Русская версия English version   
Том 9   Выпуск 1   Год 2014
Турченков Д.А., Быстров В.С.

Экспериментальные и теоретические методы изучения ионных каналов

Математическая биология и биоинформатика. 2014;9(1):112-148.

doi: 10.17537/2014.9.112.

Список литературы

The paper is published in: Matematicheskaya biologiya i bioinformatika (Mathematical Biology and Bioinformatics). 2014;9(1):112-148. doi: 10.17537/2014.9.112.

  1. Leuchtag HR. Voltage-Sensitive Ion Channels: Biophysics of Molecular Excitability. Springer; 2008. 545 p.
  2. Leuchtag HR, Bystrov VS. Theoretical models of conformational transitions and ion conduction in voltage-dependent ion channels: bioferroelectricity and superionic conduction. Ferroelectrics. 1999;220(1):157-204.
  3. Gennis RB. Biomembranes. Springer; 1989. 553 p.
  4. Sperelakis N. Cell Physiology Source Book. Elsevier Science; 2001. 996 p.
  5. Maffeo C, Bhattacharya S, Yoo J, Wells D, Aksimentiev A. Modeling and simulation of ion channels. Chemical Reviews. 2012;112(12):6250-6284.
  6. Lines ME, Glass AM. Principles and Applications of Ferroelectrics and Related Materials. Oxford University Press; 1977. 680 p.
  7. Smolenskiy G. Ferroelectrics and Related Materials. Ferroelectricity and Related Phenomena. Gordon and Breach Science Publishers; 1984. 770 p.
  8. Leuchtag HR. Fit of the dielectric anomaly of squid axon membrane near heat-block temperature to the ferroelectric Curie-Weiss law. Biophysical Chemistry. 1995;53(3):197-205.
  9. Bystrov VS. Ferroelectric liquid crystal models of ion channels and gating phenomena in biological membranes. Ferroelectrics Letters Section. 1997;23(3-4):87-93.
  10. Bystrov VS, Leuchtag HR. Bioferroelectricity: Modeling the transitions of the sodium channel. Ferroelectrics. 1994;155(1):19-24.
  11. Leuchtag H, Bystrov V. Ferroelectricity in liquid crystals, films, microtubules and voltage-gated ion channels. Biophysical Journal. 1999;76(1):A330-A330.
  12. Hille B. Ion Channels of Excitable Membranes. Sinauer Sunderland; 2001. 814 p.
  13. North RA. Ligand and Voltage Gated Ion Channels. CRC Press; 1995. 365 p.
  14. Peracchia C. Handbook of Membrane Channels: Molecular and Cellular Physiology. Academic Press; 1994. 591 p.
  15. Jan LY, Jan YN. Voltage-sensitive ion channels. Cell. 1989;56(1):13-25.
  16. Eisenman G, Dani J. An introduction to molecular architecture and permeability of ion channels. Annual Review of Biophysics and Biophysical Chemistry. 1987;16(1):205-226.
  17. Stevens CF. Sodium channel structure-function relations. Society of General Physiologists Series. 1986;41:99-108.
  18. Coste B, Xiao B, Santos JS, Syeda R, Grandl J, Spencer KS, Kim SE, Schmidt M, Mathur J, Dubin AE et al. Piezo proteins are pore-forming subunits of mechanically activated channels. Nature. 2012;483(7388):176-181.
  19. Kim SE, Coste B, Chadha A, Cook B, Patapoutian A. The role of Drosophila Piezo in mechanical nociception. Nature. 2012;483(7388):209-212.
  20. Hucho F, Weise C. Ligand gated ion channels. Angewandte Chemie International Edition. 2001;40(17):3100-3116.
  21. Peyrard M. Nonlinear Excitations in Biomolecules. Springer; 1995. 426 p.
  22. Leuchtag HR. Indications of the existence of ferroelectric units in excitable-membrane channels. Journal of Theoretical Biology. 1987;127(3):321-340.
  23. Leuchtag HR. Phase transitions and ion currents in a model ferroelectric channel unit. Journal of Theoretical Biology. 1987;127(3):341-359.
  24. Bystrov VS, Lakhno VD, Molchanov AM. Ferroelectric active models of ion channels in biomembranes. Journal of Theoretical Biology. 1994;168(4):383-393.
  25. Gordon A, Vugmeister B, Rabitz H, Dorfman S, Felsteiner J, Wyder P. A ferroelectric model for the generation and propagation of an action potential and its magnetic field stimulation. Ferroelectrics. 1999;220(1):291-304.
  26. Bystrov VS, Bdikin IK, Heredia A, Pullar RC, Mishina ED, Sigov AS, Kholkin AL. Piezoelectricity and ferroelectricity in biomaterials: from proteins to self-assembled peptide nanotubes. In: Piezoelectric Nanomaterials for Biomedical Applications Nanomedicine and Nanotoxicology. Springer; 2012. P. 187-211.
