Русская версия English version   
Том 14   Выпуск 1   Год 2019
Ефремов Ярослав Рейнгольдович1,2, Проскурина Анастасия Сергеевна1, Поттер Екатерина Анатольевна1, Долгова Евгения Владимировна1, Ефремова Оксана Владимировна2, Колчанов Николай Александрович1, Богачев Сергей Станиславович1

Инь и янь плюрипотентности: результаты анализа генов, демонстрирующих повышенную экспрессию в инициирующих опухолевых клетках асцитной карциномы Кребс-2

Математическая биология и биоинформатика. 2019;14(1):160-187.

doi: 10.17537/2019.14.160.

Список литературы

 

  1. Yelloly J. A case of tumour in the brain, with remarks on the propagation of nervous influence. Med. Chir. Trans. 1809;1:183–223.
  2. Creighton C. Three cases of Tumour arising from Skin-glands in the Dog, showing the connection between disorder of the glandular structure and function, and cancerous invasion of the connective tissue. Med. Chir. Trans. 1882;65:53–70.3. doi: 10.1177/095952878206500108
  3. Carrel A., Ebeling A.H. The fundamental properties of the fibroblast and the macrophage: III. The malignant fibroblast of sarcoma 10 of the Crocker foundation. J. Exp. Med. 1928;48:105–123.
  4. Hanahan D., Weinberg R.A. The hallmarks of cancer. Cell. 2000;100:57–70. doi: 10.1016/S0092-8674(00)81683-9
  5. Hanahan D., Weinberg R.A. Hallmarks of cancer: The next generation. Cell. 2011;144:646–674. doi: 10.1016/j.cell.2011.02.013
  6. Fouad Y.A., Aanei C. Revisiting the hallmarks of cancer. Am. J. Cancer Res. 2017;7:1016–1036.
  7. Hoshino T., Wilson C.B. Review of basic concepts of cell kinetics as applied to brain tumors. J. Neurosurg. 1975;42:123–131.
  8. Lavrovsky V.A., Guvakova M.A., Lavrovsky Y.V. High frequency of tumour cell reversion to non-tumorigenic phenotype. Eur. J. Cancer. 1992;28:17–21.
  9. Mattox D.E., Von Hoff D.D. Culture of human head and neck cancer stem cells using soft agar. Arch. Otolaryngol. 1980;106:672–674.
  10. Reya T., Morrison S.J., Clarke M.F., Weissman I.L. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105–111. doi: 10.1038/35102167
  11. Potter E.A., Dolgova E.V, Proskurina A.S., Minkevich A.M., Efremov Y.R., Taranov O.S., Omigov V. V, Nikolin V.P., Popova N.A., Bayborodin S.I. et al. A strategy to eradicate well-developed Krebs-2 ascites in mice. Oncotarget. 2016;7:11580–11594. doi: 10.18632/oncotarget.7311
  12. Dolgova E.V., Alyamkina E.A., Efremov Y.R., Nikolin V.P., Popova N.A., Tyrinova T. V., Kozel A. V., Minkevich A.M., Andrushkevich O.M., Zavyalov E.L. et al. Identification of cancer stem cells and a strategy for their elimination. Cancer Biol. Ther. 2014;15:1378–1394.
  13. Dolgova E.V., Proskurina A.S., Nikolin V.P., Popova N.A., Alyamkina E.A., Orishchenko K.E., Rogachev V.A., Efremov Y.R., Dubatolova T.D., Prokopenko A.V. et al. “Delayed death” phenomenon: A synergistic action of cyclophosphamide and exogenous DNA. Gene. 2012;495:134–145. doi: 10.1016/j.gene.2011.12.032
  14. Dolgova E.V., Efremov Y.R., Orishchenko K.E., Andrushkevich O.M., Alyamkina E.A., Proskurina A.S., Bayborodin S.I., Nikolin V.P., Popova N.A., Chernykh E.R. et al. Delivery and processing of exogenous double-stranded DNA in mouse CD34+ hematopoietic progenitor cells and their cell cycle changes upon combined treatment with cyclophosphamide and double-stranded DNA. Gene. 2013;528:74–83. doi: 10.1016/j.gene.2013.06.058
  15. Dolgova E.V., Shevela E.Y., Tyrinova T.V., Minkevich A.M., Proskurina A.S., Potter E.A., Orishchenko K.E., Zavjalov E.L., Bayborodin S.I., Nikolin V.P. et al. Nonadherent spheres with multiple myeloma surface markers contain cells that contribute to sphere formation and are capable of internalizing extracellular double-stranded DNA. Clin. Lymphoma, Myeloma Leuk. 2016;16:563–576. doi: 10.1016/j.clml.2016.06.014
  16. Potter E., Dolgova E., Proskurina A., Efremov Y., Minkevich A., Rozanov A., Peltek S., Nikolin V., Popova N., Seledtsov I. et al. Gene expression profiling of tumor-initiating stem cells from mouse Krebs-2 carcinoma using a novel marker of poorly differentiated cells. Oncotarget. 2017;8:9425–9441. doi: 10.18632/oncotarget.14116
  17. Hoelzinger D.B., Demuth T., Berens M.E. Autocrine factors that sustain glioma invasion and paracrine biology in the brain microenvironment. J. Natl. Cancer Inst. 2007;99:1583–1593. doi: 10.1093/jnci/djm187
  18. Mallard B.W., Tiralongo J. Cancer stem cell marker glycosylation: Nature, function and significance. Glycoconj. J. 2017;34:441–452.
  19. Kong C.S., Cao H., Kwok S., Nguyen C.M., Jordan R.C., Beaudry V.G., Attardi L.D., Le Q.-T. Loss of the p53/p63 target PERP is an early event in oral carcinogenesis and correlates with higher rate of local relapse. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2013;115:95–103. doi: 10.1016/j.oooo.2012.10.017
  20. Marques M.R., Horner J.S., Ihrie R.A., Bronson R.T., Attardi L.D. Mice lacking the p53/p63 target gene Perp are resistant to papilloma development. Cancer Res. 2005;65:6551–6556. doi: 10.1158/0008-5472.CAN-05-0366
  21. Vogiatzi F., Brandt D.T., Schneikert J., Fuchs J., Grikscheit K., Wanzel M., Pavlakis E., Charles J.P., Timofeev O., Nist A. et al., Mutant p53 promotes tumor progression and metastasis by the endoplasmic reticulum UDPase ENTPD5. Proc. Natl. Acad. Sci. U.S.A. 2016;113. P. E8433–E8442. doi: 10.1073/pnas.1612711114
  22. Buechler C., Bared S.M., Aslanidis C., Ritter M., Drobnik W., Schmitz G. Molecular and functional interaction of the ATP-binding cassette transporter A1 with Fas-associated death domain protein. J. Biol. Chem. 2002;277:41307–41310.
  23. Liu T., Wang X., Bai Y., Liao H., Qiu S., Yang Y., Yan X., Chen J., Guo H., Zhang S. The HIF-2alpha dependent induction of PAP and adenosine synthesis regulates glioblastoma stem cell function through the A2B adenosine receptor. Int. J. Biochem. Cell Biol. 2014;49:8–16.
  24. Granneman J.G., Li P., Zhu Z., Lu Y. Metabolic and cellular plasticity in white adipose tissue I: effects of β 3 -adrenergic receptor activation. Am. J. Physiol. Metab. 2005;289:E608–E616. doi: 10.1152/ajpendo.00009.2005
  25. Meng E., Mitra A., Tripathi K., Finan M.A., Scalici J., McClellan S., Da Silva L.M., Reed E., Shevde L.A., Palle K., Rocconi R.P. ALDH1A1 maintains ovarian cancer stem cell-like properties by altered regulation of cell cycle checkpoint and DNA repair network signaling. PLoS One. 2014;9:e107142. doi: 10.1371/journal.pone.0107142
  26. Deliri H., Meller N., Kadakkal A., Malhotra R., Brewster J., Doran A.C., Pei H., Oldham S.N., Skaflen M.D., Garmey J.C., McNamara C.A. Increased 12/15-lipoxygenase enhances cell growth, fibronectin deposition, and neointimal formation in response to carotid injury. Arterioscler. Thromb. Vasc. Biol. 2011;31:110–116.
  27. Mizuno S., Hanamura I., Ota A., Karnan S., Narita T., Ri M., Mizutani M., Goto M., Gotou M., Tsunekawa N. et al. Overexpression of salivary-type amylase reduces the sensitivity to bortezomib in multiple myeloma cells. Int. J. Hematol. 2015;102:569–578.
  28. Yin J., Fu W., Dai L., Jiang Z., Liao H., Chen W., Pan L., Zhao J. ANKRD22 promotes progression of non-small cell lung cancer through transcriptional up-regulation of E2F1. Sci. Rep. 2017;7:4430.
  29. Sousa M.S.A., Latini F.R.M., Monteiro H.P., Cerutti J.M. Arginase 2 and nitric oxide synthase: Pathways associated with the pathogenesis of thyroid tumors. Free Radic. Biol. Med. 2010;49:997–1007.
  30. Morimura T., Fujita K., Akita M., Nagashima M., Satomi A. The proton pump inhibitor inhibits cell growth and induces apoptosis in human hepatoblastoma. Pediatr. Surg. Int. 2008;24:1087–1094.
  31. Tan J.E.L., Wong S.C., Gan S.K.E., Xu S., Lam K.P. The adaptor protein BLNK is required for b cell antigen receptor-induced activation of nuclear factor-kappa B and cell cycle entry and survival of B lymphocytes. J. Biol. Chem. 2001;276:20055–20063.
  32. Heinke J., Kerber M., Rahner S., Mnich L., Lassmann S., Helbing T., Werner M., Patterson C., Bode C., Moser M. Bone morphogenetic protein modulator BMPER is highly expressed in malignant tumors and controls invasive cell behavior. Oncogene. 2012;31:2919–2930. doi: 10.1038/onc.2011.473
  33. Chen R., Zeng X., Zhang R., Huang J., Kuang X., Yang J., Liu J., Tawfik O., Brantley Thrasher J., Li B. Cav1.3 channel α1Dprotein is overexpressed and modulates androgen receptor transactivation in prostate cancers. Urol. Oncol. Semin. Orig. Investig. 2014;32:524–536.
  34. Miyagaki T., Sugaya M., Murakami T., Asano Y., Tada Y., Kadono T., Okochi H., Tamaki K., Sato S. CCL11-CCR3 interactions promote survival of anaplastic large cell lymphoma cells via ERK1/2 activation. Cancer Res. 2011;71:2056–2065. doi: 10.1158/0008-5472.CAN-10-3764
  35. You Q., Wu Y., Yao N., Shen G., Zhang Y., Xu L., Li G., Ju C. Interaction of AIM with insulin-like growth factor-binding protein-4. Int. J. Mol. Med. 2015;36:833–838.
