Русская версия English version   
Том 11   Выпуск 2   Год 2016
Никитин О.Ю., Лукьянова О.А., Кунин А.С.

Анализ свойств пластичности и адаптивности в сети нейронов с гомеостазом

Математическая биология и биоинформатика. 2016;11(2):351-366.

doi: 10.17537/2016.11.351.

Список литературы

 

  1. McCulloch W.S., Pitts W. A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics. 1943;5(4):115-133. doi: 10.1007/BF02478259
  2. Izhikevich E.M. Simple model of spiking neurons. IEEE Trans Neural Netw. 2003;14(6):1569-1572. doi: 10.1109/TNN.2003.820440
  3. FitzHugh R. Mathematical models of threshold phenomena in the nerve membrane. Bull. Math. Biophysics. 1955;17:257-278. doi: 10.1007/BF02477753
  4. Hodgkin A.L., Huxley A.F. A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology. 1952;117(4):500-544. doi: 10.1113/jphysiol.1952.sp004764
  5. O’Leary T., Williams A.H., Franci A., Marder E. Cell types, network homeostasis and pathological compensation from a biologically plausible ion channel expression model. Neuron. 2014;82(4):809-821. doi: 10.1016/j.neuron.2014.04.002
  6. Proskura A.L., Malachin I.A., Zapara T.A., Turnaev I.I., Suslov V.V., Ratuschnyak A.S. Intermolecular interactions in neuronal functional systems. Vavilov Journal of Genetics and Breeding. 2013;17(4/1):620-628 (in Russ.).
  7. Kotaleski J., Blackwell K. Modelling the molecular mechanisms of synaptic plasticity using systems biology approaches. Nat. Rev. Neurosci. 2010;11(4):239-251. doi: 10.1038/nrn2807
  8. Mnih V., Kavukcuoglu K., Silver D., Graves A., Antonoglou I., Wierstra D., Riedmiller M. Playing Atari with Deep Reinforcement Learning. arXiv. http://arxiv.org/pdf/1312.5602v1.pdf (accessed 31 July 2016).
  9. Moren J., Igarashi J., Yoshimoto J. A full rat-scale model of the basal ganglia and thalamocortical network to reproduce Parkinsonian tremor. BMC Neuroscience. 2015;16(1):64. doi: 10.1186/1471-2202-16-S1-P64
  10. Nikitin O.Yu., Lukyanova O.A. The role of cellular neural homeostasis in agent learning and adaptation. Neuroinformatics. 2016;9(1):1-26 (in Russ.).
  11. Fujikawa D.G. The Role of Excitotoxic Programmed Necrosis in Acute Brain Injury. Computational and Structural Biotechnology Journal. 2015;13:212-221. doi: 10.1016/j.csbj.2015.03.004
  12. Grechenko T.N. Conditioned inhibition of action potential generation in isolated Helix pomatia neurons. Neurosci. Behav. Physiol. 1990;20(5):452-459. doi: 10.1007/BF01192350
  13. Zapara G. A., Ratushnyak A. S., Shtark M. B. Local changes in transmembrane ionic currents during plastic reorganizations of electrogenesis of isolated neurons of the pond snail. Neuroscience and Behavioral Physiology. 1989;19(3):224-229. doi: 10.1007/BF01188552
  14. Tsitolovskii L.E. Uspekhi fiziologicheskikh nauk (Advances of Physiological Sciences). 1986;17(2):83-103 (in Russ.).
  15. Lin Y., Skeberdis V.A., Francesconi A., Bennett M.V., Zukin R.S. Postsynaptic density protein-95 regulates NMDA channel gating and surface expression. J. Neurosci. 2004;24(45):10138-10148. doi: 10.1523/JNEUROSCI.3159-04.2004
  16. Saakian Iu.Z., Rossokhin A.V., Tsitolovskii L.E. Biofizika (Biophysics). 1993;38(3):471-477 (in Russ.).
  17. Lakhman K.V. Neironnye seti, osnovannye na gomeostaticheskikh neironakh: samoorganizatsiia i tselenapravlennoe povedenie (Neural networks based on the homeostatic neurons: self-organization and goal-directed behavior). 2009. http://geektimes.ru/post/101926/ (accessed 31 July 2016) (in Russ.).
  18. Dong X.X., Wang Y., Qin Z.H. Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol. Sin. 2009;30(4):379-387. doi: 10.1038/aps.2009.24
  19. Keller D.X., Franks K.M., Bartol T.M. Jr., Sejnowski T.J. Calmodulin activation by calcium transients in the postsynaptic density of dendritic spines. PLoS One. 2008;3(4):2045. doi: 10.1371/journal.pone.0002045
  20. Blanton M.G., Kriegstein A.R. Spontaneous action potentials, activity, and synaptic currents in the embryonic turtle cerebral cortex. Journal of Neuroscience. 1991;11(12):3907-3923.
  21. Raman I.M., Bean B.P. Ionic currents underlying spontaneous action potentials in isolated cerebellar Purkinje neurons. J. Neurosci. 1999;19:1663-1674.
  22. Guinamard R., Delpy E., Denizot J.P., Jacquin T.D. Synapse formation and spontaneous activity in rat brainstem neurons in primary culture. Developmental Brain Research. 1999;117(1):31-38. doi: 10.1016/S0165-3806(99)00094-2
  23. Hebb D.O. The Organization of Behavior. New York: Wiley & Sons, 1949. 378 p.
  24. Gerstner W., Kempter R., van Hemmen J.L., Wagner H. A neuronal learning rule for sub-millisecond temporal coding. Nature. 1996;386(6595):76-78. doi: 10.1038/383076a0
  25. Degterev A.A., Burtsev M.S. Simulation of spontaneous activity in neuronal cultures with long-term plasticity. Mathematical Biology and Bioinformatics. 2015;10(1):234-244. doi: 10.17537/2015.10.234
  26. Henley J.M., Wilkinson K.A. AMPA receptor trafficking and the mechanisms underlying synaptic plasticity and cognitive aging. Dialogues Clin. Neurosci. 2013;15(1):11-27.
  27. Hanus C., Kochen L., Tom Dieck S., Racine V., Sibarita J.-B., Schuman E. M., Ehlers M. D. Synaptic control of secretory trafficking in dendrites. Cell Reports. 2014;7(6):1771-1778. doi: 10.1016/j.celrep.2014.05.028
Содержание Оригинальная статья
Мат. биол. и биоинф.
2016;11(2):351-366
doi: 10.17537/2016.11.351
опубликована на рус. яз.

Аннотация (рус.)
Аннотация (англ.)
Полный текст (рус., pdf)
Список литературы

 

  Copyright ИМПБ РАН © 2005-2024