  27. Gruverman A, Rodriguez BJ, Kalinin SV. Electromechanical behavior in biological systems at the nanoscale. In: Scanning Probe Microscopy. Electrical and Electromechanical Phenomena at the Nanoscale. Eds. Kalinin SV, Gruverman A. Springer; 2007. P. 615-633.
  28. Liu Y, Zhang Y, Chow MJ, Chen QN, Li J. Biological ferroelectricity uncovered in aortic walls by piezoresponse force microscopy. Physical Review Letters. 2012;108(7):078103.
  29. Kalinin SV, Gruverman A. Scanning Probe Microscopy. Springer; 2007. 1024 p.
  30. Kalinin SV, Rodriguez BJ, Shin J, Jesse S, Grichko V, Thundat T, Baddorf AP, Gruverman A. Bioelectromechanical imaging by scanning probe microscopy: Galvani's experiment at the nanoscale. Ultramicroscopy. 2006;106(4):334-340.
  31. Kalinin SV, Jesse S, Rodriguez BJ, Seal K, Baddorf AP, Zhao T, Chu Y, Ramesh R, Eliseev EA, Morozovska AN et al. Recent advances in electromechanical imaging on the nanometer scale: Polarization dynamics in ferroelectrics, biopolymers, and liquid imaging. Japanese Journal of Applied Physics. 2007;46:5674-5685.
  32. Znamenskiy VS, Green ME. Quantum calculations on hydrogen bonds in certain water clusters show cooperative effects. Journal of Chemical Theory and Computation. 2007;3(1):103-114.
  33. Riahi S, Roux B, Rowley CN. QM/MM molecular dynamics simulations of the hydration of Mg (II) and Zn (II) ions. Canadian Journal of Chemistry. 2013;91(7):552-558.
  34. Bystrov VS. Komp'iuternoe modelirovanie molekuliarnykh struktur. Biosegnetoelektrichestvo: peptidnye nanotrubki (Computer modeling of molecular structures. Biosegnetoelektricity: peptide nanotubes). Lambert Academic Publishing; 2013. 124 p. (in Russ.).
  35. Kariev AM, Green ME. Quantum aalculations on potassium channel selectivity and gating. Biophysical Journal. 2009;96(3):192a.
  36. Bucher D, Rothlisberger U, Guidoni L, Carloni P. QM/MM Car-Parrinello molecular dynamics study of selectivity in a potassium channel. Abstracts of Papers of the American Chemical Society. 2004;228:309.
  37. Papazian DM, Shao XM, Seoh SA, Mock AF, Huang Y, Wainstock DH. Electrostatic interactions of S4 voltage sensor in shaker K+ channel. Neuron. 1995;14(6):1293-1301.
  38. Sapronova A, Bystrov V, Green ME. Ion channel gating and proton transport. Journal of Molecular Structure: THEOCHEM. 2003;630(1):297-307.
  39. Sapronova A, Bystrov VS, Green ME. Water, proton transfer, and hydrogen bonding in ion channel gating. Frontiers in Bioscience. 2003;8:1356-1370.
  40. Green ME. A possible role for phosphate in complexing the arginines of S4 in voltage gated channels. Journal of Theoretical Biology. 2005;233(3):337-341.
  41. Pradhan P, Ghose R, Green ME. Voltage gating and anions, especially phosphate: a model system. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2005;1717(2):97-103.
  42. Yu W, Lopes PE, Roux B, MacKerell AD. Six-site polarizable model of water based on the classical Drude oscillator. The Journal of Chemical Physics. 2013;138.
  43. Whitfield TW, Varma S, Harder E, Lamoureux G, Rempe SB, Roux B. Theoretical study of aqueous solvation of K+ comparing ab initio, polarizable, and fixed-charge models. Journal of Chemical Theory and Computation. 2007;3(6):2068-2082.
  44. Chowdhary J, Harder E, Lopes PE, Huang L, MacKerell Jr AD, Roux B. A polarizable force field of dipalmitoylphosphatidylcholine based on the classical drude model for molecular dynamics simulations of lipids. The Journal of Physical Chemistry B. 2013;117(31):9142-9160.
  45. Yigzawe TM, Sadus RJ. Thermodynamic properties of liquid water from a polarizable intermolecular potential. The Journal of Chemical Physics. 2013;138:044503.
  46. Hodgkin A, Katz B. The effect of sodium ions on the electrical activity of the giant axon of the squid. The Journal of Physiology. 1949;108. N. 1:37-77.
  47. Hodgkin A, Huxley A. The components of membrane conductance in the giant axon of Loligo. The Journal of Physiology. 1952;116(4):473-496.
  48. Cole K, Moore J. Ionic current measurements in the squid giant axon membrane. The Journal of General Physiology. 1960;44(1):123-167.
  49. Cole K, Moore J. Potassium ion current in the squid giant axon: dynamic characteristic. Biophysical Journal. 1960;1(1):1-14.
