Русская версия English version   
Том 11   Выпуск 2   Год 2016
Глазунова О.А., Шавкунов К.С., Тутукина М.Н., Панюков В.В., Озолинь О.Н.

Интеграция чужеродного генетического материала провоцирует локальный мутагенез в геноме бактерии-реципиента

Математическая биология и биоинформатика. 2016;11(2):394-405.

doi: 10.17537/2016.11.394.

Список литературы

 

  1. Ochman H., Davalos L.M. The nature and dynamics of bacterial genomes. Science. 2006;311:1730-1733. doi: 10.1126/science.1119966
  2. Cohan F.M., Koeppel A.F. The origins of ecological diversity in prokaryotes. Curr. Biol. 2008;18:R1024-R1034. doi: 10.1016/j.cub.2008.09.014
  3. Wybouw N., Pauchet Y., Heckel D.G., Van Leeuwen T. Horizontal gene transfer contributes to the evolution of Arthropod Herbivory. Genome Biol. Evol. 2016;8:1785-1801. doi: 10.1093/gbe/evw119
  4. Levin B.R. Frequency-dependent selection in bacterial populations. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 1988;319:459-472. doi: 10.1098/rstb.1988.0059
  5. Domingues S., Harms K., Fricke W.F., Johnsen P.J., da Silva G.J., Nielsen K.M. Natural transformation facilitates transfer of transposons, integrons and gene cassettes between bacterial species. PLoS Pathog. 2012;8. Article No. e1002837. doi: 10.1371/journal.ppat.1002837
  6. Ochman H., Lawrence J.G., Groisman E.A. Lateral gene transfer and the nature of bacterial innovation. Nature. 2000;405:299-304. doi: 10.1038/35012500
  7. Studier F.W., Daegelen P., Lenski R.E., Maslov S., Kim J.F. Understanding the differences between genome sequences of Escherichia coli B strains REL606 and BL21(DE3) and comparison of the E. coli B and K-12 genomes. J. Mol. Biol. 2009;394:653-680. doi: 10.1016/j.jmb.2009.09.021
  8. Nakamura Y., Itoh T., Matsuda H., Gojobori T. Biased biological functions of horizontally transferred genes in prokaryotic genomes. Nat. Genet. 2004;36:760-766. doi: 10.1038/ng1381
  9. McDaniel L.D., Young E., Delaney J., Ruhnau F., Ritchie K.B., Paul J.H. High frequency of horizontal gene transfer in the oceans. Science. 2010;330:50. doi: 10.1126/science.1192243
  10. Gogarten J.P., Doolittle W.F., Lawrence J.G. Prokaryotic evolution in light of gene transfer. Mol. Biol. Evol. 2002;19:2226-2238. doi: 10.1093/oxfordjournals.molbev.a004046
  11. Huang Q., Cheng X., Cheung M.K., Kiselev S.S., Ozoline O.N., Kwan H.S. Highdensity transcriptional initiation signals underline genomic islands in bacteria. PLoS ONE. 2012;7. Article No. e33759. doi: 10.1371/journal.pone.0033759
  12. Shavkunov K.S., Masulis I.S., Tutukina M.N., Deev A.A., Ozoline O.N. Gains and unexpected lessons in genome-scale promoter mapping. Nucl. Acids Res. 2009;37:4919-4931. doi: 10.1093/nar/gkp490
  13. Panyukov V.V., Ozoline O.N. Promoters of Escherichia coli versus promoter islands: function and structure comparison. PLoS ONE. 2013;8. Article No. e62601. doi: 10.1371/journal.pone.0062601
  14. Purtov Y.A., Glazunova O.A., Antipov S.S., Pokusaeva V.O., Fesenko E.E., Preobrazhenskaya E.V., Shavkunov K.S., Tutukina M.N., Lukyanov V.I., Ozoline O.N. Promoter Islands as a platform for interaction with nucleoid proteins and transcription factors. J. Bioinform. Comput. Biol. 2014;12:1441006. doi: 10.1142/S0219720014410066
  15. Glazunova O.A., Kiselev S.S., Shavkunov K.S., Bykov A.A., Panyukov V.V., Ozoline O.N. Promoter islands in the genome of E. coli: comparative analysis against AT-rich sequences. Math. Biol. Bioinform. 2015;10:t29-t38. doi: 10.17537/2015.10.t29
  16. Panyukov V.V., Kiselev S.S., Shavkunov K.S., Masulis I.S., Ozoline O.N. Mixed promoter islands as genomic regions with specific structural and functional properties. Math. Biol. Bioinform. 2013;8:t12-t26. doi: 10.17537/2013.8.t12
  17. Reppas N.B., Wade J.T., Church G.M., Struhl K. The transition between transcriptional initiation and elongation in E. coli is highly variable and often rate limiting. Mol. Cell. 2006;24:747-757. doi: 10.1016/j.molcel.2006.10.030