  36. Yin H., Li C., Wang S., Guo Q., Ren X., Jiang G. Silencing of CD59 enhanced the sensitivity of HT29 cells to 5-Fluorouracil and Oxaliplatin. J. Infect. Chemother. 2015;21:8–15.
  37. Jung Y.-S., Vermeer P.D., Vermeer D.W., Lee S.-J., Goh A.R., Ahn H.-J., Lee J.H. CD200: Association with cancer stem cell features and response to chemoradiation in head and neck squamous cell carcinoma. Head Neck. 2015;37:327–335. doi: 10.1002/hed.23608
  38. Mannan Baig A., Khan N.A., Effendi V., Rana Z., Ahmad H.R., Abbas F. Differential receptor dependencies. Anticancer. Drugs. 2017;28:75–87.
  39. Hiraoka A. Leukemia cell lines require self-secreted stem cell growth factor (SCGF) for their proliferation. Leuk. Res. 2008;32:1623–1625. doi: 10.1016/j.leukres.2008.01.003
  40. Pope J.L., Bhat A.A., Sharma A., Ahmad R., Krishnan M., Washington M.K., Beauchamp R.D., Singh A.B., Dhawan P. Claudin-1 regulates intestinal epithelial homeostasis through the modulation of Notch-signalling. Gut. 2014;63:622–634. doi: 10.1136/gutjnl-2012-304241
  41. Su B., Zhao W., Shi B., Zhang Z., Yu X., Xie F., Guo Z., Zhang X., Liu J., Shen Q. et al. Let-7d suppresses growth, metastasis, and tumor macrophage infiltration in renal cell carcinoma by targeting COL3A1 and CCL7. Mol. Cancer. 2014;13:206.
  42. Cheng I.H., Lin Y.-C., Hwang E., Huang H.-T., Chang W.-H., Liu Y.-L., Chao C.-Y. Collagen VI protects against neuronal apoptosis elicited by ultraviolet irradiation via an Akt/Phosphatidylinositol 3-kinase signaling pathway. Neuroscience. 2011;183:178–188. doi: 10.1016/j.neuroscience.2011.03.057
  43. Hashimoto Y., Tomiyama T., Yamano Y., Mori H. Mutation (D472Y) in the type 3 repeat domain of cartilage oligomeric matrix protein affects its early vesicle trafficking in endoplasmic reticulum and induces apoptosis. Am. J. Pathol. 2003;163:101–110.
  44. Alcain F.J., Low H. Ceruloplasmin releases pH-induced inhibition of cell proliferation stimulated by growth factors. Redox Rep. 1997;3:287–293. doi: 10.1080/13510002.1997.11747125
  45. Liu R.-Z., Li S., Garcia E., Glubrecht D.D., Yin Poon H., Easaw J.C., Godbout R. Association between cytoplasmic CRABP2, altered retinoic acid signaling, and poor prognosis in glioblastoma. Glia. 2016;64. doi: 10.1002/glia.22976
  46. Liu H., Pathak P., Boehme S., Chiang J.Y.L. Cholesterol 7α-hydroxylase protects the liver from inflammation and fibrosis by maintaining cholesterol homeostasis. J. Lipid Res. 2016;57:1831–1844. doi: 10.1194/jlr.M069807
  47. Osanai M., Sawada N., Lee G.-H. Oncogenic and cell survival properties of the retinoic acid metabolizing enzyme, CYP26A1. Oncogene. 2010;29:1135–1144. doi: 10.1038/onc.2009.414
  48. Kotov A.A., Olenkina O.M., Godneeva B.K., Adashev V.E., Olenina L.V. Progress in understanding the molecular functions of DDX3Y (DBY) in male germ cell development and maintenance. Biosci. Trends. 2017;11:46–53.
  49. Tang J.P., Tan C.P., Li J., Siddique M.M., Guo K., Chan S.W., Park J.E., Tay W.N., Huang Z.Y., Li W.C. et al. VHZ is a novel centrosomal phosphatase associated with cell growth and human primary cancers. Mol. Cancer. 2010;9:128.
  50. Sun Y., Du C., Wang B., Zhang Y., Liu X., Ren G. Up-regulation of eEF1A2 promotes proliferation and inhibits apoptosis in prostate cancer. Biochem. Biophys. Res. Commun. 2014;450:1–6.
  51. Li N., Mu H., Zheng L., Li B., Wu C., Niu B., Shen Q., He X., Hua J. EIF2S3Y suppresses the pluripotency state and promotes the proliferation of mouse embryonic stem cells. Oncotarget. 2016;7:11321–11331.
  52. Asano Y., Kishida S., Mu P., Sakamoto K., Murohara T., Kadomatsu K. DRR1 is expressed in the developing nervous system and downregulated during neuroblastoma carcinogenesis. Biochem. Biophys. Res. Commun. 2010;394:829–835.
  53. Zhao J., Zhang Y., Ithychanda S.S., Tu Y., Chen K., Qin J., Wu C. Migfilin interacts with Src and contributes to cell-matrix adhesion-mediated survival signaling. J. Biol. Chem. 2009;284:34308–34320.
  54. Katoh M., Nakagama H. FGF receptors: Cancer biology and therapeutics. Med. Res. Rev. 2014;34:280–300.
  55. Li B., Xie Z., Li Z., Chen S., Li B. MicroRNA-613 targets FMNL2 and suppresses progression of colorectal cancer. Am. J. Transl. Res. 2016;8:5475–5484.
  56. Jaluria P., Konstantopoulos K., Betenbaugh M., Shiloach J. Egr1 andGas6 facilitate the adaptation of HEK-293 cells to serum-free media by conferring enhanced viability and higher growth rates. Biotechnol. Bioeng. 2008;99:1443–1452. doi: 10.1002/bit.21707
  57. Lin L., Bass A.J., Lockwood W.W., Wang Z., Silvers A.L., Thomas D.G., Chang A.C., Lin J., Orringer M.B., Li W. et al. Activation of GATA binding protein 6 (GATA6) sustains oncogenic lineage-survival in esophageal adenocarcinoma. Proc. Natl. Acad. Sci. 2012;109:4251–4256.
  58. Pant S.D., March L.D., Famulski J.K., French C.R., Lehmann O.J., Waskiewicz A.J. Molecular mechanisms regulating ocular apoptosis in zebrafish gdf6a mutants. Investig. Ophthalmol. Vis. Sci. 2013;54:5871–5879.
  59. Huang W.-L., Li Z., Lin T.-Y., Wang S.-W., Wu F.-J., Luo C.-W. Thyrostimulin-TSHR signaling promotes the proliferation of NIH:OVCAR-3 ovarian cancer cells via trans-regulation of the EGFR pathway. Sci. Rep. 2016;6:27471.
  60. Kazi J.U., Rönnstrand L. FLT3 signals via the adapter protein Grb10 and overexpression of Grb10 leads to aberrant cell proliferation in acute myeloid leukemia. Mol. Oncol. 2013;7:402–418.
  61. Xing P., Li J., Jin F., Zhao T., Liu Q., Dong H., Wei X. Clinical and biological significance of hepsin overexpression in breast cancer. J. Investig. Med. 2011;59:803–810.
  62. Kasprzak A., Kwasniewski W., Adamek A., Gozdzicka-Jozefiak A. Insulin-like growth factor (IGF) axis in cancerogenesis. Mutat. Res. Mutat. Res. 2017;772:78–104.
  63. Bergman D., Halje M., Nordin M., Engström W. Insulin-like growth factor 2 in development and disease: A mini-review. Gerontology. 2013;59:240–249. doi: 10.1159/000343995
  64. Masood R., Zhang Y., Bond M., Scadden D., Moudgil T., Law R., Kaplan M., Jung B., Espina B., Lunardi-Iskandar Y. Interleukin-10 is an autocrine growth factor for acquired immunodeficiency syndrome-related B-cell lymphoma. Blood. 1995;85.
  65. Alinejad V., Hossein Somi M., Baradaran B., Akbarzadeh P., Atyabi F., Kazerooni H., Samadi Kafil H., Aghebati Maleki L., Siah Mansouri H., Yousefi M. Co-delivery of IL17RB siRNA and doxorubicin by chitosan-based nanoparticles for enhanced anticancer efficacy in breast cancer cells. Biomed. Pharmacother. 2016;83:229–240. doi: 10.1016/j.biopha.2016.06.037
  66. Zhang J., Na S., Liu C., Pan S., Cai J., Qiu J. MicroRNA-125b suppresses the epithelial–mesenchymal transition and cell invasion by targeting ITGA9 in melanoma. Tumor Biol. 2016;37:5941–5949. doi: 10.1007/s13277-015-4409-8
  67. Zhao L.-R., Du Y.-J., Chen L., Liu Z.-G., Jia X.-Y., Pan Y.-H., Liu J.-F., Liu B. Omentin-1 promotes the growth of neural stem cells via activation of Akt signaling. Mol. Med. Rep. 2015;11:1859–1864.
  68. Salyer S.A., Olberding J.R., Distler A.A., Lederer E.D., Clark B.J., Delamere N.A., Khundmiri S.J. Vacuolar ATPase driven potassium transport in highly metastatic breast cancer cells. Biochim. Biophys. Acta - Mol. Basis Dis. 2013;1832:1734–1743. doi: 10.1016/j.bbadis.2013.04.023
  69. Chen J., Li X., Ma D., Liu T., Tian P., Wu C. Ceramide synthase-4 orchestrates the cell proliferation and tumor growth of liver cancer in vitro and in vivo through the nuclear factor-κB signaling pathway. Oncol. Lett. 2017;14:1477–1483.
  70. Cha N., Liu W., Yang N., Xie S., Gao Y., Chen X., Wang X., Ren J. Oncogenicity of LHX4 in colorectal cancer through Wnt/β-catenin/TCF4 cascade. Tumor Biol. 2014;35:10319–10324. doi: 10.1007/s13277-014-2210-8
  71. Tritschler I., Gramatzki D., Capper D., Mittelbronn M., Meyermann R., Saharinen J., Wick W., Keski-Oja J., Weller M. Modulation of TGF-β activity by latent TGF-β-binding protein 1 in human malignant glioma cells. Int. J. Cancer. 2009;125:530–540.
  72. Huang S.S., Tang F.-M., Huang Y.-H., Liu I.-H., Hsu S.-C., Chen S.-T., Huang J.S. Cloning, expression, characterization, and role in autocrine cell growth of cell surface retention sequence binding protein-1. J. Biol. Chem. 2003;278:43855–43869.
  73. Papageorgio C., Brachmann R., Zeng J., Culverhouse R., Zhang W., McLeod H. MAGED2: a novel p53-dissociator. Int. J. Oncol. 2007;31:1205–1211.