  50. Antonov V, Chernysh A, Pasechnik V, Voznesenskij S, Kozlova E. Biophysics. Moscow: Vlados; 2003. 228 p.(in Russ).
  51. Ogden D. Microelectrode Techniques: the Plymouth Workshop Handbook. Cambridge, UK: Company of Biologists; 1994. 448 p.
  52. Purves D. Neuroscience. Sinauer Associates; 2012. 759 p.
  53. Walz W. Patch-Clamp Analysis: Advanced Techniques. Neuromethods Series. Humana Press; 2007. 475 p.
  54. Brennecke R, Lindemann B. Theory of a membrane-voltage clamp with discontinuous feedback through a pulsed current clamp. Review of Scienti_c Instruments. 1974;45. N. 2:184-188.
  55. Wilson W, Goldner M. Voltage clamping with a single microelectrode. Journal of Neurobiology. 1975;6(4):411-422.
  56. Molleman A. Patch Clamping: An Introductory Guide to Patch Clamp Electrophysiology. Wiley; 2002. 186 p.
  57. Smith TG, Lecar H, Redman SJ, Gage PW. Voltage and Patch Clamping With Microelectrodes. American Physiological Society Washington; 1985. 260 p.
  58. Hamill O, Marty A, Neher E, Sakmann B, Sigworth F. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Archiv. 1981;391(2):85-100.
  59. Windhorst U, Johansson H. Modern Techniques in Neuroscience Research: 33 Tables. Springer; 1999. 1325 p.
  60. Penner R. A practical guide to patch clamping. In: Single Channel Recording. Eds. Sakmann B, Neher E. Springer; 1995. P. 3-30.
  61. Zhao Y, Inayat S, Dikin D, Singer J, Ruoff R, Troy J. Patch clamp technique: Review of the current state of the art and potential contributions from nanoengineering. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems. 2008;222(1):1-11.
  62. Fertig N, Blick RH, Behrends JC. Whole cell patch clamp recording performed on a planar glass chip. Biophysical Journal. 2002;82(6):3056-3062.
  63. Horn R, Marty A. Muscarinic activation of ionic currents measured by a new whole-cell recording method. The Journal of General Physiology. 1988;92(2):145-159.
  64. Korn S, Horn R. Influence of sodium-calcium exchange on calcium current rundown and the duration of calcium-dependent chloride currents in pituitary cells, studied with whole cell and perforated patch recording. The Journal of General Physiology. 1989;94(5):789-812.
  65. Chad J, Kalman D, Armstrong D. The role of cyclic AMP-dependent phosphorylation in the maintenance and modulation of voltage-activated calcium channels. Society of General Physiologists Series. 1987;42:167.
  66. Becq F. Ionic channel rundown in excised membrane patches. Biochimica et Biophysica Acta (BBA)-Reviews on Biomembranes. 1996;1286(1):53-63.
  67. Tang XD, Hoshi T. Rundown of the hyperpolarization-activated KAT1 channel involves slowing of the opening transitions regulated by phosphorylation. Biophysical journal. 1999;76(6):3089-3098.
  68. Belles B, Hescheler J, Trautwein W, Blomgren K, Karlsson J. A possible physiological role of the Ca-dependent protease calpain and its inhibitor calpastatin on the Ca current in guinea pig myocytes. Pflügers Archiv. 1988;412(5):554-556.
  69. Belles B, Malecot C, Hescheler J, Trautwein W. “Run-down” of the Ca current during long whole-cell recordings in guinea pig heart cells: role of phosphorylation and intracellular calcium. Pflügers Archiv. 1988;411(4):353-360.
  70. Bezanilla F, Caputo C, DiPolo R, Rojas H. Potassium conductance of the squid giant axon is modulated by ATP. Proceedings of the National Academy of Sciences. 1986;83(8):2743-2745.
  71. Fernandez J, Fox A, Krasne S. Membrane patches and whole-cell membranes: a comparison of electrical properties in rat clonal pituitary (GH3) cells. The Journal of Physiology. 1984;356(1):565-585.
  72. Cepeda C, Colwell CS, Itri JN, Chandler SH, Levine MS. Dopaminergic modulation of NMDA-induced whole cell currents in neostriatal neurons in slices: contribution of calcium conductances. Journal of Neurophysiology. 1998;79(1):82-94.
  73. Horn R, Korn SJ. Prevention of rundown in electrophysiological recording. Methods in Enzymology. 1992;207:149-155.
  74. Armstrong D, Eckert R. Voltage-activated calcium channels that must be phosphorylated to respond to membrane depolarization. Proceedings of the National Academy of Sciences. 1987;84(8):2518-2522.
  75. Marty A, Neher E. Tight-seal whole-cell recording. In: Single Channel Recording. Eds. Sakmann B, Neher E. Springer; 1995. P. 31-52.
