Русская версия English version   
Том 12   Выпуск 1   Год 2017
Коршунова Алевтина Николаевна, Лахно Виктор Дмитриевич

Особенности движения полярона в молекулярных полинуклеотидных цепочках конечной длины при наличии в цепочке локализованных возбуждений

Математическая биология и биоинформатика. 2017;12(1):204-223.

doi: 10.17537/2017.12.204.

Список литературы

 

  1. Shinwari M.W., Deen M.J., Starikov E.B., Cuniberti G. Electrical Conductance in Biological Molecules. Advanced Functional Materials. 2010;20(12):1865-1883. doi: 10.1002/adfm.200902066
  2. Starikov E.B. Electron–phonon coupling in DNA: a systematic study. Philosophical Magazine. 2005;85:3435-3462. doi: 10.1080/14786430500157110
  3. Zamora-Sillero E., Shapovalov A.V., Esteban F.J. Formation, control, and dynamics of N localized structures in the Peyrard-Bishop model. Phys. Rev. E. 2007;76:066603. doi: 10.1103/PhysRevE.76.066603
  4. Maniadis P., Kalosakas G., Rasmussen K.O., Bishop A.R. ac conductivity in a DNA charge transport model. Phys. Rev. E. 2005;72:021912. doi: 10.1103/PhysRevE.72.021912
  5. Komineas S., Kalosakas G., Bishop A.R. Effects of intrinsic base-pair fluctuations on charge transport in DNA. Phys. Rev. E. 2002;65:061905. doi: 10.1103/PhysRevE.65.061905
  6. Peyrard M., Cuesta-Lopez S., James G. Modelling DNA at the mesoscale: a challenge for nonlinear science? Nonlinearity. 2008;21:91-100. doi: 10.1088/0951-7715/21/6/T02
  7. Shigaev A.S., Ponomarev O.A., Lakhno V.D. Theoretical and experimental investigations of DNA open states. Mathematical Biology and Bioinformatics. 2013;8(2):553-664 (in Russ.). doi: 10.17537/2013.8.553
  8. Lakhno V.D. DNA nanobioelectronics. Int. Quantum. Chem. 2008;108:1970-1981.
  9. Nanobioelectronics - for Electronics, Biology and Medicine. Eds. Offenhausser A. Rinald R. N. Y.: Springer; 2009.
  10. Taniguchi M., Kawai T. DNA electronics. Physica E. 2006;33:1-12. doi: 10.1016/j.physe.2006.01.005
  11. Eudres R.G., Cox D.L., Singh R.R.P. Colloquium: The quest for high-conductance DNA. Rev. Mod. Phys. 2004;76:195-214. doi: 10.1103/RevModPhys.76.195
  12. Porath D., Cuniberti G., Di Felice R. Charge transport in DNA-based devices. Top. Curr. Chem. 2004;237:183-227. doi: 10.1007/b94477
  13. Lakhno V.D. Soliton-like Solutions and Electron Transfer in DNA. J. Biol. Phys. 2000;26:133.
  14. Fialko N.S., Lakhno V.D. Nonlinear dynamics of excitations in DNA. Phys. Lett. A. 2000;278:108. doi: 10.1016/S0375-9601(00)00755-6
  15. Conwell E.M., Rakhmanova S.V. Polarons in DNA. Proc. Natl. Acad. Sci. 2000;97:4556. doi: 10.1073/pnas.050074497
  16. Lakhno V.D., Korshunova A.N. Formation of stationary electronic states in finite homogeneous molecular chains. Mathematical Biology and Bioinformatics. 2010;5:1-29. doi: 10.17537/2010.5.1
  17. Lakhno V.D., Fialko N.S. Hole mobility in a homogeneous nucleotide chain. JETP Letters. 2003;78:336-338. doi: 10.1134/1.1625737
  18. Berashevich J.A., Chakraborty T. Thermodynamics of G.A mispairs in DNA: Continuum electrostatic model. J. Chem. Phys. 2009;130:015101. doi: 10.1063/1.3050107
  19. Korshunova A.N., Lakhno V.D. A new type of localized fast moving electronic excitations in molecular chains. Physica E. 2014;60:206. doi: 10.1016/j.physe.2014.02.025
