Русская версия English version   
Том 11   Выпуск 2   Год 2016
Быков А.А., Шавкунов К.С., Панюков В.В., Озолинь О.Н.

Белок бактериального нуклеоида Dps связывается со структурированными РНК

Математическая биология и биоинформатика. 2016;11(2):311-322.

doi: 10.17537/2016.11.311.

Список литературы

 

  1. Dorman C.J. Function of nucleoid-associated proteins in chromosome structuring and transcriptional regulation. J. Mol. Microbiol. Biotechnol. 2014;24:316–331. doi: 10.1159/000368850
  2. Azam T.A., Ishihama A. Twelve species of the nucleoid-associated protein from Escherichia coli. Sequence recognition specificity and DNA binding affinity. J. Biol. Chem. 1999;274:33105–33113. doi: 10.1074/jbc.274.46.33105
  3. Azam T.A., Iwata A., Nishimura A., Ueda S., Ishihama A. Growth phase-dependent variation in protein composition of the Escherichia coli nucleoid. J. Bacteriol. 1999;181:6361–6370.
  4. Azam T.A., Hiraga S., Ishihama A. Two types of localization of the DNA-binding proteins within the Escherichia coli nucleoid. Genes to Cells. 2000;5:613–626. doi: 10.1046/j.1365-2443.2000.00350.x
  5. Grainger D.C., Hurd D., Goldberg M.D., Busby S.J.W. Association of nucleoid proteins with coding and non-coding segments of the Escherichia coli genome. Nucleic Acids Research. 2006;34:4642–4652. doi: 10.1093/nar/gkl542
  6. Kahramanoglou C., Seshasayee A.S.N., Prieto A.I., Ibberson D., Schmidt S., Zimmermann J., Benes V., Fraser G.M., Luscombe N.M. Direct and indirect effects of H-NS and Fis on global gene expression control in Escherichia coli. Nucleic Acids Research. 2011;39:2073–2091. doi: 10.1093/nar/gkq934
  7. Vora T., Hottes A.K., Tavazoie S. Protein occupancy landscape of a bacterial genome. Molecular Cell. 2009;35:247–253. doi: 10.1016/j.molcel.2009.06.035
  8. Prieto A.I., Kahramanoglou C., Ali R.M., Fraser G.M., Seshasayee A.S.N., Luscombe N.M. Genomic analysis of DNA binding and gene regulation by homologous nucleoid-associated proteins IHF and HU in Escherichia coli K12. Nucleic Acids Research. 2012;40:3524–3537. doi: 10.1093/nar/gkr1236
  9. Dorman C.J. H-NS, the genome sentinel. Nat. Rev. Microbiol. 2007;5:157–161. doi: 10.1038/nrmicro1598
  10. Wang W., Li G-W., Chen C., Xie X.S., Zhuang X. Chromosome organization by a nucleoid-associated protein in live bacteria. Science. 2011;333:1445–1449. doi: 10.1126/science.1204697
  11. Almirón M., Link A.J., Furlong D., Kolter R. A novel DNA-binding protein with regulatory and protective roles in starved Escherichia coli. Genes Dev. 1992;6:2646–2654. doi: 10.1101/gad.6.12b.2646
  12. Grant R.A., Filman D.J., Finkel S.E., Kolter R., Hogle J.M. The crystal structure of Dps, a ferritin homolog that binds and protects DNA. Nat. Struct. Biol. 1998;5:294–303. doi: 10.1038/nsb0498-294
  13. Ceci P., Cellai S., Falvo E., Rivetti C., Rossi G.L., Chiancone E. DNA condensation and self-aggregation of Escherichia coli Dps are coupled phenomena related to the properties of the N-terminus. Nucleic Acids Research. 2004;32:5935–5944. doi: 10.1093/nar/gkh915
  14. Melekhov V.V., Shvyreva U.S., Timchenko A.A., Tutukina M.N., Preobrazhenskaya E.V., Burkova D.V., Artiukhov V.G., Ozoline O.N., Antipov S.S. Modes of Escherichia coli Dps interaction with DNA as revealed by atomic force microscopy. PLoS ONE. 2015;10. doi: 10.1371/journal.pone.0126504
  15. Ghatak P., K. Karmakar S., Kasetty D.C. Unveiling the role of Dps in the organization of mycobacterial nucleoid. PLoS ONE. 2011;6(1). doi: 10.1371/journal.pone.0016019
  16. Sambrook J., Fritsch E.F., Maniatis. T. Molecular cloning: a laboratory manual, 2nd ed. New York: Cold Spring Harbor Laboratory Press; 1989.