  76. Boulton A, Baker G, Walz W. Patch-Clamp Applications and Protocols. Humana Press Incorporated; 1995. 316 p.
  77. Rae J, Cooper K, Gates P, Watsky M. Low access resistance perforated patch recordings using amphotericin B. Journal of Neuroscience Methods. 1991;37(1):15-26.
  78. Korn S, Marty A, Connor J, Horn R. Perforated patch recording. Methods Neuroscience. 1991;4(26):264-273.
  79. De Kruijff B, Demel R. Polyene antibiotic-sterol interactions in membranes of Acholeplasma laidlawii cells and lecithin liposomes. III. Molecular structure of the polyene antibiotic-cholesterol complexes. Biochimica et Biophysica Acta (BBA)-Biomembranes. 1974;339(1):57-70.
  80. Akaike N, Harata N. Nystatin perforated patch recording and its applications to analyses of intracellular mechanisms. The Japanese Journal of Physiology. 1994;44(5):433-473.
  81. Zeidler U, Barth C, Stark G. Radiation-induced and free radical-mediated inactivation of ion channels formed by the polyene antibiotic Amphotericin B in lipid membranes: effect of radical scavengers and single-channel analysis. International Journal of Radiation Biology. 1995;67(2):127-134.
  82. Kyrozis A, Reichling DB. Perforated-patch recording with gramicidin avoids artifactual changes in intracellular chloride concentration. Journal of Neuroscience Methods. 1995;57(1):27-35.
  83. Hladky S, Haydon D. Ion movements in gramicidin channels. Current Topics in Membranes and Transport. 1984;21:327-372.
  84. Fan JS, Palade P. Perforated patch recording with b-escin. Pflügers Archiv. 1998;436(6):1021-1023.
  85. Launikonis BS, Stephenson DG. Effects of β-escin and saponin on the transverse-tubular system and sarcoplasmic reticulum membranes of rat and toad skeletal muscle. Pflügers Archiv. 1999;437(6):955-965.
  86. Ishibashi H, Moorhouse AJ, Nabekura J. Perforated whole-cell patch-clamp technique: a user's guide. In: Patch Clamp Techniques. Springer Protocols Handbooks. Ed. Okada Y. Springer; 2012. P. 71-83.
  87. Gao J, Truhlar DG. Quantum mechanical methods for enzyme kinetics. Annual Review of Physical Chemistry. 2002;53(1):467-505.
  88. Kamerlin SC, Vicatos S, Dryga A, Warshel A. Coarse-grained (multiscale) simulations in studies of biophysical and chemical systems. Annual Review of Physical Chemistry. 2011;62:41-64.
  89. Modi N, Winterhalter M, Kleinekathöfer U. Computational modeling of ion transport through nanopores. Nanoscale. 2012;4(20):6166-6180.
  90. Comer J, Aksimentiev A. Predicting the DNA sequence dependence of nanopore ion current using atomic-resolution Brownian dynamics. The Journal of Physical Chemistry. 2012;116(5):3376-3393.
  91. Carr R, Comer J, Ginsberg MD, Aksimentiev A. Atoms-to-microns model for small solute transport through sticky nanochannels. Lab on a Chip. 2011;11(22):3766-3773.
  92. Levitt DG. Modeling of ion channels. The Journal of General Physiology. 1999;113(6):789-794.
  93. Mackay D, Berens P, Wilson K, Hagler A. Structure and dynamics of ion transport through gramicidin A. Biophysical Journal. 1984;46(2):229-248.
  94. Kreusch A, Schulz GE. Refined structure of the porin from Rhodopseudomonas Blastica: comparison with the porin from Rhodobacter Capsulatus. Journal of Molecular Biology. 1994;243(5):891-905.
  95. Schirmer T. General and specific porins from bacterial outer membranes. Journal of Structural Biology. 1998;121(2):101-109.
  96. Chang G, Spencer RH, Lee AT, Barclay MT, Rees DC. Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science. 1998;282(5397):2220-2226.
  97. Doyle DA, Cabral JM, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science. 1998;280(5360):69-77.
  98. Zhou Y, Morais-Cabral JH, Kaufman A, MacKinnon R. Chemistry of ion coordination and hydration revealed by a K+ channel_Fab complex at 2.0 A resolution. Nature. 2001;414(6859):43-48.
  99. International Workshop: Molecular Simulation Studies in Material and Biological Sciences. Ed. Kholmurodov K. Nova Science Publishers; 2007. 187 p.
  100. Allen MP, Tildesley DJ. Computer Simulation of Liquids. Oxford University Press; 1989. 385 p.
  101. Kholmogorov KT, Altaisky MV, Puzynin IV, Darden T, Filatov FP. Molecular dynamics methods for simulation of physical and biological processes. Physics of Elementary Particles and Atomic Nuclei. 2003;34(2).