  74. Chen S., Yin J., Lin B., Su H., Zheng Z., Xie C., Fei Z. Upregulated expression of long noncoding RNA SNHG15 promotes cell proliferation and invasion through regulates MMP2/MMP9 in patients with GC. Tumor Biol. 2016;37:6801–6812. doi: 10.1007/s13277-015-4404-0
  75. Horsley V., Pavlath G.K. NFAT: Ubiquitous regulator of cell differentiation and adaptation. J. Cell Biol. 2002;156:771–774. doi: 10.1083/jcb.200111073
  76. Conacci-Sorrell M., Kaplan A., Raveh S., Gavert N., Sakurai T., Ben-Ze’ev A. The shed ectodomain of Nr-CAM stimulates cell proliferation and motility, and confers cell transformation. Cancer Res. 2005;65:11605–11612. doi: 10.1158/0008-5472.CAN-05-2647
  77. Gao Z.W., Dong K., Zhang H.Z. The roles of CD73 in cancer. Biomed Res. Int. 2014;2014:1–9. doi: 10.1016/j.quaint.2014.08.023
  78. Hu H., Dong Z., Yi L., He X., Zhang Y., Liu Y., Cui H. Function and mechanism of neurotensin (NTS) and its receptor 1 (NTSR1) in occurrence and development of tumors. Zhongguo Zhong Yao Za Zhi. 2015;40:2524–2536.
  79. Powers G.L., Hammer K.D.P., Domenech M., Frantskevich K., Malinowski R.L., Bushman W., Beebe D.J., Marker P.C. Phosphodiesterase 4D inhibitors limit prostate cancer growth potential. Mol. Cancer Res. 2015;13:149–160.
  80. Leclerc D., Pham D.N.T., Lévesque N., Truongcao M., Foulkes W.D., Sapienza C., Rozen R. Oncogenic role of PDK4 in human colon cancer cells. Br. J. Cancer. 2017;116:930–936. doi: 10.1038/bjc.2017.38
  81. Wang Q., Ao Y., Yang K., Tang H., Chen D. Circadian clock gene Per2 plays an important role in cell proliferation, apoptosis and cell cycle progression in human oral squamous cell carcinoma. Oncol. Rep. 2016;35:3387–3394.
  82. Kasper B., Brandt E., Brandau S., Petersen F. Platelet factor 4 (CXC chemokine ligand 4) differentially regulates respiratory burst, survival, and cytokine expression of human monocytes by using distinct signaling pathways. J. Immunol. 2007;179:2584–2591. doi: 10.4049/jimmunol.179.4.2584
  83. Aldonza M.B.D., Son Y., Sung H.-J., Mo Ahn J., Choi Y.-J., Kim Y.-I., Cho S., Cho J.-Y. Paraoxonase-1 (PON1) induces metastatic potential and apoptosis escape via its antioxidative function in lung cancer cells. Oncotarget. 2017;8:42817–42835. doi: 10.18632/oncotarget.17069
  84. Oikawa K., Mizusaki A., Takanashi M., Ozaki T., Sato F., Kuroda M., Muragaki Y. PRG4 expression in myxoid liposarcoma maintains tumor cell growth through suppression of an antitumor cytokine IL-24. Biochem. Biophys. Res. Commun. 2017;485:209–214.
  85. Xin H., Lu R., Lee H., Zhang W., Zhang C., Deng J., Liu Y., Shen S., Wagner K.U., Forman S. et al. G-protein-coupled receptor agonist BV8/prokineticin-2 and STAT3 protein form a feed-forward loop in both normal and malignant myeloid cells. J. Biol. Chem. 2013;288:13842–13849.
  86. Bojesen K.B., Clausen O., Rohde K., Christensen C., Zhang L., Li S., Køhler L., Nielbo S., Nielsen J., Gjørlund M.D. et al. Nectin-1 binds and signals through the fibroblast growth factor receptor. J. Biol. Chem. 2012;287:37420–37433.
  87. Matsuo T., Dat L.T., Komatsu M., Yoshimaru T., Daizumoto K., Sone S., Nishioka Y., Katagiri T. Early growth response 4 is involved in cell proliferation of small cell lung cancer through transcriptional activation of its downstream genes. PLoS One. 2014;9:e113606. doi: 10.1371/journal.pone.0113606
  88. Dobashi S., Katagiri T., Hirota E., Ashida S., Daigo Y., Shuin T., Fujioka T., Miki T., Nakamura Y. Involvement of TMEM22 overexpression in the growth of renal cell carcinoma cells. Oncol. Rep. 2009;21:305–312.
  89. Nagy Z., Kovács I., Török M., Tóth D., Vereb G., Buzás K., Juhász I., Blumberg P.M., Bíró T., Czifra G. Function of RasGRP3 in the formation and progression of human breast cancer. Mol. Cancer. 2014;13:96.
  90. Sasaki H., Shitara M., Yokota K., Hikosaka Y., Moriyama S., Yano M., Fujii Y. RagD gene expression and NRF2 mutations in lung squamous cell carcinomas. Oncol. Lett. 2012;4:1167–1170.
  91. Wang X., Yang J., Qian J., Liu Z., Chen H., Cui Z. S100A14, a mediator of epithelial-mesenchymal transition, regulates proliferation, migration and invasion of human cervical cancer cells. Am. J. Cancer Res. 2015;5:1484–1495.
  92. Seaborn T., Ravni A., Au R., Chow B.K.C., Fournier A., Wurtz O., Vaudry H., Eiden L.E., Vaudry D. Induction of serpinb1a by PACAP or NGF is required for PC12 cells survival after serum withdrawal. J. Neurochem. 2014;131:21–32. doi: 10.1111/jnc.12780
  93. Tonnetti L., Netzel-Arnett S., Darnell G.A., Hayes T., Buzza M.S., Anglin I.E., Suhrbier A., Antalis T.M. SerpinB2 protection of retinoblastoma protein from calpain enhances tumor cell survival. Cancer Res. 2008;68:5648–5657. doi: 10.1158/0008-5472.CAN-07-5850
  94. Garrido P., Osorio F.G., Morán J., Cabello E., Alonso A., Freije J.M.P., González C. Loss of GLUT4 induces metabolic reprogramming and impairs viability of breast cancer cells. J. Cell. Physiol. 2015;230:191–198.
  95. Ban M.J., Ji S.H., Lee C.-K., Bae S.B., Kim H.J., Ahn T.S., Lee M.S., Baek M.-J., Jeong D. Solute carrier organic anion transporter family member 4A1 (SLCO4A1) as a prognosis marker of colorectal cancer. J. Cancer Res. Clin. Oncol. 2017;143:1437–1447.
  96. Lacombe J., Krosl G., Tremblay M., Gerby B., Martin R., Aplan P.D., Lemieux S., Hoang T. Genetic interaction between Kit and Scl. Blood. 2013;122:1150–1161. doi: 10.1182/blood-2011-01-331819
  97. Shitashige M., Hirohashi S., Yamada T. Wnt signaling inside the nucleus. Cancer Sci. 2008;99:631–637. doi: 10.1111/j.1349-7006.2007.00716.x
  98. D’Amato N.C., Rogers T.J., Gordon M.A., Greene L.I., Cochrane D.R., Spoelstra N.S., Nemkov T.G., D’alessandro A., Hansen K.C., Richer J.K. A TDO2-AhR signaling axis facilitates anoikis resistance and metastasis in triple-negative breast cancer. Cancer Res. 2015;75:4651–4664. doi: 10.1158/0008-5472.CAN-15-2011
  99. Chou F.-S., Griesinger A., Wunderlich M., Lin S., Link K.A., Shrestha M., Goyama S., Mizukawa B., Shen S., Marcucci G., Mulloy J.C. The thrombopoietin/MPL/Bcl-xL pathway is essential for survival and self-renewal in human preleukemia induced by AML1-ETO. Blood. 2012;120:709–719. doi: 10.1182/blood-2012-01-403212
  100. Fu L., Lin-Lee Y.-C., Pham L. V., Tamayo A.T., Yoshimura L.C., Ford R.J. BAFF-R promotes cell proliferation and survival through interaction with IKKβ and NF-κB/c-Rel in the nucleus of normal and neoplastic B-lymphoid cells. Blood. 2009;113:4627–4636. doi: 10.1182/blood-2008-10-183467
  101. Chiovaro F., Martina E., Bottos A., Scherberich A., Hynes N.E., Chiquet-Ehrismann R. Transcriptional regulation of tenascin-W by TGF-beta signaling in the bone metastatic niche of breast cancer cells. Int. J. Cancer. 2015;137:1842–1854.
  102. Zhan L., Yang Y., Ma T.-T., Huang C., Meng X.-M., Zhang L., Li J. Transient receptor potential vanilloid 4 inhibits rat HSC-T6 apoptosis through induction of autophagy. Mol. Cell. Biochem. 2015;402:9–22.
  103. Zhou Y., Kipps T.J., Zhang S. Wnt5a signaling in normal and cancer stem cells. Stem Cells Int. 2017;2017:1–6.
  104. Jiang W.G., Sanders A.J., Katoh M., Ungefroren H., Gieseler F., Prince M., Thompson S.K., Zollo M., Spano D., Dhawan P. et al. Tissue invasion and metastasis: Molecular, biological and clinical perspectives. Semin. Cancer Biol. 2015;35:S244–S275. doi: 10.1016/j.semcancer.2015.03.008
  105. Taddei M., Giannoni E., Fiaschi T., Chiarugi P. Anoikis: an emerging hallmark in health and diseases. J. Pathol. 2012;226:380–393. doi: 10.1002/path.3000
  106. Chong H.C., Tan C.K., Huang R.L., Tan N.S. Matricellular proteins: A sticky affair with cancers. J. Oncol. 2012;2012:1–17. doi: 10.1155/2012/351089
  107. Kuol N., Stojanovska L., Nurgali K., Apostolopoulos V. The mechanisms tumor cells utilize to evade the host’s immune system. Maturitas. 2017;105:8–15. doi: 10.1016/j.maturitas.2017.04.014
  108. Bordeleau F., Alcoser T.A., Reinhart-King C.A. Physical Biology in Cancer. 5. The rocky road of metastasis: the role of cytoskeletal mechanics in cell migratory response to 3D matrix topography. AJP Cell Physiol. 2014;306:C110–C120. doi: 10.1152/ajpcell.00283.2013
  109. Zhao W., Prijic S., Urban B.C., Tisza M.J., Zuo Y., Li L., Tan Z., Chen X., Mani S.A., Chang J.T. Candidate antimetastasis drugs suppress the metastatic capacity of breast cancer cells by reducing membrane fluidity. Cancer Res. 2016;76:2037–2049. doi: 10.1158/0008-5472.CAN-15-1970
  110. Araújo T.M., Seabra A.D., Lima E.M., Assumpção P.P., Montenegro R.C., Demachki S., Burbano R.M., Khayat A.S. Recurrent amplification of RTEL1 and ABCA13 and its synergistic effect associated with clinicopathological data of gastric adenocarcinoma. Mol. Cytogenet. 2016;9:52. doi: 10.1186/s13039-016-0260-x
  111. Kirschenbaum A., Izadmehr S., Yao S., O’Connor-Chapman K.L., Huang A., Gregoriades E.M., Yakar S., Levine A.C. Prostatic acid phosphatase alters the RANKL/OPG system and induces osteoblastic prostate cancer bone metastases. Endocrinology. 2016;157:4526–4533. doi: 10.1210/en.2016-1606
  112. Akyol S., Cömertoğlu İ., Firat R., Çakmak Ö., Yukselten Y., Erden G., Ugurcu V., Demircan K. Effect of insulin on the mRNA expression of procollagen N-proteinases in chondrosarcoma OUMS-27 cells. Oncol. Lett. 2015;10:1091–1096.