  17. Pokusaeva V.O., Antipov S.S., Shyreva U.S., Tutukina M.N., Ozolin’ O.N. Overexpression, isolation and purification of functionally active bacterioferritin Dps E. coli. Sorption and chromatographic processes. 2012;12(6):1011–1017 (in Russ.).
  18. Oppermann M. Anion exchange chromatography for purification of monoclonal IgG antibodies. In: Monoclonal antibodies. Ed. Peters J.P., Baumgarten H. Heidelberg: Springer; 1992. P. 271–275.
  19. Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., Marth G., Abecasis G., Durbin R. The sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25(16):2078–2079. doi: 10.1093/bioinformatics/btp352
  20. Marcel M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. Journal. 2011;17(1):10–12.
  21. FastX-Toolkit. http://www.hannolab.cshl.edu/fastx_toolkit (accessed 23.11.16).
  22. Panyukov V.V., Kiselev S.S., Shavkunov K.S., Masulis I.S., Ozoline O.N. Mixed promoter islands as genomic regions with specific structural and functional properties. Mathem. Biol. Bioinf. 2013;8:t12–t26. doi: 10.17537/2013.8.t12 
  23. Statistical Algorithms Description Document. http://media.affymetrix.com/support/technical/whitepapers/sadd_whitepaper.pdf (accessed 23.11.16).
  24. Carver T., Thomson N., Bleasby A., Berriman M., Parkhill J. DNAPlotter: circular and linear interactive genome visualization. Bioinformatics. 2009;25(1):119–120. doi: 10.1093/bioinformatics/btn578
  25. Aleksic J., Carl S., Fryel M. Beyond library size: a field guide to NGS normalization. bioRxiv. 2014. doi: 10.1101/006403
  26. Bae W., Xia B., Inouye M., Severinov K. Escherichia coli CspA-family RNA chaperones are transcription antiterminators. Proc. Natl. Acad. Sci. 2000;9714:7784–7789. doi: 10.1073/pnas.97.14.7784
  27. Shavkunov K.S., Masulis I.S., Tutukina M.N., Deev A.A., Ozoline O.N. Gains and unexpected lessons from genome-scale promoter mapping. Nucleic Acids Res. 2009;37(15):4919–4931. doi: 10.1093/nar/gkp490
  28. Mathews D.H. RNA secondary structure analysis using RNAstructure. Current Protocols in Bioinformatics. 2014;46. doi: 10.1002/0471250953.bi1206s46
  29. Wassarman K.M., Repoila F., Rosenow C., Storz G., Gottesman S. Identification of novel small RNAs using comparative genomics and microarrays. Genes Dev. 2001;15(13):1637–1651. doi: 10.1101/gad.901001
  30. Vogel J., Bartels V., Tang T.H., Churakov G., Slagter-Jäger J.G., Hüttenhofer A., Wagner E.G. RNomics in Escherichia coli detects new sRNA species and indicates parallel transcriptional output in bacteria. Nucleic Acids Res. 2003;31(22):6435–6443. doi: 10.1093/nar/gkg867
  31. Argaman L., Hershberg R., Vogel J., Bejerano G., Wagner E.G., Margalit H., Altuvia S. Novel small RNA-encoding genes in the intergenic regions of Escherichia coli. Curr. Biol. 2001;11(12):941–950. doi: 10.1016/S0960-9822(01)00270-6
  32. Frenkiel-Krispin D., Levin-Zaidman S., Shimoni E., Wolf S.G., Wachtel E.J., Arad T. Regulated phase transitions of bacterial chromatin: a non-enzymatic pathway for generic DNA protection. EMBO. 2001;20:1184–1191. doi: 10.1093/emboj/20.5.1184
  33. Zhao G., Ceci P., Ilari A., Giangiacomo L., Laue T., Chiancone E., Emilia C., Chasteen D.N. Iron and hydrogen peroxide detoxification properties of DNA-binding protein from starved cells. A ferritin-like DNA-binding protein of Escherichia coli. J. Biol. Chem. 2002;277:27689–27696. doi: 10.1074/jbc.M202094200
Содержание Оригинальная статья
Мат. биол. и биоинф.
2016;11(2):311-322
doi: 10.17537/2016.11.311
опубликована на рус. яз.

Аннотация (рус.)
Аннотация (англ.)
Полный текст (рус., pdf)
Список литературы Перевод на англ. яз.
Мат. биол. и биоинф.
2017;12(S):t1-t11
doi: 10.17537/2017.12.t1

Полный текст (англ., pdf)

 

  Copyright ИМПБ РАН © 2005-2022