  102. Shajtan K, Tereshkina K. Molecular dynamics of proteins and peptides. Moscow: Oikos; 2004. 245 p. (in Russ.).
  103. Poltorak O. Thermodynamics in physical chemistry. Moscow: Highest School; 1991. 319 p. (in Russ.).
  104. Nikolsky B. Physical chemistry. Theoretical and practical guide. St. P.: Chemistry; 1987. 353 p. (in Russ.).
  105. Koneshan S, Rasaiah J. Computer simulation studies of aqueous sodium chloride solutions at 298° K and 683° K. The Journal of Chemical Physics. 2000;113(18):8125-8137.
  106. Uchida H, Matsuoka M. Molecular dynamics simulation of solution structure and dynamics of aqueous sodium chloride solutions from dilute to supersaturated concentration. Fluid Phase Equilibria. 2004;219(1):49-54.
  107. Koneshan S, Rasaiah JC, Lynden-Bell R, Lee S. Solvent structure, dynamics, and ion mobility in aqueous solutions at 25° C. The Journal of Physical Chemistry B. 1998;102(21):4193-4204.
  108. Kaplan I. Introduction to the theory of intermolecular interactions. Moscow: Science; 1982. 312 p. (in Russ.).
  109. Verlet L. Computer "experiments" on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Physical Review. 1967;159(1):98.
  110. MacKerell AD, Bashford D, Bellott M, Dunbrack R, Evanseck J, Field MJ, Fischer S, Gao J, Guo H, Ha SA et al. All-atom empirical potential for molecular modeling and dynamics studies of proteins. The Journal of Physical Chemistry B. 1998;102(18):3586-3616.
  111. Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL. Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. The Journal of Physical Chemistry B. 2001;105(28):6474-6487.
  112. Jorgensen WL, Maxwell DS, Tirado-Rives J. Development and testing of the OPLS AA force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society. 1996;118(45):11225-11236.
  113. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. Journal of the American Chemical Society. 1995;117(19):5179-5197.
  114. Riniker S, Christ CD, Hansen HS, Hunenberger PH, Oostenbrink C, Steiner D, van Gunsteren WF. Calculation of relative free energies for ligand-protein binding, solvation, and conformational transitions using the GROMOS software. The Journal of Physical Chemistry B. 2011;115(46):13570-13577.
  115. Hermans J, Berendsen HJ, Van Gunsteren WF, Postma JP. A consistent empirical potential for water-protein interactions. Biopolymers. 1984;23(8):1513-1518.
  116. Klauda JB, Venable RM, Freites JA, O'Connor JW, Tobias DJ, Mondragon-Ramirez C, Vorobyov I, MacKerell Jr AD, Pastor RW. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. The Journal of Physical Chemistry B. 2010;114(23):7830-7843.
  117. Liu Y, Chipot C, Shao X, Cai W. The effects of 7-dehydrocholesterol on the structural properties of membranes. Physical Biology. 2011;8(5):056005.
  118. Daura X, Mark AE, Van Gunsteren WF. Parametrization of aliphatic CHn united atoms of GROMOS96 force field. Journal of Computational Chemistry. 1998;19(5):535-547.
  119. Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH. The MARTINI force field: coarse grained model for biomolecular simulations. The Journal of Physical Chemistry B. 2007;111(27):7812-7824.
  120. Davis RS, Sunil Kumar P, Sperotto MM, Laradji M. Predictions of phase separation in three-component lipid membranes by the MARTINI force field. The Journal of Physical Chemistry B. 2013;117(15):4072-4080.
  121. Shinoda W, De Vane R, Klein ML. Zwitterionic lipid assemblies: molecular dynamics studies of monolayers, bilayers, and vesicles using a new coarse grain force field. The Journal of Physical Chemistry B. 2010;114(20):6836-6849.
  122. Tai K, Fowler P, Mokrab Y, Stansfeld P, Sansom MS. Molecular modeling and simulation studies of ion channel structures, dynamics and mechanisms. Methods in Cell Biology. 2008;90:233-265.
  123. Arning K. Mathematical modelling and simulation of ion channels. Radon Institute for Computational and Applied Mathematics. 2009:139-142.
  124. Harder E, MacKerell AD, Roux B. Many-body polarization effects and the membrane dipole potential. Journal of the American Chemical Society. 2009;131(8):2760-2761.
  125. Lamoureux G, Roux B. Modeling induced polarization with classical drude oscillators: Theory and molecular dynamics simulation algorithm. The Journal of Chemical Physics. 2003;119:3025.
  126. Piquemal JP, Perera L, Cisneros GA, Ren P, Pedersen LG, Darden TA. Towards accurate solvation dynamics of divalent cations in water using the polarizable amoeba force field: from energetics to structure. The Journal of Chemical Physics. 2006;125(5):054511-054511.
  127. Cisneros GA, Piquemal JP, Darden TA. Generalization of the Gaussian electrostatic model: extension to arbitrary angular momentum, distributed multipoles, and speedup with reciprocal space methods. The Journal of Chemical Physics. 2006;125:184101-184112.