  113. Wang J., Nikhil K., Viccaro K., Chang L., White J., Shah K. Phosphorylation-dependent regulation of ALDH1A1 by Aurora kinase A: insights on their synergistic relationship in pancreatic cancer. BMC Biol. 2017;15:10. doi: 10.1186/s12915-016-0335-5
  114. Kerjaschki D., Bago-Horvath Z., Rudas M., Sexl V., Schneckenleithner C., Wolbank S., Bartel G., Krieger S., Kalt R., Hantusch B. et al. Lipoxygenase mediates invasion of intrametastatic lymphatic vessels and propagates lymph node metastasis of human mammary carcinoma xenografts in mouse. J. Clin. Invest. 2011;121:2000–2012. doi: 10.1172/JCI44751
  115. Costa H., Xu X., Overbeek G., Vasaikar S., Patro C.P.K., Kostopoulou O.N., Jung M., Shafi G., Ananthaseshan S., Tsipras G. et al. Human cytomegalovirus may promote tumour progression by upregulating arginase-2. Oncotarget. 2016;7:47221–47231. doi: 10.18632/oncotarget.9722
  116. Au V., Tsang F.H., Man K., Fan S.T., Poon R.T., Lee N.P. Expression of ankyrin repeat and SOCS box containing 4 (ASB4) confers migration and invasion properties of hepatocellular carcinoma cells. Biosci. Trends. 2014;8:101–110.
  117. Alinezhad S., Väänänen R.-M., Mattsson J., Li Y., Tallgrén T., Tong Ochoa N., Bjartell A., Åkerfelt M., Taimen P., Boström P.J. et al. Validation of novel biomarkers for prostate cancer progression by the combination of bioinformatics, clinical and functional studies. PLoS One. 2016;11. P. e0155901. doi: 10.1371/journal.pone.0155901
  118. Jung D.-W., Che Z.M., Kim J., Kim K., Kim K.-Y., Williams D., Kim J. Tumor-stromal crosstalk in invasion of oral squamous cell carcinoma: a pivotal role of CCL7. Int. J. Cancer. 2010;127. doi: 10.1002/ijc.25060
  119. Mikesch J.-H., Schier K., Roetger A., Simon R., Buerger H., Brandt B. The expression and action of decay-accelerating factor (CD55) in human malignancies and cancer therapy. Cell. Oncol. 2006;28:223–32.
  120. Gorczynski R.M., Clark D.A., Erin N., Khatri I. Role of CD200 expression in regulation of metastasis of EMT6 tumor cells in mice. Breast Cancer Res. Treat. 2011;130:49–60.
  121. Mahati S., Xiao L., Yang Y., Mao R., Bao Y. miR-29a suppresses growth and migration of hepatocellular carcinoma by regulating CLDN1. Biochem. Biophys. Res. Commun. 2017;486:732–737.
  122. Cheon D.-J., Tong Y., Sim M.-S., Dering J., Berel D., Cui X., Lester J., Beach J.A., Tighiouart M., Walts A.E. et al. A collagen-remodeling gene signature regulated by TGF-β signaling is associated with metastasis and poor survival in serous ovarian cancer. Clin. Cancer Res. 2014;20:711–723.
  123. Englund E., Bartoschek M., Reitsma B., Jacobsson L., Escudero-Esparza A., Orimo A., Leandersson K., Hagerling C., Aspberg A., Storm P. et al. Cartilage oligomeric matrix protein contributes to the development and metastasis of breast cancer. Oncogene. 2016;35:5585–5596. doi: 10.1038/onc.2016.98
  124. Kluger H.M., Kluger Y., Gilmore-Hebert M., DiVito K., Chang J.T., Rodov S., Mironenko O., Kacinski B.M., Perkins A.S., Sapi E. cDNA microarray analysis of invasive and tumorigenic phenotypes in a breast cancer model. Lab. Investig. 2004;84:320–331.
  125. Osanai M., Lee G.H. The retinoic acid-metabolizing enzyme CYP26A1 upregulates fascin and promotes the malignant behavior of breast carcinoma cells. Oncol. Rep. 2015;34:850–858.
  126. Westcott J.M., Prechtl A.M., Maine E.A., Dang T.T., Esparza M.A., Sun H., Zhou Y., Xie Y., Pearson G.W. An epigenetically distinct breast cancer cell subpopulation promotes collective invasion. J. Clin. Invest. 2015;125:1927–1943. doi: 10.1172/JCI77767
  127. Xu C., Hu D., Zhu Q. eEF1A2 promotes cell migration, invasion and metastasis in pancreatic cancer by upregulating MMP-9 expression through Akt activation. Clin. Exp. Metastasis. 2013;30:933–944.
  128. Le P.U., Angers-Loustau A., de Oliveira R.M.W., Ajlan A., Brassard C.L., Dudley A., Brent H., Siu V., Trinh G., Mölenkamp G. et al. DRR drives brain cancer invasion by regulating cytoskeletal-focal adhesion dynamics. Oncogene. 2010;29:4636–4647. doi: 10.1038/onc.2010.216
  129. Gkretsi V., Bogdanos D.P. Experimental evidence of Migfilin as a new therapeutic target of hepatocellular carcinoma metastasis. Exp. Cell Res. 2015;334:219–227.
  130. Jiao J., Zhao X., Liang Y., Tang D., Pan C. FGF1–FGFR1 axis promotes tongue squamous cell carcinoma (TSCC) metastasis through epithelial–mesenchymal transition (EMT). Biochem. Biophys. Res. Commun. 2015;466:327–332.
  131. Zhu X., Zeng Y., Guan J., Li Y., Deng Y., Bian X., Ding Y., Liang L. FMNL2 is a positive regulator of cell motility and metastasis in colorectal carcinoma. J. Pathol. 2011;224:377–388. doi: 10.1002/path.2871
  132. Wang C., Jin H., Wang N., Fan S., Wang Y., Zhang Y., Wei L., Tao X., Gu D., Zhao F. et al. Gas6/Axl axis contributes to chemoresistance and metastasis in breast cancer through Akt/GSK-3β/β- catenin signaling. Theranostics. 2016;6:1205–1219. doi: 10.7150/thno.15083
  133. Belaguli N.S., Aftab M., Rigi M., Zhang M., Albo D., Berger D.H. GATA6 promotes colon cancer cell invasion by regulating urokinase plasminogen activator gene expression. Neoplasia. 2010;12:856–865. doi: 10.1593/neo.10224
  134. Khan F.H., Pandian V., Ramraj S., Aravindan S., Herman T.S., Aravindan N. Reorganization of metastamiRs in the evolution of metastatic aggressive neuroblastoma cells. BMC Genomics. 2015;16:501. doi: 10.1186/s12864-015-1642-x
  135. Meding S., Balluff B., Elsner M., Schöne C., Rauser S., Nitsche U., Maak M., Schäfer A., Hauck S.M., Ueffing M. et al. Tissue-based proteomics reveals FXYD3, S100A11 and GSTM3 as novel markers for regional lymph node metastasis in colon cancer. J. Pathol. 2012;228:459–470. doi: 10.1002/path.4021
  136. Tang X., Mahajan S.S., Nguyen L.T., Béliveau F., Leduc R., Simon J.A., Vasioukhin V. Targeted inhibition of cell-surface serine protease Hepsin blocks prostate cancer bone metastasis. Oncotarget. 2014;5:1352–1362. doi: 10.18632/oncotarget.1817
  137. Lei T., Ling X. IGF-1 promotes the growth and metastasis of hepatocellular carcinoma via the inhibition of proteasome-mediated cathepsin B degradation. World J. Gastroenterol. 2015;21:10137–10149.
  138. Lira R.C.P., Fedatto P.F., Antonio D.S.M., Leal L.F., Martinelli C.E., De Castro M., Tucci S., Neder L., Ramalho L., Seidinger A.L. et al. IGF2 and IGF1R in pediatric adrenocortical tumors: Roles in metastasis and steroidogenesis. Endocr. Relat. Cancer. 2016;23:481–493.
  139. Zeng L., O’Connor C., Zhang J., Kaplan A.M., Cohen D.A. IL-10 promotes resistance to apoptosis and metastatic potential in lung tumor cell lines. Cytokine. 2010;49:294–302. doi: 10.1016/j.cyto.2009.11.015
  140. Wu H.-H., Hwang-Verslues W.W., Lee W.-H., Huang C.-K., Wei P.-C., Chen C.-L., Shew J.-Y., Lee E.Y.-H.P., Jeng Y.-M., Tien Y.-W. et al. Targeting IL-17B–IL-17RB signaling with an anti–IL-17RB antibody blocks pancreatic cancer metastasis by silencing multiple chemokines. J. Exp. Med. 2015;212:333–349.
  141. Mercado-Pimentel M.E., Runyan R.B. Multiple transforming growth factor-beta isoforms and receptors function during epithelial-mesenchymal cell transformation in the embryonic heart. In: Cells Tissues Organs. 2007:146–156. doi: 10.1159/000101315
  142. Prevo R., Banerji S., Ferguson D.J., Clasper S., Jackson D.G. Mouse LYVE-1 is an endocytic receptor for hyaluronan in lymphatic endothelium. J. Biol. Chem. 2001;276:19420–19430.
  143. Kanda M., Nomoto S., Oya H., Takami H., Shimizu D., Hibino S., Hashimoto R., Kobayashi D., Tanaka C., Yamada S. et al. The expression of melanoma-associated antigen D2 both in surgically resected and serum samples serves as clinically relevant biomarker of gastric cancer progression. Ann. Surg. Oncol. 2016;23:214–221.
  144. Xuan X., Li S., Lou X., Zheng X., Li Y., Wang F., Gao Y., Zhang H., He H., Zeng Q. Stat3 promotes invasion of esophageal squamous cell carcinoma through up-regulation of MMP2. Mol. Biol. Rep. 2015;42:907–915.
