromolecular diffraction. Acta Crystallographica Sec. D. 2010;66:1024-1031. doi: 10.1107/S0907444910031045
  30. Blundel TL, Jonson LN. Protein crystallography. Academic Press; 1976.
  31. Lunin VY, Urzhumtsev AG. Improvement of protein phases by coarse model modification. Acta Crystallographica Sec. A. 1984;40:269-277. doi: 10.1107/S0108767384000544
  32. Read RJ. Improved Fourier Coefficients for Maps Using Phases from partial Structures with Errors. Acta Crystallographica Sec. A. 1986;42:140-149. doi: 10.1107/S0108767386099622
  33. Pannu NS, Read RJ. Improved Structure Refinement Through Maximum Likelihood. Acta Crystallographica Sec. A. 1996;52:659-668.
  34. Bricogne G, Irwin J. Maximum-Likelihood Refinement of incomplete models with BUSTER + TNT. In: Proceedings of the CCP4 Study Weekend. Macromolecular Refinement. Warrington: Daresbury Laboratory; 1996. P. 85-92.
  35. Murshudov GN, Vagin AA, Dodson EJ. Refinement of Macromolecular Structures by the Maximum-Likelihood Method. Acta Crystallographica Sec. D. 1997;53:240-255. doi: 10.1107/S0907444996012255
  36. Lunin VY, Afonine PV, Urzhumtsev AG. Likelihood-based refinement. I. Irremovable model errors. Acta Crystallographica Sec. A. 2002;58:270-282. doi: 10.1107/S0108767302001046
  37. Wang J, Dauter M, Alkire R, Joachimiak A, Dauter Z. Triclinic lysozyme at 0.65 Å resolution. Acta Crystallographica Sec. D. 2007;63:1254-1268. doi: 10.1107/S0907444907054224
  38. Afonine PV, Grosse-Kunstleve RW, Echols N, Headd JJ, Moriarty NW, Mustyakimov M, Terwilliger TC, Urzhumtsev A, Zwart PH, Adams PD. Towards automated crystallographic structure refinement with phenix.refine. Acta Crystallographica Sec. D. 2012;68:352-367. doi: 10.1107/S0907444912001308
  39. Sheldrick GM. Phase annealing in SHELX-90: direct methods for larger structures. Acta Crystallographica Sec. A. 1990;46:467-473. doi: 10.1107/S0108767390000277
  40. Morris RJ, Bricogne G. Sheldrick's 1.2 Å rule and beyond. Acta Crystallographica Sec. D. 2003;59:615-617. doi: 10.1107/S090744490300163X
  41. Sobolev OV, Lunin VY. Detection of alternative conformations by unrestrained refinement. Acta Crystallographica Sec. D. 2012;68:1118-1127. doi: 10.1107/S0907444912021269
  42. Young L, Kanter EP, Krässig B, Li Y, March AM, Pratt ST, Santra R, Southworth SH, Rohringer N, DiMauro LF et al. Femtosecond electronic response of atoms to ultra-intense X-rays. Nature. 2010;466:56-62. doi: 10.1038/nature09177
  43. Herman F, Skillman S. Atomic Structure Calculations. Englewood Cliffs: Prentice-Hall Inc.; 1963.
  44. Son S-K, Young L, Santra R. Impact of hollow-atom formation on coherent x-ray scattering at high intensity. Phys. Rev. A. 2011;83:033402(1)-033402(11).
  45. Lorenz U, Kabachnik NM, Weckert E, Vartanyants IA. Impact of ultrafast electronic damage in single-particle x-ray imaging experiments. Phys. Rev. E. 2012;86:051911(1)-051911(7).
Содержание Оригинальная статья
Мат. биол. и биоинф.
2013;8(1):93-118
doi: 10.17537/2013.8.93
опубликована на рус. яз.

Аннотация (рус.)
Аннотация (англ.)
Полный текст (рус., pdf)
Список литературы

 

  Copyright ИМПБ РАН © 2005-2024