  128. Narumi T, Ohno Y, Okimoto N, Koishi T, Suenaga A, Futatsugi N, Yanai R, Himeno R, Fujikawa S, Taiji M et al. A 55 TFLOPS simulation of amyloid-forming peptides from yeast prion Sup35 with the special-purpose computer system MDGRAPE-3. In: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing. New York, NY, USA: ACM. 2006. P. 1-13.
  129. Kumar S, Huang C, Zheng G, Bohm E, Bhatele A, Phillips JC, Yu H, Kalé LV. Scalable molecular dynamics with NAMD on the IBM Blue Gene/L system. IBM Journal of Research and Development. 2008;52(1.2):177-188.
  130. Shaw DE, Deneroff MM, Dror RO, Kuskin JS, Larson RH, Salmon JK, Young C, Batson B, Bowers KJ, Chao JC et al. Anton, a special-purpose machine for molecular dynamics simulation. Communications of the ACM. 2008;51(7):91-97.
  131. Dror RO, Jensen MO, Borhani DW, Shaw DE. Exploring atomic resolution physiology on a femtosecond to millisecond timescale using molecular dynamics simulations. The Journal of General Physiology. 2010;135(6):555-562.
  132. Pierce LC, Salomon-Ferrer R, Augusto F de Oliveira C, McCammon JA, Walker RC. Routine access to millisecond time scale events with accelerated molecular dynamics. Journal of Chemical Theory and Computation. 2012;8(9):2997-3002.
  133. Law RJ, Henchman RH, McCammon JA. A gating mechanism proposed from a simulation of a human α-7 nicotinic acetylcholine receptor. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(19):6813-6818.
  134. Capener CE, Shrivastava IH, Ranatunga KM, Forrest LR, Smith GR, Sansom MS. Homology modeling and molecular dynamics simulation studies of an inward rectifier potassium channel. Biophysical Journal. 2000;78(6):2929-2942.
  135. Gaffney K, Chapman H. Imaging atomic structure and dynamics with ultrafast X-ray scattering. Science. 2007;316(5830):1444-1448.
  136. Balescu R. Equilibrium and Non-Equilibrium Statistical Mechanics. Wiley; 1975. 742 p.
  137. Evans L. An Introduction to Stochastic Differential Equations. American Mathematical Society; 2013. 133 p.
  138. Stepanov S. Stochastic world. 2012. 376 p. http://synset.com/pdf/ito.pdf (accessed 11 February 2014) (in Russ.).
  139. Einstein A. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Annalen der physik. 1905;322(8):549-560.
  140. Turchenkov DA., Turchenkov M.A. Analysis of simplifications of numerical schemes for Langevin equation, effect of variations in the correlation of augmentations. Computer Research and Modeling. 2012;4:325-338. (in Russ.).
  141. Pusey PN. Brownian motion goes ballistic. Science. 2011;332(6031):802-803.
  142. Turq P, Lantelme F, Friedman HL. Brownian dynamics: Its application to ionic solutions. The Journal of Chemical Physics. 1977;66(7):3039-3044.
  143. Gunsteren W, Berendsen H. Algorithms for Brownian dynamics. Molecular Physics. 1982;45(3):637-647.
  144. March N, Tosi P. Introduction to Liquid State Physics. World Scientific; 2002. 300 p.
  145. Song C, Corry B. Ion conduction in ligand-gated ion channels: Brownian dynamics studies of four recent crystal structures. Biophysical Journal. 2010;98(3):404-411.
  146. Krishnamurthy V, Chung SH. Large-scale dynamical models and estimation for permeation in biological membrane ion channels. Proceedings of the IEEE. 2007;95(5):853-880.
  147. Singer A, Schuss Z. Brownian simulations and unidirectional flux in diffusion. Physical Review E. 2005;71(2):026115-026122.
  148. Chung SH, Allen TW, Hoyles M, Kuyucak S. Permeation of ions across the potassium channel: Brownian dynamics studies. Biophysical Journal. 1999;77(5):2517-2533.
  149. Li SC, Hoyles M, Kuyucak S, Chung SH. Brownian dynamics study of ion transport in the vestibule of membrane channels. Biophysical Journal. 1998;74(1):37-47.
  150. Barthel J, Bachhuber K, Buchner R, Hetzenauer H. Dielectric spectra of some common solvents in the microwave region. Water and lower alcohols. Chemical Physics Letters. 1990;165(4):369-373.
  151. Kimura Y, Ikegami A. Local dielectric properties around polar region of lipid bilayer membranes. The Journal of Membrane Biology. 1985;85(3):225-231.
  152. Plant AL, Gueguetchkeri M, Yap W. Supported phospholipid/alkanethiol biomimetic membranes: insulating properties. Biophysical Journal. 1994;67(3):1126-1133.
  153. Gillespie D, Boda D. The anomalous mole fraction effect in calcium channels: a measure of preferential selectivity. Biophysical Journal. 2008;95(6):2658-2672.