  145. Sabe H., Hashimoto S., Morishige M., Ogawa E., Hashimoto A., Nam J.-M., Miura K., Yano H., Onodera Y. The EGFR-GEP100-Arf6-AMAP1 signaling pathway specific to breast cancer invasion and metastasis. Traffic. 2009;10:982–993. doi: 10.1111/j.1600-0854.2009.00917.x
  146. Ohmura G., Tsujikawa T., Yaguchi T., Kawamura N., Mikami S., Sugiyama J., Nakamura K., Kobayashi A., Iwata T., Nakano H. et al. Aberrant myosin 1b expression promotes cell migration and lymph node metastasis of HNSCC. Mol. Cancer Res. 2015;13:721–731.
  147. Jauliac S., López-Rodriguez C., Shaw L.M., Brown L.F., Rao A., Toker A. The role of NFAT transcription factors in integrin-mediated carcinoma invasion. Nat. Cell Biol. 2002;4:540–544.
  148. Zhang Y., Sui F., Ma J., Ren X., Guan H., Yang Q., Shi J., Ji M., Shi B., Sun Y., Hou P. Positive feedback loops between NrCAM and major signaling pathways contribute to thyroid tumorigenesis. J. Clin. Endocrinol. Metab. 2017;102:613–624.
  149. Wang L., Zhou X., Zhou T., Ma D., Chen S., Zhi X., Yin L., Shao Z., Ou Z., Zhou P. Ecto-5′-nucleotidase promotes invasion, migration and adhesion of human breast cancer cells. J. Cancer Res. Clin. Oncol. 2008;134:365–372.
  150. Ye Y., Long X., Zhang L., Chen J., Liu P., Li H., Wei F., Yu W., Ren X., Yu J. NTS/NTR1 co-expression enhances epithelial-to-mesenchymal transition and promotes tumor metastasis by activating the Wnt/β-catenin signaling pathway in hepatocellular carcinoma. Oncotarget. 2014;7:70303–70322.
  151. Delyon J., Servy A., Laugier F., André J., Ortonne N., Battistella M., Mourah S., Bensussan A., Lebbé C., Dumaz N. PDE4D promotes FAK-mediated cell invasion in BRAF-mutated melanoma. Oncogene. 2017;36:3252–3262. doi: 10.1038/onc.2016.469
  152. Li S., Qin X., Chai S., Qu C., Wang X., Zhang H. Modulation of E-cadherin expression promotes migration ability of esophageal cancer cells. Sci. Rep. 2016;6:21713.
  153. Zeng X., Hu Z., Wang Z., Tao J., Lu T., Yang C., Lee B., Ye Z. Upregulation of RASGRP3 expression in prostate cancer correlates with aggressive capabilities and predicts biochemical recurrence after radical prostatectomy. Prostate Cancer Prostatic Dis. 2014;17:119–125. doi: 10.1038/pcan.2013.51
  154. Stübke K., Wicklein D., Herich L., Schumacher U., Nehmann N. Selectin-deficiency reduces the number of spontaneous metastases in a xenograft model of human breast cancer. Cancer Lett. 2012;321:89–99. doi: 10.1016/j.canlet.2012.02.019
  155. Jin T., Kim H.S., Choi S.K., Hwang E.H., Woo J., Ryu H.S., Kim K., Moon A., Moon W.K. microRNA-200c/141 upregulates SerpinB2 to promote breast cancer cell metastasis and reduce patient survival. Oncotarget. 2017;8:32769–32782. doi: 10.18632/oncotarget.15680
  156. Correia N.C., Fragoso R., Carvalho T., Enguita F.J., Barata J.T. MiR-146b negatively regulates migration and delays progression of T-cell acute lymphoblastic leukemia. Sci. Rep. 2016;6:31894.
  157. Ravindranath A., O’Connell A., Johnston P.G., El-Tanani M.K. The role of LEF/TCF factors in neoplastic transformation. Curr. Mol. Med. 2008;8:38–50.
  158. Hu X., Zhang Y., Zhang A., Li Y., Zhu Z., Shao Z., Zeng R., Xu L.X. Comparative serum proteome analysis of human lymph node negative/positive invasive ductal carcinoma of the breast and benign breast disease controls via label-free semiquantitative shotgun technology. OMICS. 2009;13:291–300. doi: 10.1089/omi.2009.0016
  159. Lee W.H., Choong L.Y., Jin T.H., Mon N.N., Chong S., Liew C.S., Putti T., Lu S.Y., Harteneck C., Lim Y.P. TRPV4 plays a role in breast cancer cell migration via Ca2+-dependent activation of AKT and downregulation of E-cadherin cell cortex protein. Oncogenesis. 2017;6:e338. doi: 10.1038/oncsis.2017.39
  160. Zhang X.-H., Qian Y., Li Z., Zhang N.-N., Xie Y.-J. Let-7g-5p inhibits epithelial-mesenchymal transition consistent with reduction of glioma stem cell phenotypes by targeting VSIG4 in glioblastoma. Oncol. Rep. 2016;36:2967–2975.
  161. Shojima K., Sato A., Hanaki H., Tsujimoto I., Nakamura M., Hattori K., Sato Y., Dohi K., Hirata M., Yamamoto H., Kikuchi A. Wnt5a promotes cancer cell invasion and proliferation by receptor-mediated endocytosis-dependent and -independent mechanisms, respectively. Sci. Rep. 2015;5:8042.
  162. Donald Harvey R., Morgan E.T. Cancer, inflammation, and therapy: Effects on cytochrome P450-mediated drug metabolism and implications for novel immunotherapeutic agents. Clin. Pharmacol. Ther. 2014;96:449–457.
  163. Chen Z., Shi T., Zhang L., Zhu P., Deng M., Huang C., Hu T., Jiang L., Li J. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family in multidrug resistance: A review of the past decade. Cancer Lett. 2016;370:153–164. doi: 10.1016/j.canlet.2015.10.010
  164. Gottesman M.M. Mechanisms of cancer drug resistance. Annu. Rev. Med. 2002;53:615–627. doi: 10.1146/annurev.med.53.082901.103929
  165. Volm M. Multidrug resistance and its reversal. Anticancer Res. 1998;18:2905–2917.
  166. Victorino V.J., Pizzatti L., Michelletti P., Panis C. Oxidative stress, redox signaling and cancer chemoresistance: putting together the pieces of the puzzle. Curr. Med. Chem. 2014;21:3211–3226.
  167. Dalton W.S. The tumor microenvironment as a determinant of drug response and resistance. Drug Resist. Updat. 1999;2:285–288. doi: 10.1054/drup.1999.0097
  168. Damiano J.S. Integrins as novel drug targets for overcoming innate drug resistance. Curr. Cancer Drug Targets. 2002;2:37–43. doi: 10.2174/1568009023334033
  169. Grantab R.H., Tannock I.F. Penetration of anticancer drugs through tumour tissue as a function of cellular packing density and interstitial fluid pressure and its modification by bortezomib. BMC Cancer. 2012;12:214. doi: 10.1186/1471-2407-12-214
  170. Kerbel R.S., St Croix B., Florenes V.A., Rak J. Induction and reversal of cell adhesion-dependent multicellular drug resistance in solid breast tumors. Hum. Cell. 1996;9:257–264.
  171. Lu X., Kang Y. Cell fusion as a hidden force in tumor progression. Cancer Res. 2009;69:8536–8539. doi: 10.1158/0008-5472.CAN-09-2159
  172. Nagler C., Hardt C., Zänker K.S., Dittmar T. Co-cultivation of murine BMDCs with 67NR mouse mammary carcinoma cells give rise to highly drug resistant cells. Cancer Cell Int. 2011;11:21. doi: 10.1186/1475-2867-11-21
  173. Mittal K., Donthamsetty S., Kaur R., Yang C., Gupta M. V, Reid M.D., Choi D.H., Rida P.C.G., Aneja R. Multinucleated polyploidy drives resistance to Docetaxel chemotherapy in prostate cancer. Br. J. Cancer. 2017;116:1186–1194. doi: 10.1038/bjc.2017.78
  174. Hou H., Kang Y., Li Y., Zeng Y., Ding G., Shang J. miR-33a expression sensitizes Lgr5+ HCC-CSCs to doxorubicin via ABCA1. Neoplasma. 2017;64:81–91. doi: 10.4149/neo_2017_110
  175. Chen K.G., Valencia J.C., Gillet J.-P., Hearing V.J., Gottesman M.M. Involvement of ABC transporters in melanogenesis and the development of multidrug resistance of melanoma. Pigment Cell Melanoma Res. 2009;22:740–749. doi: 10.1111/j.1755-148X.2009.00630.x
  176. Hlavata I., Mohelnikova-Duchonova B., Vaclavikova R., Liska V., Pitule P., Novak P., Bruha J., Vycital O., Holubec L., Treska V. et al. The role of ABC transporters in progression and clinical outcome of colorectal cancer. Mutagenesis. 2012;27:187–196. doi: 10.1093/mutage/ger075
  177. Jiang J., Liu Y., Tang Y., Li L., Zeng R., Zeng S., Zhong M. ALDH1A1 induces resistance to CHOP in diffuse large B-cell lymphoma through activation of the JAK2/STAT3 pathway. Onco. Targets. Ther. 2016;9:5349–5360.
  178. Hartomo T.B., Van Huyen Pham T., Yamamoto N., Hirase S., Hasegawa D., Kosaka Y., Matsuo M., Hayakawa A., Takeshima Y., Iijima K. et al. Involvement of aldehyde dehydrogenase 1A2 in the regulation of cancer stem cell properties in neuroblastoma. Int. J. Oncol. 2015;46:1089–1098.
  179. Saygin C., Wiechert A., Rao V.S., Alluri R., Connor E., Thiagarajan P.S., Hale J.S., Li Y., Chumakova A., Jarrar A. et al. CD55 regulates self-renewal and cisplatin resistance in endometrioid tumors. J. Exp. Med. 2017;214:2715–2732.
  180. Zhao Z., Li J., Jiang Y., Xu W., Li X., Jing W. CLDN1 increases grug resistance of non-small cell lung cancer by activating autophagy via up-regulation of ULK1 phosphorylation. Med. Sci. Monit. 2017;23:2906–2916.
  181. Januchowski R., Świerczewska M., Sterzyńska K., Wojtowicz K., Nowicki M., Zabel M. Increased expression of several collagen genes is associated with drug resistance in ovarian cancer cell lines. J. Cancer. 2016;7:1295–1310. doi: 10.7150/jca.15371
  182. Chekhun V.F., Lozovska Y. V, Burlaka A.P., Lukyanova N.Y., Todor I.N., Naleskina L.A. Peculiarities of antioxidant system and iron metabolism in organism during development of tumor resistance to cisplatin. Exp. Oncol. 2014;36:196–201.
  183. Eloranta J.J., Kullak-Ublick G.A. Coordinate transcriptional regulation of bile acid homeostasis and drug metabolism. Arch. Biochem. Biophys. 2005;433:397–412.
  184. Cole C., Lau S., Backen A., Clamp A., Rushton G., Dive C., Hodgkinson C., McVey R., Kitchener H., Jayson G.C. Inhibition of FGFR2 and FGFR1 increases cisplatin sensitivity in ovarian cancer. Cancer Biol. Ther. 2010;10:495–504.