  20. Lakhno V.D., Korshunova A.N. Electron motion in a Holstein molecular chain in an electric field. Eur. Phys. J. B. 2011;79:147. doi: 10.1140/epjb/e2010-10565-2
  21. Diaz E., Lima R.P.A., Dominguez-Adame F. Bloch-like oscillations in the Peyrard-Bishop-Holstein model. Phys. Rev. B. 2008;78:134303. doi: 10.1103/PhysRevB.78.134303
  22. Rakhmanova S.V., Conwell E.M. Polaron Motion in DNA. J. Phys. Chem. B. 2001;105:2056. doi: 10.1021/jp0036285
  23. Berashevich J.A., Bookatz A.D., Chakraborty T. The electric field effect and conduction in the Peyrard-Bishop-Holstein model. J. Phys.: Condens. Matter. 2008;20:035207. doi: 10.1088/0953-8984/20/03/035207
  24. Lakhno V.D., Chetverikov A.P. Excitation of bubbles and breathers in DNA and their interaction with the charge carriers. Mathematical Biology and Bioinformatics. 2014;9(1):4-19 (in Russ.). doi: 10.17537/2014.9.4
  25. Chetverikov A.P., Ebeling W., Lakhno V.D., Shigaev A.S., Velarde M.G. On the possibility that local mechanical forcing permits directionally-controlled long-range electron transfer along DNA-like molecular wires with no need of an external electric field - Mechanical control of electrons. Eur. Phys. J. B. 2016;89:101. doi: 10.1140/epjb/e2016-60949-1
  26. Hennig D., Starikov E. B., Archilla J. F. R., Palmero F. Charge Transport in Poly(dG)–Poly(dC) and Poly(dA)–Poly(dT) DNA Polymers. Journal of Biological Physics. 2004;30(3):227. doi: 10.1023/B:JOBP.0000046721.92623.a9
  27. Starikov E. B., Lewis J. P., Sankey O. F. Base sequence effects on charge carrier generation in DNA: a theoretical study. International Journal of Modern Physics B. 2005;19(29):4331-4357. doi: 10.1142/S0217979205032802
  28. Korshunova A.N., Lakhno V.D. The peculiarities of polaron motion in the molecular polynucleotide chains of finite length. Mathematical Biology and Bioinformatics. 2016;11(2):141-158 (in Russ.). doi: 10.17537/2016.11.141
  29. Peyrard M., Bishop A.R. Statistical mechanics of a nonlinear model for DNA denaturation. Phys. Rev. Lett. 1989;62:2755-2758. doi: 10.1103/PhysRevLett.62.2755
  30. Dauxois T., Peyrard M., Bishop A.R. Dynamics and thermodynamics of a nonlinear model for DNA denaturation. Phys. Rev. E. 1993;47:684. doi: 10.1103/PhysRevE.47.684
  31. Peyrard M. Using DNA to probe nonlinear localized excitations? Europhys. Lett. 1998;44:271-277. doi: 10.1209/epl/i1998-00469-9
  32. Choi C.H., Kalosakas G., Rasmussen K.O., Hiromura M., Bishop A.R., Usheva A. DNA dynamically directs its own transcription initiation. Nucleic Acids Res. 2004;32(4):1584-1590. doi: 10.1093/nar/gkh335
  33. Holstein T. Studies of polaron motion: Part I. The molecular-crystal model. Annals of Phys. 1959;8:325-342. doi: 10.1016/0003-4916(59)90002-8
  34. Holstein T. Studies of polaron motion: Part II. The “small” polaron. Annals of Phys. 1959;8:343-389. doi: 10.1016/0003-4916(59)90003-X
  35. Shigaev A.S., Ponomarev O.A., Lakhno V.D. A new approach to microscopic modeling of a hole transfer in heteropolymer DNA. Chemical Physics Letters. 2011;513:276-279. doi: 10.1016/j.cplett.2011.07.080
Содержание Оригинальная статья
Мат. биол. и биоинф.
2017;12(1):204-223
doi: 10.17537/2017.12.204
опубликована на рус. яз.

Аннотация (рус.)
Аннотация (англ.)
Полный текст (рус., pdf)
Список литературы
Доп. материалы

 

  Copyright ИМПБ РАН © 2005-2024