  154. Schutz CN, Warshel A. What are the dielectric “constants” of proteins and how to validate electrostatic models? Proteins: Structure, Function, and Bioinformatics. 2001;44(4):400-417.
  155. Erdey-Grúz T. Transport Phenomena in Aqueous Solutions. Willey; 1974. 512 p.
  156. Yang ZZ, Li X. Ion solvation in water from molecular dynamics simulation with the ABEEM/MM force field. The Journal of Physical Chemistry A. 2005;109(16):3517-3520.
  157. Obst S, Bradaczek H. Molecular dynamics study of the structure and dynamics of the hydration shell of alkaline and alkaline-earth metal cations. The Journal of Physical Chemistry. 1996;100(39):15677-15687.
  158. Nightingale ER. Phenomenological theory of ion solvation. Effective radii of hydrated ions. The Journal of Physical Chemistry. 1959;63(9):1381-1387.
  159. Chen JH, Adelman SA. Macroscopic model for solvated ion dynamics. The Journal of Chemical Physics. 1980;72(4):2819-2831.
  160. Barthel J, Bachhuber K, Buchner R, Hetzenauer H. Dielectric spectra of some common solvents in the microwave region. Water and lower alcohols. Chemical Physics Letters. 1990;165(4):369-373.
  161. Bollinger JC, Yvernault T. Ionic solvation from conductivity data: Application and extension of the Chen-Adelman model. Journal of Solution Chemistry. 1985;14:605-619.
  162. Turchenkov D, Boronovsky S, Nartsissov Y. Model of ion diffusion in synaptic cleft based on stochastical integration of Langevin equation at dielectric friction approximation. Biophysics. 2013;58(6):796-803.
  163. Lee SH, Rasaiah JC. Molecular dynamics simulation of ionic mobility. I. Alkali metal cations in water at 25° C. The Journal of Chemical Physics. 1994;101(8):6964-6974.
  164. Im W, Roux B. Ion permeation and selectivity of OmpF porin: a theoretical study based on molecular dynamics, Brownian dynamics, and continuum electrodiffusion theory. Journal of Molecular Biology. 2002;322(4):851-869.
  165. Marreiro D, Saraniti M, Aboud S. Brownian dynamics simulation of charge transport in ion channels. Journal of Physics: Condensed Matter. 2007;19(21):215203.
  166. Ohshima H. Potential and Charge of a Hard Particle. Biophysical Chemistry of Biointerfaces. P. 1-46.
  167. Fogolari F, Brigo A, Molinari H. The Poisson-Boltzmann equation for biomolecular electrostatics: a tool for structural biology. Journal of Molecular Recognition. 2002;15. N. 6:377-392.
  168. D'yachkov L. Analytical solution of the Poisson-Boltzmann equation in cases of spherical and axial symmetry. Technical Physics Letters. 2005;31(3):204-207.
  169. Liu X, Li H, Li R, Tian R. Analytical solutions of the nonlinear Poisson-Boltzmann equation in mixture of electrolytes. Surface Science. 2013;607(0):197-202.
  170. Schoch RB, Han J, Renaud P. Transport phenomena in nanofluidics. Rev. Mod. Phys. 2008;80:839-883.
  171. O'Brien EP, Dima RI, Brooks B, Thirumalai D. Interactions between hydrophobic and ionic solutes in aqueous guanidinium chloride and urea solutions: lessons for protein denaturation mechanism. Journal of the American Chemical Society. 2007;129(23):7346-7353.
  172. Sabarinathan R, Aishwarya K, Sarani R, Vaishnavi MK, Sekar K. Water-mediated ionic interactions in protein structures. Journal of Biosciences. 2011;36(2):253-263.
  173. Maffeo C, Schöpflin R, Brutzer H, Stehr R, Aksimentiev A, Wedemann G, Seidel R. DNA-DNA nnteractions in tight supercoils are described by a small effective charge density. Physical Review Letters. 2010;105:158101-158112.
  174. Jogini V, Roux B. Electrostatics of the intracellular vestibule of K+ channels. Journal of Molecular Biology. 2005;354(2):272-288.
  175. Corry B, Kuyucak S, Chung SH. Dielectric self-energy in Poisson-Boltzmann and Poisson-Nernst-Planck models of ion channels. Biophysical Journal. 2003;84(6):3594-3606.
  176. Noskov SY, Im W, Roux B. Ion permeation through the α-hemolysin channel: theoretical studies based on Brownian dynamics and Poisson-Nernst-Plank electrodiffusion theory. Biophysical Journal. 2004;87(4):2299-2309.
  177. Grabe M, Lecar H, Jan YN, Jan LY. A quantitative assessment of models for voltage-dependent gating of ion channels. Proceedings of the National Academy of Sciences of the United States of America. 2004;101(51):17640-17645.
  178. Roux B, Allen T, Berneche S, Im W. Theoretical and computational models of biological ion channels. Quarterly Reviews of Biophysics. 2004;37(01):15-103.