  185. Black S.M., Beggs J.D., Hayes J.D., Bartoszek A., Muramatsu M., Sakai M., Wolf C.R. Expression of human glutathione S-transferases in Saccharomyces cerevisiae confers resistance to the anticancer drugs adriamycin and chlorambucil. Biochem. J. 1990;268:309–315.
  186. Roszak J., Smok-Pieniążek A., Nocuń M., Stępnik M. Characterization of arsenic trioxide resistant clones derived from Jurkat leukemia T cell line: Focus on PI3K/Akt signaling pathway. Chem. Biol. Interact. 2013;205:198–211. doi: 10.1016/j.cbi.2013.07.011
  187. Kikuchi J., Koyama D., Wada T., Izumi T., Hofgaard P.O., Bogen B., Furukawa Y. Phosphorylation-mediated EZH2 inactivation promotes drug resistance in multiple myeloma. J. Clin. Invest. 2015;125:4375–4390. doi: 10.1172/JCI80325
  188. Woźniak M., Duś-Szachniewicz K., Ziółkowski P. Insulin-like growth factor-2 is induced following 5-aminolevulinic acid-mediated photodynamic therapy in SW620 human colon cancer cell line. Int. J. Mol. Sci. 2015;16:23615–23629.
  189. Park Y.H., Sohn S.K., Kim J.G., Lee M.H., Song H.S., Kim M.K., Jung J.S., Lee J.J., Kim H.J., Kim D.H. Interaction between BCL2 and interleukin-10 gene polymorphisms alter outcomes of diffuse large B-cell lymphoma following rituximab plus CHOP chemotherapy. Clin. Cancer Res. 2009;15:2107–2115.
  190. Qin Z., Dai L., Bratoeva M., Slomiany M.G., Toole B.P., Parsons C. Cooperative roles for emmprin and LYVE-1 in the regulation of chemoresistance for primary effusion lymphoma. Leukemia. 2011;25:1598–1609. doi: 10.1038/leu.2011.144
  191. Griesmann H., Ripka S., Pralle M., Ellenrieder V., Baumgart S., Buchholz M., Pilarsky C., Aust D., Gress T.M., Michl P. WNT5A-NFAT signaling mediates resistance to apoptosis in pancreatic cancer. Neoplasia. 2013;15:11–22. doi: 10.1593/neo.121312
  192. Loi S., Pommey S., Haibe-Kains B., Beavis P.A., Darcy P.K., Smyth M.J., Stagg J. CD73 promotes anthracycline resistance and poor prognosis in triple negative breast cancer. Proc. Natl. Acad. Sci. USA. 2013;110:11091–11096. doi: 10.1073/pnas.1222251110
  193. Vias M., Burtt G., Culig Z., Veerakumarasivam A., Neal D.E., Mills I.G. A role for neurotensin in bicalutamide resistant prostate cancer cells. Prostate. 2007;67:190–202. doi: 10.1002/pros.20518
  194. Miklos W., Heffeter P., Pirker C., Hager S., Kowol C., van Schoonhoven S., Stojanovic M., Keppler B., Berger W. Loss of phosphodiesterase 4D mediates acquired triapine resistance via Epac-Rap1-Integrin signaling. Oncotarget. 2016;7:84556–84574. doi: 10.18632/oncotarget.11821
  195. Zhang Y., Zhang Y., Geng L., Yi H., Huo W., Talmon G., Kim Y.C., Wang S.M., Wang J. Transforming growth factor β mediates drug resistance by regulating the expression of pyruvate dehydrogenase kinase 4 in colorectal cancer. J. Biol. Chem. 2016;291:17405–17416.
  196. Han Z.C., Lu M., Li J., Defard M., Boval B., Schlegel N., Caen J.P. Platelet factor 4 and other CXC chemokines support the survival of normal hematopoietic cells and reduce the chemosensitivity of cells to cytotoxic agents. Blood. 1997;89:2328–2335.
  197. Mitchell M.I., Engelbrecht A.M. Circadian rhythms and breast cancer: The role of Per2 in doxorubicin-induced cell death. J. Toxicol. 2015;2015:392360.
  198. Zheng Y., Yang J., Qian J., Qiu P., Hanabuchi S., Lu Y., Wang Z., Liu Z., Li H., He J. et al. PSGL-1/selectin and ICAM-1/CD18 interactions are involved in macrophage-induced drug resistance in myeloma. Leukemia. 2013;27:702–710. doi: 10.1038/leu.2012.272
  199. Taoka Y., Matsumoto K., Ohashi K., Minamida S., Hagiwara M., Nagi S., Saito T., Kodera Y., Iwamura M. Protein expression profile related to cisplatin resistance in bladder cancer cell lines detected by two-dimensional gel electrophoresis. Biomed. Res. 2015;36:253–261.
  200. Brenner S., Klameth L., Riha J., Schölm M., Hamilton G., Bajna E., Ausch C., Reiner A., Jäger W., Thalhammer T., Buxhofer-Ausch V. Specific expression of OATPs in primary small cell lung cancer (SCLC) cells as novel biomarkers for diagnosis and therapy. Cancer Lett. 2015;356:517–524. doi: 10.1016/j.canlet.2014.09.025
  201. Bernard M., Delabesse E., Novault S., Hermine O., Macintyre E.A. Antiapoptotic effect of ectopic TAL1/SCL expression in a human leukemic T-cell line. Cancer Res. 1998;58:2680–2687.
  202. Fukunaga-Kalabis M., Martinez G., Nguyen T.K., Kim D., Santiago-Walker A., Roesch A., Herlyn M. Tenascin-C promotes melanoma progression by maintaining the ABCB5-positive side population. Oncogene. 2010;29:6115–6124. doi: 10.1038/onc.2010.350
  203. Li W., Zhai B., Zhi H., Li Y., Jia L., Ding C., Zhang B., You W. Association of ABCB1, β tubulin I, and III with multidrug resistance of MCF7/DOC subline from breast cancer cell line MCF7. Tumor Biol. 2014;35:8883–8891. doi: 10.1007/s13277-014-2101-z
  204. Hung T.-H., Hsu S.-C., Cheng C.-Y., Choo K.-B., Tseng C.-P., Chen T.-C., Lan Y.-W., Huang T.-T., Lai H.-C., Chen C.-M., Chong K.-Y. Wnt5A regulates ABCB1 expression in multidrug-resistant cancer cells through activation of the non-canonical PKA/β-catenin pathway. Oncotarget. 2014;5:12273–12290.
  205. Korinek V., Barker N., Moerer P., van Donselaar E., Huls G., Peters P.J., Clevers H. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat. Genet. 1998;19:379–383.
  206. Wechsler-Reya R.J., Scott M.P. Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron. 1999;22:103–114. doi: 10.1016/S0896-6273(00)80682-0
  207. Zhang Y., Kalderon D. Hedgehog acts as a somatic stem cell factor in the Drosophila ovary. Nature. 2001;410:599–604. doi: 10.1038/35069099
  208. Chan E.F., Gat U., McNiff J.M., Fuchs E. A common human skin tumour is caused by activating mutations in β- catenin. Nat. Genet. 1999;21:410–413.
  209. Wechsler-Reya R., Scott M.P. The developmental biology of brain tumors. Annu. Rev. Neurosci. 2001;24:385–428.
  210. Henrique D., Hirsinger E., Adam J., Roux I. Le, Pourquié O., Ish-Horowicz D., Lewis J. Maintenance of neuroepithelial progenitor cells by Delta–Notch signalling in the embryonic chick retina. Curr. Biol. 1997;7:661–670.
  211. Ellisen L.W., Bird J., West D.C., Soreng A.L., Reynolds T.C., Smith S.D., Sklar J. TAN-1, the human homolog of the Drosophila Notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell. 1991;66:649–661. doi: 10.1016/0092-8674(91)90111-B
  212. Ardianto B., Sugimoto T., Kawano S., Kasagi S., Jauharoh S.N., Kurimoto C., Tatsumi E., Morikawa K., Kumagai S., Hayashi Y. The HPB-AML-I cell line possesses the properties of mesenchymal stem cells. J. Exp. Clin. Cancer Res. 2010;29:163.
  213. Lee W.-J., Hah Y.-S., Ock S.-A., Lee J.-H., Jeon R.-H., Park J.-S., Lee S.-I., Rho N.-Y., Rho G.-J., Lee S.-L. Cell source-dependent in vivo immunosuppressive properties of mesenchymal stem cells derived from the bone marrow and synovial fluid of minipigs. Exp. Cell Res. 2015;333:273–288.
  214. Liu S., Yuan M., Hou K., Zhang L., Zheng X., Zhao B., Sui X., Xu W., Lu S., Guo Q. Immune characterization of mesenchymal stem cells in human umbilical cord Wharton’s jelly and derived cartilage cells. Cell. Immunol. 2012;278:35–44.
  215. de Almeida P., Meyer E.H., Kooreman N.G., Diecke S., Dey D., Sanchez-Freire V., Hu S., Ebert A., Odegaard J., Mordwinkin N.M. et al. Transplanted terminally differentiated induced pluripotent stem cells are accepted by immune mechanisms similar to self-tolerance. Nat. Commun. 2014;5:3903.
  216. Cai Y.N., Dai X.H., Zhang Q.H., Hu R., Dai Z.M. Gene expression profiling of somatic and pluripotent cells reveals novel pathways involved in reprogramming. Genet. Mol. Res. 2015;14:12085–12092.
  217. Kim Y.W., Kim H.-J., Bae S.-M., Kim Y.J., Shin J.-C., Chun H.-J., Rhie J.-W., Kim J., Kim H., Ahn W.S. Time-course transcriptional profiling of human amniotic fluid-derived stem cells using microarray. Cancer Res. Treat. 2010;42:82–94.
  218. Steidl U., Schroeder T., Steidl C., Kobbe G., Graef T., Bork S., Pechtel S., Kliszewski S., Kuendgen A., Rohr U.P. et al. Distinct gene expression pattern of malignant hematopoietic stem and progenitor cells in polycythemia vera. Annals of the New York Academy of Sciences. 2005:94–108. doi: 10.1196/annals.1349.013
  219. Barbet R., Peiffer I., Hutchins J.R.A., Hatzfeld A., Garrido E., Hatzfeld J.A. Expression of the 49 human ATP binding cassette (ABC) genes in pluripotent embryonic stem cells and in early- and late-stage multipotent mesenchymal stem cells: Possible role of ABC plasma membrane transporters in maintaining human stem cell pluripotency. Cell Cycle. 2012;11:1611–1620. doi: 10.4161/cc.20023
  220. Chen H.-F., Yu C.-Y., Chen M.-J., Chou S.-H., Chiang M.-S., Chou W.-H., Ko B.-S., Huang H.-P., Kuo H.-C., Ho H.-N. Characteristic expression of major histocompatibility complex and immune privilege genes in human pluripotent stem cells and their derivatives. Cell Transplant. 2015;24:845–864. doi: 10.3727/096368913X674639
  221. Sun D.X., Liao G.J., Liu K.G., Jian H. Endosialin-expressing bone sarcoma stem-like cells are highly tumor-initiating and invasive. Mol. Med. Rep. 2015;12:5665–5670.