  18. Herring C.D., Raffaelle M., Allen T.E., Kanin E.I., Landick R., Ansari A.Z., Palsson B.O. Immobilization of Escherichia coli RNA polymerase and location of binding sites by use of chromatin immunoprecipitation and microarrays. J. Bacteriol. 2005;178:6166-6174. doi: 10.1128/JB.187.17.6166-6174.2005
  19. Dornenburg J.E., DeVita A.M., Palumbo M.J., Wade J.T. Widespread antisense transcription in Escherichia coli. mBio. 2010;1. Article No. e00024-10. doi: 10.1128/mBio.00024-10
  20. Kahramanoglou C., Seshasayee A.S., Prieto A.I., Ibberson D., Schmidt S., Zimmermann J., Benes V., Fraser G.M., Luscombe N.M. Direct and indirect effects of H-NS and Fis on global gene expression control in Escherichia coli. Nucleic Acids Res. 2011;39:2073-91. doi: 10.1093/nar/gkq934
  21. Lucchini S., Rowley G., Goldberg M.D., Hurd D., Harrison M., Hinton J.C. H-NS mediates the silencing of laterally acquired genes in bacteria. PLoS Pathog. 2006;2. Article No. e81. doi: 10.1371/journal.ppat.0020081
  22. Dorman C.J. H-NS, the genome sentinel. Nat. Rev. Microbiol. 2007;5:157-161. doi: 10.1038/nrmicro1598
  23. Langille M.G., Brinkman F.S. IslandViewer: an integrated interface for computational identification and visualization of genomic islands. Bioinformatics. 2009;25:664-665. doi: 10.1093/bioinformatics/btp030
  24. Lawrence J.G., Ochman H. Molecular archaeology of the Escherichia coli genome. Proc. Natl. Acad. Sci. USA. 1998;95:9413-9417. doi: 10.1073/pnas.95.16.9413
  25. Price M.N., Dehal P.S., Arkin A.P. Horizontal gene transfer and the evolution of transcriptional regulation in Escherichia coli. Genome Biol. 2008;9. Article No. R4. doi: 10.1186/gb-2008-9-1-r4
  26. Lee D.J., Bingle L.E., Heurlier K., Pallen M.J., Penn C.W., Busby S.J., Hobman J.L. Gene doctoring: a method for recombineering in laboratory and pathogenic Escherichia coli strains. BMC Microbiol. 2009;9:252. doi: 10.1186/1471-2180-9-252
  27. E. coli Gene Expression Database (GenExpDB). http://genexpdb.ou.edu/main/ (accessed November 26, 2016).
  28. Sangurdekar D.P., Srienc F., Khodursky A.B. A classification based framework for quantitative description of large-scale microarray data. Genome Biol. 2006;7. Article No. R32. doi: 10.1186/gb-2006-7-4-r32
  29. Afgan E., Baker D., van den Beek M., Blankenberg D., Bouvier D., Cech M., Chilton J., Clements D., Coraor N., Eberhard C., Gruning B., Guerler A., Hillman-Jackson J., Von Kuster G., Rasche E., Soranzo N., Turaga N., Taylor J., Nekrutenko A., Goecks J. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucl. Acids Research. 2016;44:W3-W10. doi: 10.1093/nar/gkw343
  30. Matcher. http://www.mathcell.ru/DnaRnaTools/Matcher.zip (accessed November 2016).
  31. Ozoline O.N., Deev A.A. Predicting antisense RNAs in the genomes of Escherichia coli and Salmonella typhimurium using promoter-search algorithm PlatProm. J. Bioinform. Comput. Biol. 2006;4:443-454. doi: 10.1142/S0219720006001916
  32. Kiselev S.S., Ozoline O.N. Structure-specific modules as indicators of promoter DNA in bacterial genomes. Math. Biol. Bioinform. 2011;6:t1-t13. doi: 10.17537/2011.6.t1
  33. Barrick J.E., Yu D.S., Yoon S.H., Jeong H., Oh T.K., Schneider D., Lenski R.E., Kim J.F. Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature. 2009;461:1243-1247. doi: 10.1038/nature08480
  34. Barrick J.E., Lenski R.E. Genome-wide mutational diversity in an evolving population of Escherichia coli. Cold Spring Harb. Symp. Quant. Biol. 2009;74:119-29. doi: 10.1101/sqb.2009.74.018
Содержание Оригинальная статья
Мат. биол. и биоинф.
2016;11(2):394-405
doi: 10.17537/2016.11.394
опубликована на рус. яз.

Аннотация (рус.)
Аннотация (англ.)
Полный текст (рус., pdf)
Список литературы Перевод на англ. яз.
Мат. биол. и биоинф.
2017;12(S):t12-t22
doi: 10.17537/2017.12.t12

Полный текст (англ., pdf)

 

  Copyright ИМПБ РАН © 2005-2022