  179. Aguilella VM, Queralt-Martin M, Aguilella-Arzo M, Alcaraz A. Insights on the permeability of wide protein channels: measurement and interpretation of ion selectivity. Integrative Biology. 2011;3(3):159-172.
  180. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA. Electrostatics of nanosystems: application to microtubules and the ribosome. Proceedings of the National Academy of Sciences. 2001;98(18):10037-10041.
  181. Rocchia W, Alexov E, Honig B. Extending the applicability of the nonlinear Poisson-Boltzmann equation: Multiple dielectric constants and multivalent ions. The Journal of Physical Chemistry B. 2001;105(28):6507-6514.
  182. Coalson RD, Kurnikova MG. Poisson-Nernst-Planck theory approach to the calculation of current through biological ion channels. NanoBioscience. 2005;4(1):81-93.
  183. Moy G, Corry B, Kuyucak S, Chung SH. Tests of continuum theories as models of ion channels. I. Poisson- Boltzmann theory versus Brownian dynamics. Biophysical Journal. 2000;78(5):2349-2363.
  184. Kuyucak S, Bastug T. Physics of ion channels. Journal of Biological Physics. 2003;29(4):429-446.
  185. Gillespie D, Nonner W, Eisenberg RS. Density functional theory of charged, hard-sphere fluids. Physical Review E. 2003;68(3):031503.
  186. Roth R. Fundamental measure theory for hard-sphere mixtures: a review. Journal of Physics: Condensed Matter. 2010;22(6):063102.
  187. Simakov NA, Kurnikova MG. Soft wall ion channel in continuum representation with application to modeling ion currents in α-hemolysin. The Journal of Physical Chemistry B. 2010;114(46):15180-15190.
  188. Koch W, Holthausen MC. A Chemist's Guide to Density Functional Theory. Wiley-VCH; 2001. 313 p.
  189. Gonze X, Beuken JM, Caracas R, Detraux F, Fuchs M, Rignanese GM, Sindic L, Verstraete M, Zerah G, Jollet F et al. First-principles computation of material properties: the ABINIT software project. Computational Materials Science. 2002;25(3):478-492.
  190. O'boyle NM, Tenderholt AL, Langner KM. cclib:Alibrary for package-independent computational chemistry algorithms. Journal of Computational Chemistry. 2008;29(5):839-845.
  191. Froimowitz M. HyperChem: a software package for computational chemistry and molecular modeling. Biotechniques. 1993;14(6):1010-1013.
  192. Castro A, Appel H, Oliveira M, Rozzi CA, Andrade X, Lorenzen F, Marques M, Gross E., Rubio A. A tool for the application of time-dependent density functional theory. Physica Status Solidi (b). 2006;243(11):2465-2488.
  193. Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Physical Review. 1965;140:1133-1138.
  194. Blatov VA, Shevchenko AP, Peresypkina EB. Semi-empirical methods in quantum chemistry. Samara: Universe-group; 2005. 32 p. (in Russ.).
  195. Sadlej J. Semi-Empirical Methods of Quantum Chemistry: CNDO, INDO,NDDO. Polish Scientific Publ; 1985. 386 p.
  196. Pople JA, Beveridge DL. Approximate Molecular Orbital Theory. McGraw-Hill; 1970. 230 p.
  197. Aruldhas G. Quantum Mechanics. Prentice-Hall of India Pvt; 2008. 506 p.
  198. Krogh-Jespersen K. The Intermediate Neglect of Differential Overlap (Indo) Model Hamiltonian and Its Application to Certain Ground- and Excited- State Properties of Organic Molecules. New York: Graduate School of Arts and Science; 1976. 202 p.
  199. Anderson CP. A Modification of the Intermediate Neglect of Differential Overlap Procedure for Interpretation of Photoelectron Spectra and the Photoelectron Spectra of Some Halogen Containing Compounds. USA: University of Tennessee; 1973. 74 p.
  200. Bystrov VS, Paramonova EV, Bdikin IK, Bystrova AV, Pullar RC, Kholkin AL. Molecular modeling of the piezoelectric effect in the ferroelectric polymer poly (vinylidene fluoride, PVDF). Journal of Molecular Modeling. 2013:1-12.
  201. Stewart J. Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements. Journal of Molecular Modeling. 2007;13(12):1173-1213.
  202. Hostaš J, Řezáč J, Hobza P. On the performance of the semiempirical quantum mechanical PM6 and PM7 methods for noncovalent interactions. Chemical Physics Letters. 2013:161-166.
Содержание Оригинальная статья
Мат. биол. и биоинф.
2014;9(1):112-148
doi: 10.17537/2014.9.112
опубликована на рус. яз.

Аннотация (рус.)
Аннотация (англ.)
Полный текст (рус., pdf)
Список литературы

 

  Copyright ИМПБ РАН © 2005-2024