  222. Peeters S.D.P.W.M., van der Kolk D.M., de Haan G., Bystrykh L., Kuipers F., de Vries E.G.E., Vellenga E. Selective expression of cholesterol metabolism genes in normal CD34+CD38− cells with a heterogeneous expression pattern in AML cells. Exp. Hematol. 2006;34:622–630.
  223. Yang L., Ren Y., Yu X., Qian F., Bian B.-S.-J., Xiao H., Wang W., Xu S., Yang J., Cui W. et al. ALDH1A1 defines invasive cancer stem-like cells and predicts poor prognosis in patients with esophageal squamous cell carcinoma. Mod. Pathol. 2014;27:775–783.
  224. Dey D., Pan G., Varma N.R.S., Palaniyandi S.S. Sca-1 + cells from fetal heart with high aldehyde dehydrogenase activity exhibit enhanced gene expression for self-renewal, proliferation, and survival. Oxid. Med. Cell. Longev. 2015;2015:1–8.
  225. Wang Z., Li K., Guo X., Li X., Bu Y., Bai X., Zheng L., Huang Y. The prognostic roles of ALDH1 isoenzymes in gastric cancer. Onco. Targets. Ther. 2016;9:3405.
  226. Foo L.C., Dougherty J.D. Aldh1L1 is expressed by postnatal neural stem cells in vivo. Glia. 2013;61:1533–1541. doi: 10.1002/glia.22539
  227. Chen Y., Peng C., Abraham S.A., Shan Y., Guo Z., Desouza N., Cheloni G., Li D., Holyoake T.L., Li S. Arachidonate 15-lipoxygenase is required for chronic myeloid leukemia stem cell survival. J. Clin. Invest. 2014;124:3847–3862. doi: 10.1172/JCI66129
  228. Kinder M., Wei C., Shelat S.G., Kundu M., Zhao L., Blair I.A., Pure E. Hematopoietic stem cell function requires 12/15-lipoxygenase-dependent fatty acid metabolism. Blood. 2010;115:5012–5022. doi: 10.1182/blood-2009-09-243139
  229. Yang C.-S., Chang K.-Y., Rana T.M. Genome-wide functional analysis reveals factors needed at the transition steps of induced reprogramming. Cell Rep. 2014;8:327–337. doi: 10.1016/j.celrep.2014.07.002
  230. Gerber J.M., Gucwa J.L., Esopi D., Gurel M., Haffner M.C., Vala M., Nelson W.G., Jones R.J., Yegnasubramanian S. Genome-wide comparison of the transcriptomes of highly enriched normal and chronic myeloid leukemia stem and progenitor cell populations. Oncotarget. 2013;4:715–728. doi: 10.18632/oncotarget.990
  231. Long H., Xie R., Xiang T., Zhao Z., Lin S., Liang Z., Chen Z., Zhu B. Autocrine CCL5 signaling promotes invasion and migration of CD133+ovarian cancer stem-like cells via NF-κB-mediated MMP-9 upregulation. Stem Cells. 2012;30:2309–2319. doi: 10.1002/stem.1194
  232. Krathwohl M.D. Chemokines promote quiescence and survival of human neural progenitor cells. Stem Cells. 2004;22:109–118. doi: 10.1634/stemcells.22-1-109
  233. Wang J., Zhu Z., Huang Y., Wang P., Luo Y., Gao Y., Du Z. The subtype CD200-positive, chorionic mesenchymal stem cells from the placenta promote regeneration of human hepatocytes. Biotechnol. Lett. 2014;36:1335–1341.
  234. Mahati S., Bolati D., Yang Y., Mao R., Zhang H., Bao Y. TMPRSS4 promotes cancer stem cell traits by regulating CLDN1 in hepatocellular carcinoma. Biochem. Biophys. Res. Commun. 2017;490:906–912.
  235. Zinner B., Gyöngyösi B., Babarczi E., Kiss A., Sobel G. Claudin 1 expression characterizes human uterine cervical reserve cells. J. Histochem. Cytochem. 2013;61:880–888. doi: 10.1369/0022155413501324
  236. Hiraoka A., Yano Ki K., Kagami N., Takeshige K., Mio H., Anazawa H., Sugimoto S. Stem cell growth factor: in situ hybridization analysis on the gene expression, molecular characterization and in vitro proliferative activity of a recombinant preparation on primitive hematopoietic progenitor cells. Hematol. J. Off. J. Eur. Haematol. Assoc. 2001;2:307–315.
  237. Brandi J., Pozza E.D., Dando I., Biondani G., Robotti E., Jenkins R., Elliott V., Park K., Marengo E., Costello E. et al. Secretome protein signature of human pancreatic cancer stem-like cells. J. Proteomics. 2016;136:1–12. doi: 10.1016/j.jprot.2016.01.017
  238. Tye S.L., Gilg A.G., Tolliver L.B., Wheeler W.G., Toole B.B., Maria B.L. Hyaluronan regulates ceruloplasmin production by gliomas and their treatment-resistant multipotent progenitors. Journal of Child Neurology. 2008:1221–1230. doi: 10.1177/0883073808321066
  239. Assou S., Le Carrour T., Tondeur S., Ström S., Gabelle A., Marty S., Nadal L., Pantesco V., Réme T., Hugnot J.-P. et al. A meta-analysis of human embryonic stem cells transcriptome integrated into a web-based expression atlas. Stem Cells. 2007;25:961–973. doi: 10.1634/stemcells.2006-0352
  240. Rosinski K. V., Fujii N., Mito J.K., Koo K.K.W., Xuereb S.M., Sala-Torra O., Gibbs J.S., Radich J.P., Akatsuka Y., Van den Eynde B.J. et al. DDX3Y encodes a class I MHC-restricted H-Y antigen that is expressed in leukemic stem cells. Blood. 2008;111:4817–4826. doi: 10.1182/blood-2007-06-096313
  241. Xiao G., Cheng H., Cao H., Chen K., Tu Y., Yu S., Jiao H., Yang S., Im H.-J., Chen D. et al. Critical role of filamin-binding LIM protein 1 (FBLP-1)/migfilin in regulation of bone remodeling. J. Biol. Chem. 2012;287:21450–21460.
  242. Ji W., Yu Y., Li Z., Wang G., Li F., Xia W., Lu S. FGFR1 promotes the stem cell-like phenotype of FGFR1-amplified non-small cell lung cancer cells through the Hedgehog pathway. Oncotarget. 2016;7:15118–15134.
  243. Coutu D.L., Francois M., Galipeau J. Inhibition of cellular senescence by developmentally regulated FGF receptors in mesenchymal stem cells. Blood. 2011;117:6801–6812. doi: 10.1182/blood-2010-12-321539
  244. Jin Y., Nie D., Li J., Du X., Lu Y., Li Y., Liu C., Zhou J., Pan J. Gas6/AXL signaling regulates self-renewal of chronic myelogenous leukemia stem cells by stabilizing β-catenin. Clin. Cancer Res. 2017;23:2842–2855.
  245. Gely-Pernot A., Coronas V., Harnois T., Prestoz L., Mandairon N., Didier A., Berjeaud J.M., Monvoisin A., Bourmeyster N., De Frutos P.G. et al. An endogenous vitamin K-dependent mechanism regulates cell proliferation in the brain subventricular stem cell niche. Stem Cells. 2012;30:719–731. doi: 10.1002/stem.1045
  246. Whissell G., Montagni E., Martinelli P., Hernando-Momblona X., Sevillano M., Jung P., Cortina C., Calon A., Abuli A., Castells A. et al. The transcription factor GATA6 enables self-renewal of colon adenoma stem cells by repressing BMP gene expression. Nat. Cell Biol. 2014;16:695–707.
  247. Kubo H., Shimizu M., Taya Y., Kawamoto T., Michida M., Kaneko E., Igarashi A., Nishimura M., Segoshi K., Shimazu Y. et al. Identification of mesenchymal stem cell (MSC)-transcription factors by microarray and knockdown analyses, and signature molecule-marked MSC in bone marrow by immunohistochemistry. Genes to Cells. 2009;14:407–424. doi: 10.1111/j.1365-2443.2009.01281.x
  248. Li H., Gao S., Huang H., Liu W., Huang H., Liu X., Gao Y., Le R., Kou X., Zhao Y. et al. High throughput sequencing identifies an imprinted gene, Grb10, associated with the pluripotency state in nuclear transfer embryonic stem cells. Oncotarget. 2017;8:47344–47355.
  249. Bu Y., Jia Q.A., Ren Z.G., Zhang J.B., Jiang X.M., Liang L., Xue T.C., Zhang Q.B., Wang Y.H., Zhang L. et al. Maintenance of stemness in oxaliplatin-resistant hepatocellular carcinoma is associated with increased autocrine of IGF1. PLoS One. 2014;9:e89686. doi: 10.1371/journal.pone.0089686
  250. Li T.S., Cheng K., Lee S.T., Matsushita S., Davis D., Malliaras K., Zhang Y., Matsushita N., Smith R.R., Marbán E. Cardiospheres recapitulate a niche-like microenvironment rich in stemness and cell-matrix interactions, rationalizing their enhanced functional potency for myocardial repair. Stem Cells. 2010;28:2088–2098. doi: 10.1002/stem.532
  251. Tominaga K., Shimamura T., Kimura N., Murayama T., Matsubara D., Kanauchi H., Niida A., Shimizu S., Nishioka K., Tsuji E. et al. Addiction to the IGF2-ID1-IGF2 circuit for maintenance of the breast cancer stem-like cells. Oncogene. 2017;36:1276–1286. doi: 10.1038/onc.2016.293
  252. Bendall S.C., Stewart M.H., Menendez P., George D., Vijayaragavan K., Werbowetski-Ogilvie T., Ramos-Mejia V., Rouleau A., Yang J., Bossé M. et al. IGF and FGF cooperatively establish the regulatory stem cell niche of pluripotent human cells in vitro. Nature. 2007;448:1015–1021. doi: 10.1038/nature06027
  253. Tuccitto A., Tazzari M., Beretta V., Rini F., Miranda C., Greco A., Santinami M., Patuzzo R., Vergani B., Villa A. et al. Immunomodulatory factors control the fate of melanoma tumor initiating cells. Stem Cells. 2016;34:2449–2460. doi: 10.1002/stem.2413
  254. Bie Q., Sun C., Gong A., Li C., Su Z., Zheng D., Ji X., Wu Y., Guo Q., Wang S., Xu H. Non-tumor tissue derived interleukin-17B activates IL-17RB/AKT/β-catenin pathway to enhance the stemness of gastric cancer. Sci. Rep. 2016;6:25447.
  255. Bie Q., Zhang B., Sun C., Ji X., Barnie P.A., Qi C., Peng J., Zhang D., Zheng D., Su Z. et al. IL-17B activated mesenchymal stem cells enhance proliferation and migration of gastric cancer cells. Oncotarget. 2017;8:18914–18923. doi: 10.18632/oncotarget.14835
  256. Chen J., Hersmus N., Van Duppen V., Caesens P., Denef C., Vankelecom H. The adult pituitary contains a cell population displaying stem/progenitor cell and early-embryonic characteristics. Endocrinology. 2005;146:3985–3998. doi: 10.1210/en.2005-0185
  257. Sun M., Zhou W., Zhang Y.Y., Wang D.L., Wu X.L. CD44+ gastric cancer cells with stemness properties are chemoradioresistant and highly invasive. Oncol. Lett. 2013;5:1793–1798.
  258. An H., Kim J.Y., Oh E., Lee N., Cho Y., Seo J.H. Salinomycin promotes anoikis and decreases the CD44+/CD24-stem-like population via inhibition of STAT3 activation in MDA-MB-231 cells. PLoS One. 2015;10:e0141919. doi: 10.1371/journal.pone.0141919
  259. Huang G.-S., Dai L.-G., Yen B.L., Hsu S. Spheroid formation of mesenchymal stem cells on chitosan and chitosan-hyaluronan membranes. Biomaterials. 2011;32:6929–6945. doi: 10.1016/j.biomaterials.2011.05.092
  260. Perotti V., Baldassari P., Molla A., Vegetti C., Bersani I., Maurichi A., Santinami M., Anichini A., Mortarini R. NFATc2 is an intrinsic regulator of melanoma dedifferentiation. Oncogene. 2016;35:2862–2872. doi: 10.1038/onc.2015.355
  261. Kiani A., Habermann I., Haase M., Feldmann S., Boxberger S., Sanchez-Fernandez M.A., Thiede C., Bornhäuser M., Ehninger G. Expression and regulation of NFAT (nuclear factors of activated T cells) in human CD34+ cells: down-regulation upon myeloid differentiation. J. Leukoc. Biol. 2004;76:1057–1065.
  262. Katsuta E., Tanaka S., Mogushi K., Shimada S., Akiyama Y., Aihara A., Matsumura S., Mitsunori Y., Ban D., Ochiai T. et al. CD73 as a therapeutic target for pancreatic neuroendocrine tumor stem cells. Int. J. Oncol. 2016;48:657–669.
  263. Corradetti B., Meucci A., Bizzaro D., Cremonesi F., Lange Consiglio A. Mesenchymal stem cells from amnion and amniotic fluid in the bovine. Reproduction. 2013;145:391–400. doi: 10.1530/REP-12-0437
  264. Zhou J., Yi L., Ouyang Q., Xu L., Cui H., Xu M. Neurotensin signaling regulates stem-like traits of glioblastoma stem cells through activation of IL-8/CXCR1/STAT3 pathway. Cell. Signal. 2014;26:2896–2902. doi: 10.1016/j.cellsig.2014.08.027
  265. Song K., Kwon H., Han C., Zhang J., Dash S., Lim K., Wu T. Active glycolytic metabolism in CD133(+) hepatocellular cancer stem cells: regulation by MIR-122. Oncotarget. 2015;6:40822–40835. doi: 10.18632/oncotarget.5812
  266. Takubo K., Nagamatsu G., Kobayashi C.I., Nakamura-Ishizu A., Kobayashi H., Ikeda E., Goda N., Rahimi Y., Johnson R.S., Soga T. et al. Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. Cell Stem Cell. 2013;12:49–61. doi: 10.1016/j.stem.2012.10.011
  267. Boucher H., Vanneaux V., Domet T., Parouchev A., Larghero J. Circadian clock genes modulate human bone marrow mesenchymal stem cell differentiation, migration and cell cycle. PLoS One. 2016;11:e0146674. doi: 10.1371/journal.pone.0146674
  268. Chen J.-J., Gao Y., Tian Q., Liang Y.-M., Yang L. Platelet factor 4 protects bone marrow mesenchymal stem cells from acute radiation injury. Br. J. Radiol. 2014;87:20140184.
  269. Calaminus S.D.J., Guitart A., Sinclair A., Schachtner H., Watson S.P., Holyoake T.L., Kranc K.R., Machesky L.M. Lineage Tracing of Pf4-Cre Marks Hematopoietic Stem Cells and Their Progeny. PLoS One. 2012;7:e51361. doi: 10.1371/journal.pone.0051361
  270. LeCouter J., Zlot C., Tejada M., Peale F., Ferrara N., Bv8 and endocrine gland-derived vascular endothelial growth factor stimulate hematopoiesis and hematopoietic cell mobilization. Proc. Natl. Acad. Sci. 2004;101:16813–16818.
  271. Ko C.H., Cheng C.F., Lai C.P., Tzu T.H., Chiu C.W., Lin M.W., Wu S.Y., Sun C.Y., Tseng H.W., Wang C.C. et al. Differential proteomic analysis of cancer stem cell properties in hepatocellular carcinomas by isobaric tag labeling and mass spectrometry. J. Proteome Res. 2013;12:3573–3585.
  272. Leth-Larsen R., Terp M.G., Christensen A.G., Elias D., Kühlwein T., Jensen O.N., Petersen O.W., Ditzel H.J. Functional heterogeneity within the CD44 high human breast cancer stem cell-like compartment reveals a gene signature predictive of distant metastasis. Mol. Med. 2012;18:1109–1121.
  273. Gerby B., Veiga D.F.T., Krosl J., Nourreddine S., Ouellette J., Haman A., Lavoie G., Fares I., Tremblay M., Litalien V. et al. High-throughput screening in niche-based assay identifies compounds to target preleukemic stem cells. J. Clin. Invest. 2016;126:4569–4584. doi: 10.1172/JCI86489
  274. Baharvand H., Ashtiani S.K., Taee A., Massumi M., Valojerdi M.R., Yazdi P.E., Moradi S.Z., Farrokhi A. Generation of new human embryonic stem cell lines with diploid and triploid karyotypes. Dev. Growth Differ. 2006;48:117–128. doi: 10.1111/j.1440-169X.2006.00851.x
  275. Souroullas G.P., Salmon J.M., Sablitzky F., Curtis D.J., Goodell M.A. Adult hematopoietic stem and progenitor cells require either Lyl1 or Scl for survival. Cell Stem Cell. 2009;4:180–186. doi: 10.1016/j.stem.2009.01.001
  276. Chen C., Cao F., Bai L., Liu Y., Xie J., Wang W., Si Q., Yang J., Chang A., Liu D. et al. IKKβ enforces a LIN28B/TCF7L2 positive feedback loop that promotes cancer cell stemness and metastasis. Cancer Res. 2015;75:1725–1735. doi: 10.1158/0008-5472.CAN-14-2111
  277. Quan Y., Zhang X., Xu S., Li K., Zhu F., Li Q., Cai X., Lu R. Tcf7l2 localization of putative stem/progenitor cells in mouse conjunctiva. Am. J. Physiol. Physiol. 2016;311:C246–C254. doi: 10.1152/ajpcell.00014.2016
  278. Kohlscheen S., Wintterle S., Schwarzer A., Kamp C., Brugman M.H., Breuer D.C., Büsche G., Baum C., Modlich U. Inhibition of thrombopoietin/Mpl signaling in adult hematopoiesis identifies new candidates for hematopoietic stem cell maintenance. PLoS One. 2015;10:e0131866. doi: 10.1371/journal.pone.0131866
  279. Tucker R.P., Ferralli J., Schittny J.C., Chiquet-Ehrismann R. Tenascin-C and tenascin-W in whisker follicle stem cell niches: possible roles in regulating stem cell proliferation and migration. J. Cell Sci. 2013;126:5111–5115. doi: 10.1242/jcs.134650
  280. Hao J., Li T.-G., Qi X., Zhao D.-F., Zhao G.-Q. WNT/β-catenin pathway up-regulates Stat3 and converges on LIF to prevent differentiation of mouse embryonic stem cells. Dev. Biol. 2006;290:81–91.
  281. Blum B., Benvenisty N. The tumorigenicity of human embryonic stem cells. Adv. Cancer Res. 2008;100:133–158.
  282. Blum B., Benvenisty N. The tumorigenicity of diploid and aneuploid human pluripotent stem cells. Cell Cycle. 2009;8:3822–3830. doi: 10.4161/cc.8.23.10067
  283. Dressel R. Effects of histocompatibility and host immune responses on the tumorigenicity of pluripotent stem cells. Semin. Immunopathol. 2011;33:573–591.
  284. Martin G.R., Evans M.J. Differentiation of clonal lines of teratocarcinoma cells: formation of embryoid bodies in vitro. Proc. Natl. Acad. Sci. USA. 1975;72:1441–1445. doi: 10.1073/pnas.72.4.1441
  285. Mintz B., Illmensee K. Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc. Natl. Acad. Sci. USA. 1975;72:3585–3589.
  286. Illmensee K., Mintz B. Totipotency and normal differentiation of single teratocarcinoma cells cloned by injection into blastocysts. Proc. Natl. Acad. Sci. USA. 1976;73:549–553.
  287. Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells. 1978;4:7–25.
  288. Li L., Neaves W.B. Normal stem cells and cancer stem cells: The niche matters. Cancer Res. 2006;66:4553–4557. doi: 10.1158/0008-5472.CAN-05-3986
  289. Ohlstein B., Kai T., Decotto E., Spradling A. The stem cell niche: theme and variations. Curr. Opin. Cell Biol. 2004;16:693–699.
  290. Marthiens V., Kazanis I., Moss L., Long K., Ffrench-Constant C. Adhesion molecules in the stem cell niche - more than just staying in shape? J. Cell Sci. 2010;123:1613–1622. doi: 10.1242/jcs.054312
  291. Whetton A.D., Graham G.J. Homing and mobilization in the stem cell niche. Trends Cell Biol. 1999;9:233–238. doi: 10.1016/S0962-8924(99)01559-7
  292. Voog J., Jones D.L. Stem cells and the niche: A dynamic duo. Cell Stem Cell. 2010;6:103–115. doi: 10.1016/j.stem.2010.01.011
  293. O’Brien L.E., Bilder D. Beyond the niche: tissue-level coordination of stem cell dynamics. Annu. Rev. Cell Dev. Biol. 2013;29:107–136.
Содержание Оригинальная статья
Мат. биол. и биоинф.
2019;14(1):160-187
doi: 10.17537/2019.14.160
опубликована на рус. яз.

Аннотация (рус.)
Аннотация (англ.)
Полный текст (рус., pdf)
Список литературы

 

  Copyright ИМПБ РАН © 2005-2024